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Brain tissue under preconditioning, as a complex issue, refers to repeated
loading-unloading cycles applied in mechanical testing protocols. In previous
studies, only the mechanical behavior of the tissue under preconditioning was
investigated; However, the link between macrostructural mechanical behavior
and microstructural changes in brain tissue remains underexplored. This study
aims to bridge this gap by investigating bovine brain tissue responses both before
and after preconditioning. We employed a dual approach: experimental
mechanical testing and computational modeling. Experimental tests were
conducted to observe microstructural changes in mechanical behavior due to
preconditioning, with a focus on axonal damage. Concurrently, we developed
multiscale models using statistically representative volume elements (RVE) to
simulate the tissue’s microstructural response. These RVEs, featuring randomly
distributed axonal fibers within the extracellular matrix, provide a realistic
depiction of the white matter microstructure. Our findings show that
preconditioning induces significant changes in the mechanical properties of
brain tissue and affects axonal integrity. The RVE models successfully captured
localized stresses and facilitated the microscopic analysis of axonal injury
mechanisms. These results underscore the importance of considering both
macro and micro scales in understanding brain tissue behavior under
mechanical loading. This comprehensive approach offers valuable insights into
mechanotransduction processes and improves the analysis of microstructural
phenomena in brain tissue.
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1 Introduction

Brain tissue is among the most essential, intricate, and adaptable tissues in the human
body, playing a pivotal role in both normal function and disease. Neurological conditions
such as stroke, encephalitis, dementia, and epilepsy are recognized by the World Health
Organization as major public health issues, with traumatic brain injuries affecting over
2 million people each year (Majdan et al., 2016). The complexity of brain tissue is evident in
its composition, which includes neurons, glial cells, and the extracellular matrix (ECM)
(Barros et al., 2011). The ECM is vital for brain development, maintenance, and
involvement in disease mechanisms (Fawcett and Verhaagen, 2018). Glial
cells—comprising astrocytes, oligodendrocytes, and microglia—along with axons, are
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essential for the central nervous system’s development, stability, and
response to injury (Verkhratsky et al., 2016). Damage to axons can
result in significant neurological impairments, compromising both
the structural integrity of brain tissue and overall neurological
function, often with serious consequences for a patient’s life
(Johnson et al., 2013).

While traditional approaches in neuroscience have provided
substantial insights into brain function through electrophysiological,
biochemical, molecular, and genetic methods, recent research has
highlighted the significant influence of mechanical forces on
neuronal function and dysfunction, particularly in the context of
traumatic brain or spinal cord injuries (Barnes et al., 2017; Goriely
et al., 2015; Tyler, 2012; Li et al., 2011). The brain is located in the
cranial cavity and is well-protected from mechanical stress under
normal physiological conditions by the cerebrospinal fluid and
meninges. However, abnormal loads can occur in pathological
conditions such as traumatic brain injuries (Bruns Jr and Hauser,
2003; Mrozek et al., 2012; Urbanek and Frink, 2012), cancer and
growing tumors (Pogoda et al., 2014), or brain swelling (Kolias et al.,
2013), which may require surgical intervention. Therefore,
conducting experimental mechanical characterization of brain
tissue is necessary to better understand the mechanisms of injury.

Numerous ex vivo experiments have been conducted to
characterize brain tissue. These experiments include shear
(Arbogast and Margulies, 1998; Bilston et al., 2001; Darvish and
Crandall, 2001; Hrapko et al., 2008; Rashid et al., 2013; Destrade
et al., 2015; Budday et al., 2017), tensile (Budday et al., 2017; Miller
and Chinzei, 2002; Velardi et al., 2006; Franceschini et al., 2006;
Rashid et al., 2014; Eskandari et al., 2021; Jin et al., 2013),
compression (Hrapko et al., 2008; Li et al., 2019; Eskandari et al.,
2021; Miller and Chinzei, 1997; Cheng and Bilston, 2007; Laksari
et al., 2012; Rashid et al., 2012; Li et al., 2019), and indentation
(MacManus et al., 2020; Elkin et al., 2010; Li et al., 2019; Prevost
et al., 2011; Lee et al., 2014; Budday et al., 2015; Samadi-Dooki et al.,
2017; MacManus et al., 2018; Qian et al., 2018) tests. Different
species, including humans (Menichetti et al., 2020; Sundaresh et al.,
2022; Reiter et al., 2023; Jin et al., 2013; Budday et al., 2017;
Franceschini et al., 2006; Shuck and Advani, 1972), monkeys
(Galford and McElhaney, 1970; Metz et al., 1970), bovines
(Bilston et al., 2001; Eskandari et al., 2021; Budday et al., 2015;
Weickenmeier et al., 2016), porcines (Arbogast andMargulies, 1998;
Thibault and Margulies, 1998; Velardi et al., 2006; Miller and
Chinzei, 1997), and rodents (Koser et al., 2015; MacManus et al.,
2018; Shulyakov et al., 2011; Antonovaite et al., 2021; Finan et al.,
2012), have been used in these studies.

Despite the challenges related to brain tissue as an extremely soft
and highly fragile tissue with heterogeneous behavior, diversity in
species, and testing protocols, comparing the results of these
mechanical tests is difficult. However, the results obtained from
various experimental observations in many studies over the years
agree on certain things, for instance, a strain-stiffening behavior,
meaning that the stiffness increases with increasing strain (Budday
et al., 2017). There exists a distinction in the structure and
magnitude of tension and compression responses, known as
tension-compression asymmetry (Jin et al., 2013; Budday et al.,
2017; Miller and Chinzei, 2002; Rashid et al., 2014; Eskandari et al.,
2021; Wang and Sarntinoranont, 2019). Moreover, there are notable
variations in the characteristics of tension and compression within

different regions of the brain, particularly between gray matter and
white matter (Prange and Margulies, 2002; Jin et al., 2013; Budday
et al., 2017; Velardi et al., 2006; Koser et al., 2015; Finan et al., 2012).
Whether brain tissue is damaged under these deformations depends
on our understanding of its mechanical properties.

Experimental methods have provided valuable insights, but they
often fail to replicate the brain’s intricate in vivo mechanical
environment. One of the key challenges in studying brain tissue
is its extreme sensitivity and soft nature, which makes in vivo testing
particularly difficult and potentially damaging. This limitation
underscores the necessity for computational models, which can
simulate tissue behavior under various loading conditions and
offer a more accurate understanding of brain tissue’s mechanical
responses in a controlled environment (Goriely et al., 2015).
However, traditional computational models, such as those based
on viscoelastic or porous media theories, often overlook the complex
microstructural arrangements within the brain, particularly the role
of axons. Axons are critical for maintaining the structural and
functional integrity of neural networks, and their damage can
lead to severe neurological deficits (Smith et al., 2013). Given
this, our study focuses on developing a micromechanical model
that specifically incorporates the arrangement and behavior of axons
under repetitive cyclic loading. This focus on axonal microstructure
is novel, as most existing models do not account for the detailed
organization of axon fibers and their response to mechanical forces,
especially in the case of preconditioning.

A highly complex issue raised by Fung is preconditioning, which
involves repetitive loading-unloading cycles applied in test
protocols, aiming to achieve a consistent and reproducible tissue
response (Fung, 1993). Soft biological tissues typically undergo a
pre-testing preparation to determine their material properties.
Preconditioning may replicate the in vivo loading conditions in
an ex vivo setting (Carew et al., 2000), that emphasizes the
importance of repetitive cyclic loading applied in pre-testing
stage of the experiments for soft tissues. In general, tissue
preconditioning aims to achieve a robust tissue mechanical
response, which leads to reducing the statistical variability in
measurements. Early studies on soft tissue properties revealed
that the tissue response followed a consistent loading and
unloading path after three preconditioning cycles. Due to these
advantages, preconditioning has become a standard protocol in
many biological tissue tests, including the brain (Cheng et al.,
2009; Prevost et al., 2011; Gefen and Margulies, 2004). Numerous
researchers have investigated the stress-strain and stress-relaxation
responses of biological tissues under various combinations of strain
and strain rate. In such cases, typical protocols involve cyclic
preconditioning, typically ranging from 3 to 10 cycles, applied at
the specific strain and strain rate corresponding to the actual test
conditions. This means that for studies involving testing at different
combinations of strains and strain rates, the preconditioning
protocols may differ for each condition. The effects of various
preconditioning protocols have been examined in various tissues,
including the aortic valve (Carew et al. (2000; 2004)), cardiac muscle
(Pinto and Patitucci, 1980), ligament (Woo et al., 1982), tendon
(Sverdlik and Lanir, 2002), and brain (Gefen et al., 2003).

A significant contribution of our study lies in the integration of
detailed histological data with a micromechanics modeling
framework to better understand the preconditioning
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phenomenon. While similar models have been developed in
previous research, our approach advances the field by
incorporating experimental data from histological analysis to
capture microstructural changes in axon arrangements under
cyclic loading. This particularization of the microstructure is
essential, as it allows us to observe the specific alterations at the
microscopic level that contribute to changes in the macroscopic
mechanical behavior of brain tissue. This histological investigation
represents a key advance, providing novel insights into the brain’s
microstructural response to preconditioning, which has not been
thoroughly explored in prior studies. Furthermore, our
micromechanics framework offers a refined and more accurate
representation of these changes, linking microstructural behavior
to overall tissue mechanics. By focusing on both the experimental
and modeling aspects, our study bridges a critical gap in
understanding the interplay between brain tissue microstructure
and its mechanical properties during preconditioning cycles.

