Skip to main content

ORIGINAL RESEARCH article

Front. Bioeng. Biotechnol.
Sec. Biosensors and Biomolecular Electronics
Volume 12 - 2024 | doi: 10.3389/fbioe.2024.1463377
This article is part of the Research Topic Wearable Biosensing Devices View all 5 articles

Big Data in Myoelectric Control: Large Multi-User Models Enable Robust Zero-Shot EMG-based Discrete Gesture Recognition

Provisionally accepted
  • University of New Brunswick Fredericton, Fredericton, Canada

The final, formatted version of the article will be published soon.

    Myoelectric control, the use of electromyogram (EMG) signals generated during muscle contractions to control a system or device, is a promising input, enabling always-available control for emerging ubiquitous computing applications. However, its widespread use has historically been limited by the need for user-specific machine learning models because of behavioural and physiological differences between users. Leveraging the publicly available 612-user EMG-EPN612 dataset, this work dispels this notion, showing that true zero-shot cross-user myoelectric control is achievable without user-specific training. By taking a discrete approach to classification (i.e., recognizing the entire dynamic gesture as a single event), a classification accuracy of 93.0%for six gestures was achieved on a set of 306 unseen users, showing that big data approaches can enable robust cross-user myoelectric control. By organizing the results into a series of mini-studies, this work provides an in-depth analysis of discrete cross-user models to answer unknown questions and uncover new research directions. In particular, this work explores the number of participants required to build cross-user models, the impact of transfer learning for fine-tuning these models, and the effects of under-represented end-user demographics in the training data, among other issues. Additionally, in order to further evaluate the performance of the developed cross-user models, a completely new dataset was created (using the same recording device) that includes known covariate factors such as cross-day use and limb-position variability. The results show that the large data models can effectively generalize to new datasets and mitigate the impact of common confounding factors that have historically limited the adoption of EMG-based inputs.

    Keywords: Cross-user, deep learning, discrete, Electromyography, gesture recognition, myoelectric control, Zero-shot

    Received: 11 Jul 2024; Accepted: 28 Aug 2024.

    Copyright: © 2024 Eddy, Campbell, Bateman and Scheme. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Ethan Eddy, University of New Brunswick Fredericton, Fredericton, Canada

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.