In the case of brain tissue, previous experimental studies have
shown that preconditioning is not linked to permanent tissue
damage. However, relatively reversible alterations in tissue state,
such as the removal of interstitial fluid or intra-cellular interactions,
also lead to making brain tissue soften (Budday et al., 2020). The
microstructure of the brain plays a critical role in determining its
macroscopic behavior. However, previous experiments have
provided some insights, without capturing the subtle
microstructural changes that occur during preconditioning.
Therefore, the exact influence of the microstructure and its
changes due to preconditioning still needs to be fully understood.

Our model aims to bridge this gap by focusing on the
microstructural arrangement of axon fibers within the brain,
allowing us to observe how these structures respond to
preconditioning cycles. This approach is particularly important
because changes at the microstructural level can significantly
influence the tissue’s overall mechanical behavior (Geers et al.,
2010; Holzapfel and Fereidoonnezhad, 2017). By incorporating
detailed microstructural data into our computational model, we
aim to provide a more accurate representation of brain tissue
mechanics under preconditioning.

To better understand the relationship between microstructure
and mechanical behavior, the objective of this study is to develop a
model with the micromechanical finite element modeling approach
based on the experimental data from brain tissue to observe
microstructure changes and its effect on the macroscale under
preconditioning. Our approach provides a novel perspective by
explicitly incorporating the arrangement of axons and their
microstructural changes under cyclic loading. This allows us to
investigate the effects of preconditioning on brain tissue mechanics
in a way that has not been studied before. First, we provide an
overview of soft tissue’s general mechanical principles and
modeling’s mechanical foundations employed in this study.
Subsequently, using an experimental study, we used data from
mechanical testing and analysis of histological images to create a
micromechanical model that enabled us to optimize our model’s
material parameters. In particular, we model the quasi-static
microstructural changes in the arrangements of axon fibers under
preconditioning by using the embedded element technique in the
representative volume elements (RVE) models. A sensitivity analysis
was conducted to determine the optimal edge length and mesh size

for both models. The hyperelastic material properties of the ECM
and axonal fibers were characterized for both models using a multi-
objective evolutionary optimization procedure, ensuring that the
homogenized stress responses closely matched the experimental
curves. The validity of the optimally characterized models was
evaluated by comparing the predicted homogenized responses of
the white matter structures with the experimental data presented in
this study. Finally, we conclude by discussing the key findings of
our research.

2 Theoretical preliminaries

Computational modeling provides a valuable tool for analyzing
and predicting the behavior of human brain tissue under various
loading conditions. However, the accuracy of numerical predictions
relies on the selection of appropriate constitutive models. In the
following section, we will briefly discuss the mathematical
formulations used to capture the characteristics of brain tissue
behavior. The complexity of tissue response varies depending on
the loading conditions; accordingly, different modeling approaches
are required. The same material may necessitate different
constitutive relations based on the specific application.

In this study, the consideration of viscoelasticity was omitted
due to the assumption that the effect of viscosity is negligible under
the quasi-static loading conditions. Although preconditioning can
involve viscous effects, studies suggest that these effects can also be
modeled within a hyperelastic framework, particularly under quasi-
static conditions where the material’s response evolves path-
dependently (Holzapfel and Ogden, 2009; Ehret and Itskov, 2007;
Mihai and Goriely, 2017). Similarly, the simulation parameters of
slow processes should be calibrated using the preconditioned tissue
response, while the parameters of fast processes should usually be
based on the non-preconditioned response, ideally probed at high
rates (Budday et al., 2020). Hyperelasticity is therefore suitable for
capturing the strain-stiffening and tension-compression asymmetry
observed in brain tissue during large deformations, phenomena that
are better explained by intrinsic nonlinear elastic properties rather
than viscous effects. We will represent constitutive relations of
increasing complexity to capture the time-independent behaviors
of brain tissue. Given the high compliance of brain tissue and its
significant nonlinearity, even at strains as low as 1%, we focus
exclusively on constitutive models based on nonlinear field theory
of mechanics.

2.1 Hyperelasticity

Initially, our focus lies on examining the response of brain tissue
that is independent of time, disregarding any contributions from
viscosity or porosity. The critical characteristics observed in this
time-independent state are nonlinearity and an asymmetry between
compression and tension response. We propose a strain-energy
function, ψ(F), defined per unit reference volume and dependent
only on the deformation gradient F. Prior studies have suggested
fiber-reinforced material models for brain tissue, where the strain
energy depends not only on the deformation gradient F but also on
the direction of the fibers (Cloots et al., 2011; Feng et al., 2017; Ning
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et al., 2006; Arbogast and Margulies, 1999; Giordano and Kleiven,
2014; Garcia-Gonzalez et al., 2018). Studies have demonstrated that
white matter exhibits characteristics of being a heterogeneous and
anisotropic material (Jin et al., 2013). Additionally, it has been
documented that brain tissue demonstrates incompressible
hyperelastic behavior under large deformations (Libertiaux et al.,
2011; MacManus et al., 2017; Rashid et al., 2012; Takhounts
et al., 2003).

Various phenomenological, isotropic strain-energy functions
have been suggested to describe brain tissue’s constitutive
behavior (Budday et al., 2017; de Rooij and Kuhl 2016; Kaster
et al., 2011; MacManus et al., 2018; Rashid et al., 2012). Among these
material models, the one-term Ogden model proved to be successful
in describing the approximate mechanical behavior of the tissue
under different loading modes (Mihai et al., 2015; Budday et al.,
2017), so in this study, we specifically consider one term Ogden
model with the strain-energy function as (Ogden, 1972; de Rooij and
Kuhl, 2016):

ψ � 2μ
α2

λα1 + λα2 + λα3 − 3( ) + 1
D

J − 1( )2 (1)

Here in Equation 1, the notation λi for i = 1,2,3 represents the
principal stretches, μ denotes the shear modulus, D is the material
constant associated with the bulk modulus. The constitutive
parameter α represents the nonlinear characteristics of the tissue
that are sensitive to the magnitude of the strain, and J represents the
determinant of the deformation gradient tensor.

2.2 Embedded element technique

The embedded element technique involves the integration of a
reinforcement mesh of finite elements within a host mesh, allowing
for the modeling of complex interactions between different
components (Phillips and Zienkiewicz, 1976). This technique
involved superimposing the guest domain (axons) onto the host
domain (extracellular matrix), creating separate grids for each
domain (Dassault Systèmes, 2021). By imposing a kinematic
bond using shape functions, a strong coupling between the
reinforcement and host meshes is achieved. This coupling allows
for independent generation and analysis of the host and
reinforcement mesh (Phillips and Zienkiewicz, 1976; Elwi and
Hrudey, 1991; Garimella et al., 2019). As discussed in previous
studies, embedded reinforcement models do not reproduce the
discontinuity in the strain field (Goudarzi and Simone, 2019).
These models usually indirectly calculate the displacement of an
inclusion by using the relative displacement between the inclusion
and the matrix as an additional field.

This technique works by constraining the translational degrees
of freedom (DOFs) of the embedded nodes to align with the
interpolated DOFs of the surrounding host element.
Implementing the embedded element method to generate a
heterogeneous representative volume element (RVE) offers
several key benefits by reducing computational costs. The guest
domain encompasses two material properties—one for the fiber and
another for the matrix. Since the fibers are embedded within the
matrix, the matrix’s material properties are superimposed onto
those of the fiber, creating a combined material model within a

single domain. The overall strain energy density for this domain can
be represented as follows:

ψTotal λ1, λ2, λ3( ) � ψf λ1′, λ2′, λ3′( ) + ψm λ′′1 , λ
′′
2 , λ

′′
3( ) (2)

Here, λi � 1, 2, 3 are the principal stretches, and ψf and ψm are
the strain energy densities of the guest and host domains, respectively.
This analysis considers two distinct material models for axonal fibers
and ECM, each with independent material constants. Because the
DOFs of corresponding nodes in the guest and host domains are fully
coupled in the embedded element method, the principal stretches are
equal. By substituting the Ogden material model into Equation 2, and
considering incompressibility for the fiber and extracellular matrix
components (J � 1), the strain-energy density function can be
reformulated for the fibers and the matrix as separate equations,
denoted as Equations 3, 4, respectively.

ψf � 2μf
α2f

λ
αf
1 + λ

αf
2 + λ

αf
3 − 3( ) (3)

ψm � 2μm
α2m

λαm1 + λαm2 + λαm3 − 3( ) (4)

Studies have demonstrated that the material constant “α” is not
influenced by the loading direction (Meaney, 2003). As a result,
assuming that “α” is equal for both the fibers and the matrix
(α � αf � αm), only three independent material constants,
namely μf, μm and α would be necessary to fully describe the
hyperelastic properties of the constituents of white matter
(Yousefsani et al., 2018a).

To characterize the kinematics of the embedded element
technique, as described in previous studies (Dalbosco et al.,
2021), we have to consider a continuum body denoted as Ω0,
which undergoes quasi-static deformation to Ω (where
Ω0,Ω ⊂ R3). Points X ∈ Ω0 and x ∈ Ω represent the positions of
a particle in the reference and current configuration respectively.
The deformation of the body occurs as a result of the prescribed
displacements represented by the field �U: ∂Ωu

0 → R3 on the portion
∂Ωu

0 of the boundary ∂Ω0. This displacement field, in combination
with the body force field �B: ∂Ω0 → R3 and the surface traction field
�T: ∂Ωσ

0 → R3 prescribed on the portion ∂Ωσ
0 of the boundary ∂Ω0,

contributes to the deformation process.

∂Ωu
0 ∪ ∂Ωσ

0 � ∂Ω0, ∂Ωu
0 ∩ ∂Ωσ

0 � Ø (5)
Equation 5 indicates that the prescribed displacement and surface
traction are defined on separate parts of the boundary ∂Ω0. To
properly formulate the boundary value problem (BVP), we begin by
presenting the strong form of the problem. The governing
differential equations are derived from the balance of linear
momentum in the reference configuration, which, for a quasi-
static case, can be expressed as Equation 6:

Div P + B � 0, inΩ0 (6)
where P is the First Piola-Kirchhoff stress tensor, B is the body force
per unit reference volume, and Ω0 is the reference configuration.
The corresponding boundary conditions are:

u � u0, on ∂Ωu (7)
P · N � �T, on ∂Ωσ (8)
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Here in Equations 7, 8, u is the displacement field, u0 is the
prescribed displacement on the boundary ∂Ωu,N is the outward unit
normal vector on the boundary, and �T is the prescribed traction on
the boundary ∂Ωσ . With the strong form of the boundary value
problem posed, we can now derive its weak form using the principle
of virtual work. By integrating the equation over the reference
configuration and applying the divergence theorem, we arrive at
the following expression:

F u, δu( ) � ∫Ω0
P: Gradδu − B − ρ0€u( ).δu[ ]dV − ∫Ωσ

0

�TδudS � 0

(9)
The virtual displacement field, denoted as δu (defined on the

reference configuration), satisfies the condition δu � 0 on the part of
the boundary surface Ωu

0 . The surface traction, represented by �T,
applies to the portion ∂Ωu

0 ⊂ ∂Ω0.
In Equation 9, the first piola-Kirchhoff stress tensor denotes as P

and B are the first Piola-Kirchhoff stress tensor and the reference
body force. This choice is consistent with the use of the reference
configuration in defining the virtual work principle. B is the
reference body force. Assuming quasi-static deformation,
dynamical quantities such as ρ0€u, the inertia force per unit
reference point volume has to be negligible [see Ref (Holzapfel,
2002) for details]. So we can rewrite Equation 9 as:

F u, δu( ) � ∫Ω0
P: Gradδu − B.δu[ ]dV − ∫Ωσ

0

�TδudS � 0 (10)

Assuming the no-slip boundary condition between the fibers
and the matrix, the deformation gradient F is continuous over the
boundary surface ∂Ω0. We have specify the initial volume of the
embedded fibers by Vfi

0 where VfTotal
0 � ∑NfTotal

i�1 Vfi

0 represents the
total volume of fibers.

The additional superimposed volume at the overlapping regions
of the fiber and host domains increases the mechanical stiffness of
the model, leading to an overestimation of stiffness due to the use of
the embedded element technique. Based on the hyperelastic
behavior of the matrix and the fibers, we could decompose the
internal strain energy into two parts; ψm for the matrixm and ψfTotal

for the fibers NfTotal.
Previous studies have been presented the correction of the

addressed issue by subtracting strain energy density functions
(SEDF) of the matrix from the fibers as shown in Equation 11
(Yousefsani et al., 2018b), which resolves the well-known issue of
volume redundancy in models with embedded reinforcement,
ensuring that the model accurately reflects the material’s true
mechanical properties [discussed by (Garimella et al., 2019)]:

ψc F( ) � ψfi
F( ) − ψm F( ) (11)

where the ψc(F) is the corrected strain energy function for
embedded region, the fi and m sub-indices are in association
with fibers and matrix, respectively. Subsequently, the principle
of virtual work can be written as:

∫Ω0
Pm: Gradδu + ∑NfTotal

i�1
∫Ω0

Pci: Gradδu − ∫Ω0

�B.δudV − ∫Ωσ
0

�TδudS � 0

(12)

In Equation 12, Pm and Pci are the first Piola-Kirchhoff stress
tensors of the matrix m and of the correction of the ith fiber fi,
respectively and Gradδu represents the first variant of deformation
gradient F.

It is important to note that the First Piola-Kirchhoff stress tensor
P is employed throughout the formulation to maintain consistency
in describing stresses in the reference configuration, which is
essential when applying the principle of virtual work in the
context of finite element analysis. Moreover, P facilitates the
balance of linear momentum in the reference configuration,
which is often convenient for the type of analysis presented in
this study. Specifically, the relationship between the deformation
gradient F and the stress tensors can be described as shown in
Equation 13:

P � F · S (13)
where S is the Second Piola-Kirchhoff stress tensor, and F is the
deformation gradient. This relation shows how the First Piola-
Kirchhoff stress tensor P is directly connected to S, which is
derived from the strain energy function. The use of P is thus
justified as it enables the formulation to work with stress
measures directly connected to the physical forces experienced in
the current configuration while remaining in the reference
configuration. This simplifies the formulation when large strains
are involved, as P is consistent with both the deformation gradient
and the boundary conditions in the weak form (as seen in Equations
9, 10, 12).

Supplementary Appendix S1 presents a finite element method
(FEM) implementation designed for finite strain simulations.

The correction method is based on Ogden hyperelastic material
formulation, discussed in Ref. (Yousefsani et al., 2018b) and the
subtraction of shear modulus of matrix and fibers may be replace the
corrected modulus for the embedded region as expressed as below:

μf* � μf − μm (14)

The adjusted stiffness of the superimposed fibers, denoted as μf* ,
is determined based on the fiber stiffness μf and the matrix stiffness
μm.

2.3 Multiscale homogenization

Over the past decades, there has been significant progress in
adopting multiscale theories to establish a connection between the
macroscopic behavior of materials and the physical phenomena
occurring at smaller scales, particularly in computational mechanics.
In solid mechanics, notable contributions by Hill (1963); Hill
(1965a); Hill (1965b); Hill (1972) Mandel (1971), among others,
have provided a robust framework for estimating the macroscopic
mechanical response of heterogeneous materials.

More recently, These theories have focused on the
Representative Volume Element (RVE) concept, which enables
the calculation of macro-scale stresses and strains by averaging
their micro-scale counterparts within the RVE. The RVE is typically
treated as a continuum, although discrete interactions can also be
considered. The practical application of RVE-based theories relies

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Mazhari and Shafieian 10.3389/fbioe.2024.1462148

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1462148


on computational homogenization techniques, often utilizing finite
element methods.

2.3.1 Periodic boundary condition
To complete the mechanical boundary value problem of a

network RVE (ΩRVE ⊂ R3), along with its constituents
corresponding constitutive and structural models, it is
necessary to specify appropriate boundary conditions. Previous
studies have shown that adopting the periodic boundary
condition, rather than the uniform tensile or linear
displacement boundary condition, leads to more accurate
approximations of the effective mechanical properties of
composites (Bouaoune et al., 2016; Hazanov and Huet, 1994;
Hori and Nemat-Nasser, 1999). Therefore, we will use the
periodic boundary condition in this study to ensure more
reliable results. In the case of a periodic RVE, the boundaries
∂ΩRVE of the RVE can be divided into two opposing parts: ∂Ω+

RVE

and ∂Ω−
RVE (Figure 1). This division is indicated in Equation 15:

∂Ω+
RVE ∪ ∂Ω−

RVE � ∂ΩRVE

∂Ω+
RVE ∩ ∂Ω−

RVE � Ø.
(15)

For each point x+ on ∂Ω+
RVE, a unique corresponding point x

− on
∂Ω−

RVE exists, and the normal vectors at these boundaries satisfy
n− � −n+. It is essential to ensure that identical meshes are used on
the opposite surfaces of the RVE to guarantee the convenient and
efficient imposition of periodic boundary conditions. The
displacement field u for the periodic RVE of composites,
subjected to a macroscopic strain u, can be expressed as
(Suquet, 1987):

ui x1, x2, x3( ) � u0
i + u* x1, x2, x3( ), u0

i � ε0ijxj (16)

The term u0i � ε0ijxj represents the linear displacement field
within the RVE, which corresponds to the applied macroscopic
strain assuming a homogeneous material. This linear field is crucial
for ensuring that the boundary conditions imposed are consistent
with the overall deformation of the RVE. The second term,
u*(x1, x2, x3), is the periodic part of the displacement field and

accounts for the modifications to the linear displacement caused by
the heterogeneous structure of the composites.

In the context of hyperelastic materials, the linear displacement
field u0i serves to enforce boundary conditions necessary for
maintaining the periodicity of the RVE. While hyperelasticity
involves complex, non-linear material behavior, the periodic
boundary conditions focus on the overall deformation applied to
the RVE and the need to maintain continuity across its boundaries.
Therefore, the linear displacement field is not a reflection of the
material’s constitutive response but rather a tool to ensure the
proper application of boundary conditions.

However, the displacement field expressed in Equation 16
cannot be directly applied to the boundaries of an RVE because
the periodic part u*(x1, x2, x3) is generally unknown. For any RVE
of composites, its boundary surfaces always appear in parallel pairs.
The displacements on a pair of parallel opposite boundary surfaces
can be written as Equation 17:

uk+
i � ε0ijx

k+
j + up

i , uk−
i � ε0ijx

k−
j + up

i (17)

The indices k+ and k− refer to the kth pair of two opposing
parallel boundary surfaces within an RVE of composites. It is
important to note that the values of upi are identical at these
parallel boundaries due to their periodic nature. Therefore, the
distinction between the two equations mentioned above can be
expressed as follows:

uk+
i − uk−

i � ε0ij xk+
j − xk−

j( ) � ε0ijΔxk
j (18)

Since the term x+
j − x−

j remains constant for every pair of nodes
located on the parallel boundary surfaces, edges, and corner vertices
within the RVE of composites, given a specific macroscopic strain
εij, the right-hand side of Equation 18 also becomes constant. This
allows for easy implementation of the equations as a nodal
displacement constraint in finite element analysis. It is important
to note that Equation 18 represents a particular type of displacement
boundary condition, where the focus is on specifying the differences
in displacement between two opposing boundaries rather than
providing known values for boundary displacements. Applying

FIGURE 1
Application of periodic boundary conditions (PBC) on the boundaries of the representative volume element (RVE) in the microsampling domain.
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Equation 18 ensures the continuity of the displacement field.
Consequently, it is necessary to establish traction continuity
conditions, which are denoted by the following expressions:

t+i � −t−i with ti � σ0ijnj (19)

in the given context (Equation 19), the normal vectors at these
boundaries satisfy the condition n− � −n+. This implies that the
normal vectors on the boundary ∂ΩRVE for composites adhere to a
periodic boundary condition, which can be expressed as follows:

u+
i − u−

i � εij x+
j − x−

j( ) � Δui, t+i � −t−j (20)

Equation 20 provides the uniqueness of the solution, making it
unnecessary to explicitly apply the latter boundary condition in the
finite element analysis. It is important to note that because
displacement boundary conditions are not specified for any
particular point, translational rigid body motions of the RVE of
composites are allowed. The details of numerical implementation of
periodic boundary condition has been provided in Supplementary
Appendix S2.

2.3.2 Volume averaging
In order to represent the RVE as a single value in the

macroscopic analysis, it is common practice to compute the
volume average of relevant quantities over the RVE. This
averaging process allows us to obtain a representative value that
captures the overall behavior of the RVE in the macroscopic
analysis. By computing the volume average, we can effectively
condense the information from the microscale to the macroscale
and simplify the analysis at the macroscopic level.

�f � 〈f〉 � 1
V
∫

V
fdV (21)

here in Equation 21, the volume of the RVE is denoted as V, and the
angle brackets 〈〉 represent the volume average operation. The
quantity f can take the form of a scalar, vector, or tensor and
generally exhibits variations at different points within the RVE. The
corresponding effective quantity �f is determined by calculating the
volume average of f over the entire RVE volume, resulting in a
representative value that characterizes the overall behavior of f at
the macroscopic level.

The micro-to-macro scale transition relation is commonly
established using the Hill-Mandel condition or macrohomogeneity
condition (Hill, 1963; Hill, 1965a; Hill, 1965b; Hill, 1972; Mandel,
1971; Suquet, 1987). This condition ensures that the volume average of
the increment or variation of work performed on the Representative
Volume Element (RVE) is equivalent to the increment or variation of
local work on the macroscopic scale. Expressed in terms of a work
conjugated set, which includes the deformation gradient tensor and
the first Piola-Kirchhoff stress tensor, the principle of multiscale
virtual power, that generalized Hill-Mandel law in a variational
setting, can be stated as follows (De Souza Neto et al., 2015):

1
Vη

∫
Ωη
0

Pη: δFηdVη � P: δF (22)

The left side of Equation 22 expresses the micro scale and the right
side denotes the macro scale, where Ωη

0 is the microscopic
Representative Volume Element (RVE) domain.

Therefore, according to the Hill-Mandel energy consistency
relation, considering the specified boundary conditions and since
δF is also arbitrary the macroscale first Piola-Kirchhoff stress tensor
can be determined as the volume average of the microscale first
Piola-Kirchhoff stress tensor.

P � 1
Vη

∫
Ωη
0

PηdV (23)

Considering fibers and matrix domain, Equation 23 can be
written as Equation 24

P � 1
Vη

∫
Ωη
0

Pη
mdV

η + ∑NfTotal

i�1
∫

V
fi
0

Pη
ci
dVη⎛⎝ ⎞⎠ (24)

where Pη
m and Pη

ci are the first Piola-Kirchhoff stress tensors of the
matrix substance and the correction of the ith fiber fi, respectively.
To characterize the overall mechanical behaviors of the RVE,
volume averaging of stresses and strains was carried out.
Equation 25 was employed to estimate the volume-averaged
values of the desired outputs.

�σ ij � 1
Vη

∫
Vη
σ ijdV (25)

Here, Vη is the volume of the element, �σ ij and σ ij show the
average volume values of stress, and the average nodal stresses,
respectively. It should be noted that σ ij represents the Cauchy stress
tensor, which is the true stress acting on the deformed configuration.
While the first Piola-Kirchhoff stress tensor P refers to the
undeformed (reference) configuration, the Cauchy stress tensor
σ ij corresponds to the deformed (current) configuration. Both
tensors are related through the deformation gradient F, and this
distinction is crucial when interpreting the results from the
microscale and macroscale analyses.

3 Methods

3.1 Tissue preparation

Due to the limited access to fresh human brain tissue and the
anatomical similarity between human and bovine brains (Budday
et al., 2020; Darvish and Crandall, 2001; Samadi-Dooki et al., 2017),
eight fresh bovine brains aged 7 years old were collected from a local
slaughterhouse. The brains were kept in 0.01 M Phosphate Buffered
Saline solution (PBS) during transportation to the laboratory, and
no apparent physical damage was observed (Figure 2). The
utilization of this solution ensured that there were no observable
alterations in sample shape caused by gravity. To avoid any
mechanical decay, they were kept cold at 2°C–4°C after
extraction. They were stored at this temperature until shortly
before testing. All experiments were performed within 5 hours
post-mortem and at room temperature (~ 20°C). Prior to testing,
we ensured that each sample was equilibrated to room
temperature by allowing sufficient time for temperature
normalization. This step was carefully monitored to avoid any
rapid temperature fluctuations that could affect the mechanical
properties. The transition from cold storage to room temperature
was gradual, ensuring sample integrity.
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At first, the cerebellum was removed carefully. Each bovine
brain was cut using a surgical scalpel blade. Cylindrical samples (n =
52, where n represents the total number of samples) with a diameter
of 10.09 ± 1.68 mm and a height of about 10.5 ± 2.98 mm were
extracted by using a cylindrical steel cutter device from the corona
radiata (CR) region of white matter as shown in Figure 3A. In order
to prevent dehydration, PBS solution was applied to the samples
frequently during cutting and before testing. After preparation, each
sample was glued to the holders with a thin layer of
cyanoacrylate adhesive.

3.2 Experimental setup

In order to study the histological changes, 26 out of the
52 samples were randomly selected and divided into two groups:
the stress-free control group (n = 13) and the deformed group that
was preconditioned (n = 13). The selection was random to ensure an
unbiased and comparable distribution of samples across
both groups.

The preconditioning contains 3 loading-unloading (tension)
cycles up to 10% strain with 1/30 Hz frequency. All mechanical

FIGURE 2
The present study includes samples taken from a specific region of the white matter of the bovine brain: the corona radiata (CR), highlighted in a
coronal section. The Red lines indicate the orientations of axonal fibers. Samples were extracted aligned to the direction of axon fibers. The scale bar
provides a sense of size: the white scale bar represents 10 mm.

FIGURE 3
Experimental mechanical test setup; (A) An example of cylindrical bovine brain tissue sample obtained from corona radiata(CR) region from the
white matter, (B) The uniaxial testing device used for the experiment and positioning of the sample within the testing machine.
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tests were conducted with universal testing machine (Instron
5566 materials testing machine, Instron Co.) as shown in
Figure 3B. Uniaxial cyclic loads were applied in the direction of
axon fibers in CR (Figure 2). The direction of axon fibers in the
corona radiata has been validated with the previous studies
(Hoppstädter et al., 2022). We considered quasi-static loading
with the speed of v � 2 mm/min for the experiments.
Considering the fixing protocol, Samples were kept in 4%
buffered formalin solution for 72 h.

Furthermore, a dedicated setup was conducted in the
experimental study to examine the distinct influence of
preconditioning on the mechanical behavior of the tissue. The
samples underwent uniaxial tension loading both before and after
preconditioning. The initial group of samples underwent uniaxial

tension (n = 13), while the subsequent group was preconditioned
before undergoing uniaxial tension (n = 13), aimed to assess the
mechanical response of the tissue under preconditioning. Uniaxial
tension applied was up to 20% strain under 0.033%/s deformation
rate. During the tests, PBS solution was continuously sprayed onto
the specimens.

3.3 Histological investigations

Histological studies were performed on twenty-six samples,
carefully selected to represent both control and preconditioned
groups (n = 13 for each group), to determine the relationship
between microstructural changes and mechanical behavior. In

FIGURE 4
The microstructure of the samples of the control and preconditioned groups from the CR region of the cow brain, cut in two directions:
perpendicularly and along the length of the axon fibers, using the Luxol fast blue staining method. The magnification increases from right to left: 20x,
100x, and 200x. The cross-sectional images show the diameter and position of the axons, and the longitudinal section images show the orientation of
the axons.
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order to analyze the histology, the samples were cut in two
directions, perpendicular to the axons and the longitudinal
direction of the axons. The dual cutting directions were
employed to ensure a comprehensive analysis of axonal
alignment and structural integrity, as different orientations can
reveal distinct aspects of tissue architecture. Sections were stained
with Luxol Fast Blue protocol to visualize axonal fibers. After that, all
histological sections were digitized using a microscope equipped
with 20, 100, and 200 X objectives: first, snapshots of the samples
were scanned. Samples were randomly selected for cutting to avoid
artifacts that could distort the analysis, such as holes (Figure 4).

Due to the limitations and difficulty of the mentioned tissue
staining method, dark blue spots were seen in the images, which are
color deposits. In the transverse sections, after identifying the axons
using ImageJ v1.52 software (Rueden et al., 2017), the histological
images at scale 20 were analyzed by QuPath v0.4.3 software
(Bankhead et al., 2017) to calculate the diameter of the axons.
The results of these calculations are shown in Table 1.
Additionally, in the longitudinal sections, the orientation angles
of axons were randomly measured to assess alignment and potential
transverse axons. Figure 4 shows the results of the distribution of
axonal fibers both in transverse and longitudinal sections.

Regarding the presence of transverse axons in the longitudinal
sections, we observed that the number of axons running
transversely was minimal, accounting for approximately 2% of
the total axons in the longitudinal sections. Given their small
proportion, we considered their contribution to be insignificant in
influencing the overall mechanical response. This observation was
consistent across all samples and suggests a strong alignment of
axons along the primary direction, which could be relevant under
certain loading conditions. The axonal volume fractions for the
two control and preconditioned groups were 32.106 ± 1.05 and
27.765 ± 0.97, respectively, obtained from transverse-sectional
histological images.

4 Micromechanical
modeling framework

In this study, the statistically representative volume element
(RVE) used was a cubic grid containing a random distribution of
axons, with their primary orientation in the X direction, in the
extracellular matrix (ECM). The density of axons is defined using
the volume fraction (Vf) determined from histological images,
defined in the model as the ratio of fiber volume to RVE volume,
as shown below (Yousefsani et al., 2018b):

Vf � π

4a2
∑N
i�1

d2
i (26)

In Equation 26, a represents the edge length of the lattice, Ni is
the number of fibers, and di is the diameter of the ith cylindrical
fiber. A fiber architecture with random position, diameter, and
orientation was created in the randomization procedure.

The randomization of axonal diameters was achieved using a
cumulative density function (CDF) based on a generalized extreme
value distribution function (GEV). The GEV distribution was
chosen due to its demonstrated superiority in fitting empirical
data. A recent study compared various parametric probability
distributions against axon diameter data from electron
microscopy and found that the GEV distribution consistently
outperformed other models, including the commonly used
gamma distribution. This was attributed to its ability to better
capture key characteristics of axon diameter distributions, such as
the location and scale of the mode, as well as the behavior of
distribution tails. Other distributions, such as the inverse
Gaussian, lognormal, loglogistic, and Birnbaum-Saunders, also
provided better fits than the gamma distribution but were not as
accurate as GEV in describing distinct subpopulations of axons
(Sepehrband et al., 2016).

This CDF was parameterized with a shape factor ξ, the location
parameter ] that could be any real number, and a scale factor ω to
describe the density of axonal diameters. Note that these parameters
should not be confused with material parameters. The probability
density function (PDF) of the mentioned distribution defined as
shown in Equations 27, 28 (Figures 5A, D):

g y( ) � 1
ω
t y( )ξ+1e−t y( ) (27)

where

t y( ) � 1 + ξ
y − ]
ω

( )[ ]−1
ξ

, ξ ≠ 0

e−
y−]
ω( ), ξ � 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (28)

to randomize the orientations of the axons, another CDF was
obtained from histological images. The CDF was modeled using
an exponential fit with a rate parameter represents in Figures 5B, E.

This cumulative density function describes the distribution of
axonal orientations, which are then used to determine the spherical
components of the orientation vector �p assigned to the axons within
the RVE model. Therefore, Equation 29 indirectly influences the
orientation vector �p by modeling the probability distribution of
orientation angles, ensuring a realistic randomization of orientations
for the axons.

H y; κ( ) � 1 − e−κy (29)

The orientation vector �p was assigned to the axons in the
statistical RVE, characterized by two spherical angles θ and ϕ.

TABLE 1 Basic Statistics of axon diameters of the bovine corona radiata (CR) for two groups: control and preconditioned, obtained from histological image
analysis.

Group N ± SD Mean ± SD(μm) Max-Min(μm) Median(μm) Variance

Control 115 ± 3 0.8646 ± 0.238 1.2095 0.8223 0.0634

Preconditioned 98 ± 2 0.8637 ± 0.251 0.9525 0.8615 0.0567
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The angle θ represented the angle between the primary axonal
orientation (aligned with the X-axis) and vector �p which was
determined based on histological analysis. The angle ϕ

represented the angle between the Z-axis and the projection of
the orientation vector �p onto the YZ-plane, assumed to follow a
generally distributed range from zero to 360° (Figure 5C).

Once an appropriate sampling method was employed and the
basic parameters characterizing the microstructural features were
extracted from the histological images, the two groups of the RVEs:
before and after preconditioning, were created. To avoid fiber
overlap, a minimum distance of 0.05 μm is set as an acceptable
threshold between the outer diameters of neighboring fibers. While
the Digimat software (Digimat-FE Toolkit) offers the ability to place
fibers one by one in random positions on the unit cell plane, it was

used to generate the RVEs. Positioning of axonal fibers in the RVEs
continued until the desired volume fraction was achieved. The
obtained effective volume fractions are shown in Tables 2, 3 for
each RVE size in two groups. Due to the geometric complexity of the
statistical volume element, as mentioned, with the random
distribution, diameter, position, and orientation of the axon
fibers, Digimat-FE was exclusively used to generate the geometry.
Then, the generated geometry was exported as a set of Parasolid files
to Abaqus software.

Geometric periodicity and periodic boundary conditions (PBC)
were applied to all faces of the volume element, ensuring periodicity
in the displacement field flux. This involves relating the degrees of
freedom of nodes on one face to those on the opposite face. While
PBC offers more accurate predictions than Dirichlet and mixed

FIGURE 5
Process of construction the statistical volume element; (A, B) The cumulative distribution functions of axonal diameters and orientations presented
for a representative structure of whitematter, specifically the CR for the Control group. (C) The spherical components of the orientation vector �p assigned
to the axons within the RVE model. (D, E) The cumulative distribution functions of axonal diameters and orientations presented for a representative CR
structure for the Preconditioned group. These distributions are based on experimental histological data analysis from the present study. (F)
Schematic of a histology-informed RVE featuring random positions, diameters, and orientations of axons.

TABLE 2 Number of axons and effective volume fraction For the edge size sensitivity analysis of the RVE related to the Control group.

RVE size (μm) 4 5 6 7 8 9 10 11 12 13 14

NO. of inclusions 4 6 11 15 23 34 41 53 67 76 83

Effective volume fraction 0.318 0.338 0.320 0.322 0.315 0.323 0.338 0.327 0.323 0.332 0.323
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boundary conditions, it also increases computational demands due
to the many constraint equations required. The resulting RVE, with
random axon positions, diameters, and orientations, is shown in
Figure 5F. The mechanical behavior of axons and the ECM is
described using an Ogden-type strain energy density function,
and the embedded element technique (EET) has been used to
enhance mesh quality (Pan et al., 2013).

For Ogden hyperelastic materials, the surplus strain energy can
be eliminated by appropriately adjusting the stiffness of the axons, as
represented in Equation 14. To model the axonal fibers, 4-node linear
tetrahedral composite elements (C3D10H) were used, while 8-node
linear brick hybrid elements (C3D8RH) were used to represent the
ECM, considering incompressibility. Face partitioning into host and
guest domains was applied to maintain mesh symmetry in opposite
nodes of the models shown in Figure 6. A custom Python script applied
constraints to the models in ABAQUS. The embedded element
technique was used to facilitate PBC since the grids in both host
and guest domains were independent and thus had identical sizes,
shapes, and elemental distributions. To ensure stress continuity (elastic
boundary conditions), simulations confirmed the symmetry of stress
distribution on opposite faces of the RVE models (Hill, 1963).

4.1 Optimization procedure

A multi-objective optimization procedure determined the
hyperelastic constants for the axonal fibers and ECM from
experimental mechanical data in an inverse manner. Assuming
quasi-static large deformation in the axonal direction, the cost
functions were defined as the deviations between the
homogenized responses of the RVE and the experimental data.
The search for optimal hyperelastic material constants, which

minimized the cost functions, was performed using an
evolutionary optimization procedure known as the imperialist
competitive algorithm (Atashpaz-Gargari and Lucas, 2007).
Table 4 depicts a flowchart outlining the optimization process.

The optimization process identifies three independent variables:
μaxon, α and μECM. The algorithm employed an initial population
size of n � 100 sets of variables, with an assimilation coefficient of
γ � 0.3. Among these sets, the ten most effective solutions were
chosen as imperialists during the first iteration, forming the basis of
10 initial empires. To reduce simulation costs, all variables were
discretized within specifically limited boundaries, considering the
values reported in the literature (Budday et al., 2017; Meaney, 2003;
Yousefsani et al., 2020; Hoursan et al., 2020; Chavoshnejad et al., 2021;
Yousefsani et al., 2018a). The boundaries for the variables are defined as
follows: μaxon ∈ [100, 2000] Pa, μECM ∈ [1, 500] Pa and α ∈ [−30, 30]
except [−1, 0, 1]. The cost function was formulated as the sum of the
coefficient of determination (R2) and the Root Mean Square Error
(RMSE) of stress values between every two sets of data points to account
for deviations of the patterns and the values of the resulting curves from
the experimental data, represents in Equation 30.

Cost �
���������������
1
N

∑N
i�1

σMi − σEi
σEi

( )2

√√

+
∑N
i�1

σMi − σEi( )2
∑N
i�1

σEi − �σEi( )2
(30)

While N indicates the quantity of data points in the stress curve.
The nominal stress is denoted by σ, and i is the index used for
summation. The values obtained from the models and experiments

TABLE 3 Number of axons and effective volume fraction For the edge size sensitivity analysis of the RVE related to the Preconditioned group.

RVE size (μm) 4 5 6 7 8 9 10 11 12 13 14

NO. of inclusions 3 5 9 12 19 27 34 44 56 62 69

Effective volume fraction 0.292 0.275 0.279 0.284 0.277 0.271 0.282 0.276 0.270 0.282 0.271

FIGURE 6
Representation of RVE applying Embedded Element Technique with independent mesh grids for the host and guest domains.
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are labeled as M and E, respectively. Equation 31 provides a
description of the mean stress present in the experimental curve.

�σE �
∑N
i�1

σEi

N
(31)

The stop condition, which determines the optimal set of
parameters, was defined as having only one remaining empire
with a total cost of 0≤Cost≤ 0.2. If this condition was met, the
resulting optimal parameters were checked to ensure they fell within
the initial range assumed beforehand, and the process was ended. If
not, a new set of parameters was created, and the competitive
algorithm was repeated until the stop condition was satisfied. To
ensure that the best global solutions were obtained, a sensitivity
analysis was performed to confirm that the optimal solutions were
not affected by the upper and lower bounds of the parameters.

4.2 Sensitivity analysis

As explained, EET utilizes a host mesh consisting of 3D
elements, with guest elements embedded through a kinematic
bond created by the shape functions of the continuum mesh. To
examine how the mesh size affected the responses of the RVEmodel,
a quasi-static extension λ � 0.2 was applied in the axonal direction
(X-axis in Figure 6). The number of nodes in the models varied from
approximately 1,000 to 39,000 (Figures 8A, B). The RVEmodels had
an effective axonal volume fraction (Vf) of 32% and 27% for both
before-preconditioning and after-preconditioning groups,
respectively. Tables 2, 3 provide information on the number of
axons and the effective volume fraction of the guest domain for the
RVE models of two groups. The investigation included examining
the homogenized overall and localized responses regarding the
normalized maximum stress (σmax/σavg), as depicted in Figure 8.

After using the same optimal grid size for RVEs, in a parametric
study, the influence of the minimum edge size on the response of the
statistic RVE models was investigated (Figure 7). The models were
subjected to the same loading conditions as in the mesh sensitivity
analysis. While the mesh size of both models remained fixed at the
optimal value, the lattice edge size was varied from 4 to 14 μm. To
provide a general overview of the procedure, four RVEs are chosen
and illustrated in Figure 7. These RVEs, selected from a range of
4 μm to 14 μm, are chosen according to a specific ratio that reflects
their relative enlargement within this range.

The effect of the edge size on the overall and local response is
illustrated in Figures 8C, D. As such, an edge length of 8 μm and
10 μm were chosen for before and after RVE model sizes,
respectively.The orientation vector �p was assigned to the axons
in the statistical RVE, characterized by two spherical angles θ and ϕ.
The angle θ represented the angle between the primary axonal
orientation (aligned with the X-axis) and vector �p which was
determined based on histological analysis. The angle ϕ

represented the angle between the Z-axis and the projection of
the orientation vector �p onto the YZ-plane, assumed to follow a
generally distributed range from zero to 360° (Figure 5C).

5 Results

Initially, we investigated the mechanical responses of bovine
brain tissue through experiments to study the effect of
preconditioning at the macro and micro scales. The mechanical
response of bovine brain tissue at the macro scale, before and after
preconditioning, is illustrated in Figure 10. The preconditioned
group exhibited a lower peak stress compared to the control
group, indicating a softening of the tissue following
preconditioning. In contrast, the control group showed greater
stiffness, suggesting that preconditioning reduces the tissue’s
resistance to mechanical loading, a finding consistent with
previous research on soft tissues Budday et al. (2020). Figure 9
shows the transverse section of axonal fibers after preconditioning
from CR, where normal and damaged axons are shown.
Accordingly, irregular axons appeared with geometrical changes.
We observed abnormality of axon geometry in Figure 9, but the
damage considered in this study is the difference in the number of
axons analyzed by histological staining method. Statistical and
histological analysis shows that the volume fraction for the
control group was approximately 32%. For the preconditioned
group, it was about 27%. The experimental study showed that
preconditioning leads to the damage of several axon fibers in the
specific area of the myelin sheath, so by comparing the histological
images of the two groups, the observed axons are reduced by about
17%. This is due to the non-staining of more damaged axons in the
preconditioned group.

As shown in Figure 5, we studied the effect of macroscopic
loading-unloading cycles on the microstructure of brain tissue using
multiscale models based on representative volume elements (RVEs)
that include a random distribution of axonal fibers in the

TABLE 4 The optimization procedure in the present study.

Start

1 Initial sets of material parameters (μAxon, μECM, α)

2 Run FE Simulation and extract related model stresses

3 Get stress data from experiment

4 Formulate Cost Function used values from experiment and FE model to minimize the differences between RVE and experimental stresses

5 If: 0≤Cost≤ 0.2, use ICA to generate new set of material parameters (μAxon, μECM, α), go to 2

6 Else: Exit from the Optimization procedure

End Optimal set of hyperelastic material parameters
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extracellular matrix. Statistical RVE was developed based on
probability distribution functions obtained from histological
observations. The dispersion of axonal fibers in the white matter
of brain tissue necessitates the inclusion of multiple fibers in the
RVE to represent the microstructure accurately. In the
micromechanical finite element model, two independent domains
of matrix and axon fibers are modeled as three-dimensional
elements using the embedded element technique as represented
in Figure 6. Based on histological results, we simulated two groups of
RVE similar to the white matter microstructure of brain tissue before
and after preconditioning. Each RVE is subjected to a uniaxial strain
of up to 20% in the small deformation regime based on the overall
mechanical properties of CR using periodic boundary conditions as
one of the classical multiscale conditions.

To analyze the effect of mesh size on the responses of the two
groups of RVE models, Homogenized cauchy stresses and
normalized maximum stresses were studied for both groups of
RVE models. The results showed that local and overall tissue
responses were approximately independent of the mesh size
when the elements were sufficiently fine. However, the localized
responses of the RVE model after preconditioning were more
sensitive to the grid size, requiring more nodes to converge
compared to the RVE model before preconditioning
(approximately 19,000 and 24,000 nodes for before and after
preconditioning groups, respectively). The RVE model of the
after-preconditioning group also exhibited higher fractions of
local stress and relatively lower values of homogenized Cauchy
stress than the RVE model due to the increasing dispersion of
axonal orientations in the guest domain.

By fixing the RVE mesh size at the optimal value, we varied the
grid edge size of these models from 4 to 14 μm, as shown in Figure 7;
Tables 2, 3. Show the number of axons and each model’s effective
volume fraction of the guest domain. The RVE models were
subjected to the same loading conditions before and after
preconditioning. The homogenized response of both groups was

more sensitive to the lattice edge size. Both the homogenized and
local responses of the RVE model showed considerable variations
with changes in the edge length; however, marginal local variations
in the maximum stress were higher in after preconditioning RVE.
since changes in the arrangement of axonal fibers result in
microscopic stress fields showing significant heterogeneity, The
minimum acceptable edge length increased with the
microstructural randomness level, requiring a larger RVE model
compared to the RVE model from before preconditioning group to
stabilize tissue homogenized and local behaviors against
microstructural variations. Ultimately, the RVE model before
preconditioning was meshed with almost 20,000 nodes, while the
RVE model after preconditioning required approximately
27,000 nodes, and their respective lattice edge sizes were 8μm
and 10μm.

To determine the hyperelastic material properties of axon fibers
and ECM, we characterized them by fitting the homogeneous
response of RVE on our experimental results based on the ICA
algorithm (Table 4). For both models, we set the volume fraction
observed in the tissue through histological observations, as stated
before. The optimization process converged after 91 iterations for
the RVE model for before the preconditioning group and
142 iterations for the RVE model for after the preconditioning
group model, with total runtimes of about 5 and 8 h, respectively, on
a computer with 6 CPUs and 16 GB of RAM. Table 5 shows the
optimal hyperelastic constants suggested by previous studies.
Table 6 shows the optimal hyperelastic constants for the present
study and the provided corresponding values of the Cost functions.

To calibrate the hyperelastic RVE models and their associated
material constants, we compared the predicted mechanical behavior
of the CR, a white matter structure, with experimental data. We
compared the homogeneous responses of the models under quasi-
static longitudinal expansion with the experimental results, as
shown in Figure 10. Results were presented in terms of nominal
stress to align with experimental data. We observed good agreement

FIGURE 7
3D host meshes employed to model the matrix substance. The same element size was used for all RVEs.
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between the predicted and experimental stress curves for corona
radiation, with normalized RMSEs below 5% and 7% for the RVE
models, respectively.

6 Discussion

While numerous studies have investigated the nonlinear
mechanical behavior of brain tissue under various loading
conditions, providing a broad understanding of its macroscopic
properties (Jin et al., 2013; Budday et al., 2017; Franceschini et al.,
2006; Shuck and Advani, 1972; Arbogast and Margulies, 1998;
Bilston et al., 2001; Darvish and Crandall, 2001; Hrapko et al.,
2008; Rashid et al., 2013; Destrade et al., 2015), gaps remain in
understanding the microstructural changes that occur under

preconditioning. Existing research has predominantly focused on
characterizing the mechanical properties of brain tissue ex vivo, with
limited exploration of how in vivo conditions and microstructural
changes influence these properties, particularly after
preconditioning (Budday et al., 2020; Miller and Chinzei, 2002;
Velardi et al., 2006). Preconditioning is known to alter tissue
behavior, such as reducing stiffness, yet its influence on the
brain’s internal fiber arrangements remains poorly understood
(Fung, 1993; Cheng et al., 2009; Prevost et al., 2011; Gefen and
Margulies, 2004). This study contributes to filling this gap by
integrating experimental data with a micromechanical finite
element model, enabling a detailed examination of how
preconditioning affects the tissue’s microstructure. Our findings
provide insights into the interplay between microstructural changes
and macroscopic mechanical responses, offering a deeper

FIGURE 8
Sensitivity analysis of the overall and local responses of the RVEmodels for two groups: before preconditioning and after preconditioning. (A, B) the
effect of the grid size; (C, D) the effect of the RVE edge length.
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understanding of the mechanics of brain tissue under cyclic loading
and advancing current knowledge in this field.

Initially, our experimental protocol involved dividing cylindrical
samples of brain white matter tissue (from CR) into two groups:
control and preconditioned. The control group remained stress-free,
preserved in formalin, while the preconditioned group underwent
mechanical testing based on the designed protocol. Tensile loading,
up to 20% strain under quasi-static conditions, was applied before
and after preconditioning to explore how cyclic loading impacts the

mechanical properties of brain tissue. Preconditioning involved
three tension cycles applied along the axonal fiber direction.

As shown in Figure 10, preconditioning significantly reduced
tissue stiffness, consistent with earlier studies that observed a softer
tissue response post-preconditioning (Budday et al., 2020). This
reduction suggests that preconditioning alters tissue mechanics in a
repeatable manner. One prevailing explanation for this softening,
supported by previous research (Franceschini et al., 2006; Budday
et al., 2017), is the gradual fluid drainage from brain tissue, which
decreases resistance to loading. However, our findings indicate that
microstructural changes, particularly in the arrangement and
potential damage to axons, may also contribute significantly to
the observed mechanical behavior, providing a novel perspective
on brain tissue mechanics under preconditioning.

To further investigate these microstructural changes, we
preserved specimens post-testing for histological analysis.
Representative tissue samples were carefully selected to avoid
cutting artifacts (such as holes), and Luxol Fast Blue staining
confirmed the integrity of the myelin sheaths in both control and
preconditioned groups. Artifacts identified as non-specific staining
did not compromise the staining accuracy. Quantitative analysis of
axonal properties, such as diameter and orientation, revealed
consistent measurements across both groups, with an average
axon diameter of approximately 0.86 μm. As noted in Table 1,
the GEV (Generalized Extreme Value) distribution provided the
best fit for axon diameter data, aligning with prior studies
(Sepehrband et al., 2016).

Notably, the explicit difference was the number of damaged
axons in the preconditioned group. This observation somehow
contrasts with prior studies that reported no permanent tissue
changes from preconditioning (Budday et al., 2017; Budday et al.,
2020). The lack of sufficient histological data in those earlier studies
may explain the discrepancy, as our results suggest that axonal

FIGURE 9
Histological image of the transverse section of the white matter’s
CR region shows regular and irregular axons of the
preconditioned sample.

TABLE 5 The obtained optimum material constants reported in previous studies.

μaxon (Pa) αaxon μECM (Pa) αECM References

Chavoshnejad et al 722 −23 110 −6

110 −6 Chavoshnejad et al. (2021)

Hoursan et al. (RVE) 1,062.78 4.89 80.12 4.89 Hoursan et al. (2020)

Hoursan et al. (SVE) 738.3 4.49 99.36 4.49 Hoursan et al. (2020)

Yousefsani et al 1,130.3 4.91 87.4 4.91 Yousefsani et al. (2018a)

Pan et al 33,280 8.22 11,093 8.22 Pan et al. (2013)

Meany 290.82 6.16 - - Meaney (2003)

Saeidi et al 80.8 62.3 353.5 −21.5 Saeidi et al. (2023)

TABLE 6 The optimal hyperelastic material constants of white matter constituents obtained for the models before and after preconditioning, in the present
study.

μaxon (Pa) αaxon μECM (Pa) αECM Minimum cost [R2 RSME]
Control 796.4 20.65 85.61 20.65 0.1672 [0.975 0.121]

Preconditioned 598.4 21.55 98.97 21.55 0.1858 [0.961 0.197]
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damage, detectable through Luxol Fast Blue staining, plays a critical
role in the tissue’s altered mechanical response. Under microscopy,
damaged or demyelinated axons, which appeared pale or unstained,
provided clear evidence of microstructural disruption, highlighting a
significant consequence of preconditioning that warrants further
investigation (Carriel et al., 2017; Sargon et al., 2007).

Mechanical testing of brain tissue poses significant challenges,
particularly due to the specimen’s ultra-soft nature. Attaching
samples to holding surfaces introduces potential boundary effects
that may result in non-uniform deformation, compromising the
assumption of homogeneity. Gravitational forces acting on
cylindrical samples further contribute to inhomogeneities,
potentially affecting the preconditioning process. Moreover, the
inherent limitations of measurement accuracy under various
loading conditions highlight uncertainties regarding whether
these deformations mimic physiological conditions in vivo. The
ex vivo mechanical environment and the deformations induced by
tensile loading differ from natural in vivo conditions, where brain
tissue is well-preserved and less susceptible to such distortions.
During sample preparation and handling, brain tissue often
deforms, leading to changes in shape that can affect the results.
These deformations, such as loss of cylindrical integrity, introduce
minor discrepancies in sample dimensions, which can influence
tissue behavior under loading. Despite efforts to average results
across samples, variations in sample height and non-uniform
specimen dimensions introduce challenges in interpreting the
true extent of microstructural changes. For instance, subtle
asymmetries in specimen mounting may result in misleading

anisotropic responses, obscuring the tissue’s actual mechanical
properties.

Post-mortem changes in brain tissue properties have been
documented, with studies on porcine brain tissue indicating a
noticeable increase in stiffness as early as 6 h after death (Nicolle
et al., 2004; Garo et al., 2007). In contrast, tests on bovine brain tissue
suggest that stiffness remains relatively unchanged between 2 h and
5 days post-mortem (Darvish and Crandall, 2001; Budday et al.,
2015). All mechanical tests in this study were conducted at room
temperature, acknowledging that temperature likely affects tissue
biobonds. However, the primary goal of this research was to
investigate the relationship between tissue microstructure and
mechanical behavior, which limited our focus on the impact of
temperature. While temperature effects remain an important factor,
addressing them was beyond the scope of this study due to the
additional complexity and cost involved.

We recognize the inherent challenges of conducting mechanical
testing on brain tissue, and the results may not fully capture the
material’s precise mechanical properties. This study, however,
focused on identifying the microstructural changes in axon
arrangement before and after preconditioning, providing valuable
insights into how these changes impact tissue mechanics. While
uncertainties in mechanical testing may limit the accuracy of some
behavioral parameters, our approach reveals new and significant
information about the microstructural alterations induced by
preconditioning. For this investigation, white matter samples
were extracted exclusively from the corona radiata region to
ensure consistent alignment of axon fibers. The potential impact

FIGURE 10
The mechanical response of the two before and after preconditioning groups of RVEs using optimized material properties were compared with the
experimental data obtained from the current study under quasi-static tensile load. Error bars represent standard deviations of experimental tests.
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of regional differences within brain tissue structures was not
considered, representing a limitation of this study. Future
research should investigate microstructural variations across
different brain regions to offer a more comprehensive
understanding. Additionally, this study focused on the
hyperelastic behavior of brain tissue during slow deformations,
such as brain development or tumor growth (Budday et al.,
2014). While brain tissue is known to exhibit time-dependent
behaviors, such as viscoelasticity and stress relaxation due to
interstitial fluid interactions, these aspects were not addressed in
our current model, presenting another avenue for future work.

The highly nonlinear mechanical behavior of brain tissue stems
from its complex and heterogeneous microstructure. Understanding
the mechanisms of axonal injury in brain white matter requires the
development of advanced models that account for this intricacy.
This study introduces a micromechanical model, represented by a
statistical representative volume element (RVE), which captures the
arrangement of axonal fibers through histological analysis before
and after preconditioning. By incorporating microstructural
characteristics, including axon orientation, volume fraction, and
diameter, our model enables a more accurate depiction of localized
stresses within the tissue substructure. This approach offers deeper
insights into the mechanical behavior of white matter, particularly
under varying loading conditions, and enhances the understanding
of how preconditioning influences its mechanical properties. The
orientation of axon fibers in white matter is neither perfectly aligned
nor entirely random, but follows a distribution within specific ranges
(Wang et al., 2023; Lee et al., 2014).

In this study, the effect of changes in the orientation of axonal
fibers on the mechanical behavior of brain tissue was investigated
(Figure 5). For this purpose, other microstructural parameters of
axonal fibers, such as volume fraction and diameter of axons, were
determined from transverse-sectional images. Specifically,
considering the effective volume fraction in each statistical
characteristic volume for each group, the diameters of the fibers
were randomly distributed from 0.42 to 1.638 μm for the control
group, from 0.45 to 1.4 μm for the preconditioned group in the
volume element. Then, according to the orientation distribution of
axon fibers, the alignment of fibers was applied to the geometry of
the model. The loading direction was the X-axis, while the range of
fiber orientation was measured from 0 to 31° for the control group
and from 0 to 54.5° for the loaded group, and their distribution was
random. The deformation fields of RVEs are calculated by Abaqus
finite element software v.2021. Also, we calculate the general
mechanical responses of RVEs in tensile loading in order to
calibrate the model with experimental data.

Figure 11 shows the mechanical behavior of the statistical
characteristic volume of the brain tissue for the before and after
preconditioning groups subjected to tensile load and periodic
boundary conditions. It shows the reduction of stress in the
fibers with the increase of the orientation angle of the axonal
fibers under preconditioning. The corresponding RVE shows a
softer overall mechanical response, which is in line with the
experimental data (Figure 10). Also, on the same basis, Figure 11
shows that axonal fibers with a smaller angle between the direction
of the fiber and the direction of loading in the control group are
subjected to greater tension, which leads to a stiffer overall
mechanical response. The trend of microscopic stress changes is

consistent with changes in the overall mechanical response. The
mechanical behavior of the brain tissue depends on the orientational
distribution of the axonal fibers, in addition to the volume fraction
with respect to the loading direction. Therefore, the significant
difference between the reported mechanical behaviors could be
caused by the orientation distribution of the fibers. Recent
experiments with Ogden’s hyperelastic formulation showed that,
in general, the shear modulus (μ) is direction-dependent, but the
characteristic nonlinear behavior of the material for axons and the
extracellular matrix, i.e., the parameter α, is not sensitive to the
direction of the test (Meaney 2003; Yousefsani et al., 2018a;
Yousefsani et al., 2018b). As a result, the stress-strain relationship
is set based on α � αAxon � αECM, so three independent parameters
μECM, μAxon and α are sufficient to describe the hyperelastic
properties of white matter components (Hoursan et al,. 2020;
Yousefsani et al., 2018a; Yousefsani et al., 2018b). The α

parameter is the strain magnitude-sensitive nonlinear
characteristic of the tissue, and we assume equality for
axons and ECM.

The hyperelastic material constants obtained in our study for
axons and ECM, based on the histology-based RVEmodel, generally
resemble those suggested by previous studies that considered more
histological details (Table 5). The shear modulus of the axons for the
preconditioned group decreased by 24% from the control
group. Considering previous studies, the axon shear modulus for
the control group was 2.7 times, and for the preconditioned group,
this ratio was lower and about two times more thanMeany (Meaney,
2003) suggested. Our model’s range of axon shear modulus changes
generally overlaps with recent research (Table 6). However, there are
still differences of opinion in the research (Saeidi et al., 2023;
Hoursan et al., 2020). Of course, no micromechanical model has
presented the behavior of brain tissue under changes caused by
preconditioning. As a result, considering the limitations of previous
research, such contradictions are expected. Furthermore, some
authors have assumed the ECM to be three times softer than
axonal fibers (μaxon/μECM � 3) based on limited experimental
results, which do not account for large deformations (Karami
et al., 2009; Pan et al., 2013; Arbogast and Margulies, 1997). Our
control group had a mentioned ratio of 9.3, and our preconditioned
group had a ratio of about 6. This ratio was presented as 7.5 by
Hoursan et al. (2020), Yousefsani et al. (2018a), and Meaney (2003)
reported approximately 13 and 3, respectively. Our
micromechanical models are closest to Horsan et al. ’s model
because the histological details are added to the micromechanical
model. Previous studies on micromechanical models of the white
matter often used simplified methods that lacked or did not use
sufficient histological data and ignored the influence of randomized
fiber orientations. However, the incorporation of axonal orientation
information is critical because studies have shown that
computational models basically rely on this information to
predict the extent of the damage. The homogeneous responses of
our specified RVE models of CR under quasi-static tensile are in
good agreement with the experimental data (Figure 10). Our models
also show the effect of axon volume fraction in two conditions:
before and after preconditioning, corresponding to the mechanical
response of white matter structures following experimental findings.
This indicates that our micromechanical model is valid with
histological information, and the optimized material constants
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provide reliable estimates of the mechanical behavior of tissue
components under quasi-static loading. The random fiber
orientations implemented in our study play an important role in
the homogenous behavior of white matter structures. By comparing
our results with previous statistical models, it is clear that integrating
fiber orientation data is essential to capture the mechanical behavior
of tissue in quasi-static tension accurately. The local responses of
white matter structures to quasi-static tension are significantly

influenced by the considered tissue microstructure. The RVE
model in the preconditioned group, with a random distribution
of axonal fiber positions, diameters, and orientation, results in an
oscillatory stress distribution with higher local stresses around
lower-diameter axonal fibers. This is also due to the increased
orientation of axon fibers due to the preconditioning and
rearrangement of the fibers. These observations highlight the
importance of employing complex models that account for non-

FIGURE 11
Deformed configurations and normal stress (S11) contour plots show RVEmodels in two before and after preconditioning groups under 20% quasi-
static longitudinal tension, respectively. Configurations are shown separately for host and guest domains. Stress values are expressed in mega pascals
(MPa). RVE size increases from left to right.
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uniform axonal architecture when studying the mechanism of
axonal injury. We used the embedded element technique for the
micromechanical model and its advantages, such as the fact that the
meshes are structurally regular, which facilitates finding pairs of
nodes to apply periodic boundary conditions. Also, the independent
meshing of the fiber and matrix domain reduces the total number of
elements, reducing computational costs compared to the direct
mesh method. In this approach, we faced the problem of stiffness
redundancy, which was modeled using the appropriate correction
method presented in previous studies. The use of the embedded
element technique has limitations in presenting the interaction
between fibers and matrix, which, of course, was beyond the
goals of this research.

Future research should address several limitations identified in
this study. More advanced models need to account for the porous
nature of brain tissue and the heterogeneous arrangement of axonal
fibers across different regions of white matter. Additionally, the
extracellular matrix (ECM) should be modeled as a heterogeneous
microstructure, incorporating elements like glial cells and capillaries
to more accurately reflect tissue complexity. Regarding material
parameters, it is important to recognize that parameters calibrated
from uniaxial loading conditions do not fully capture the brain’s
physiological response during complex in vivo deformations. For
instance, simulations of slow processes, such as preconditioning,
should be based on parameters derived from preconditioned tissue
responses, while fast processes should rely on parameters from non-
preconditioned tissue, ideally obtained at high strain rates (Budday
et al., 2020). Selecting appropriate material parameters is crucial, as
simulating strains beyond the calibrated range may lead to
significant under- or overestimation of the tissue’s mechanical
behavior and injury risk. Given the biological and mechanical
complexity of brain tissue, future experimental designs should
closely align with the intended clinical applications, and models
must be developed with careful consideration of these complexities
to improve their translational relevance.

7 Conclusion

This study advances our understanding of brain tissue behavior
under preconditioning through an integrated approach combining
mechanical testing, histological analysis, and micromechanical
modeling. We found that preconditioning leads to significant
mechanical and microstructural changes in brain tissue, notably
affecting axonal integrity. By employing a statistical fiber network
model based on histological data, we achieved a more precise
representation of the brain’s microstructure. Additionally, our
inverse parameter identification process successfully linked these
microstructural features to the tissue’s macroscopic mechanical
response. The study makes two major contributions. First, we
present an experimental study that incorporates histological data
to investigate preconditioning effects. Second, we introduce an RVE-
based micromechanical modeling framework to further explore
these effects. We demonstrate the practicality and effectiveness of

using RVE-based homogenization to bridge the gap between
microstructural data and macroscopic mechanical behavior.
These innovations provide a thorough understanding of brain
tissue mechanics under repetitive loading, with far-reaching
implications for brain injury research, the development of
preconditioning protocols, and future biomechanical
modeling efforts.
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