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Introduction: Temporomandibular disorders (TMD) have a high prevalence and
complex etiology. The purpose of this study was to apply a machine learning (ML)
approach to identify risk factors for the occurrence of TMD in adults and to
develop and validate an interpretable predictive model for the risk of TMD
in adults.

Methods: A total of 949 adults who underwent oral examinationswere enrolled in
our study. 5 different ML algorithms were used for model development and
comparison, and feature selection was performed by feature importance ranking
and feature decreasing methods. Several evaluation indexes, including the area
under the receiver-operating-characteristic curve (AUC), were used to compare
the predictive performance. The precision-recall curve (PR), calibration curve,
and decision curve analysis (DCA) further assessed the accuracy and clinical utility
of the model.

Results: The performance of the random forest (RF) model was the best among
the 5 ML models. An interpretable RF model was developed with 7 features
(gender, malocclusion, unilateral chewing, chewing hard substances, grinding
teeth, clenching teeth, and anxiety). The AUCs of the final model on the training
set, internal validation set, and external test set were 0.892, 0.854, and 0.857,
respectively. Calibration and DCA curves showed high accuracy and clinical
applicability of the model.

Discussion: An efficient and interpretable TMD risk prediction model for adults
was successfully developed using the ML method. The model not only has good
predictive performance, but also enhances the clinical application value of the
model through the SHAP method. This model can provide clinicians with a
practical and efficient TMD risk assessment tool that can help them better
predict and assess TMD risk in adults, supporting more efficient disease
management and targeted medical interventions.

KEYWORDS

temporomandibular disorders, machine learning, prediction model, shapley additive
explanations, random forest

OPEN ACCESS

EDITED BY

Zhiyuan Feng,
Shanxi Provincial People’s Hospital, China

REVIEWED BY

Liangjiao Chen,
Guangzhou Medical University, China
Fang Jin,
Air Force Medical University, China
Songsong Zhu,
Sichuan University, China

*CORRESPONDENCE

Xianchun Zhu,
zhuxc@jlu.edu.cn

RECEIVED 05 July 2024
ACCEPTED 23 October 2024
PUBLISHED 05 November 2024

CITATION

Cui Y, Kang F, Li X, Shi X, Zhang H and Zhu X
(2024) Predicting temporomandibular disorders
in adults using interpretable machine learning
methods: a model development and
validation study.
Front. Bioeng. Biotechnol. 12:1459903.
doi: 10.3389/fbioe.2024.1459903

COPYRIGHT

© 2024 Cui, Kang, Li, Shi, Zhang and Zhu. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 05 November 2024
DOI 10.3389/fbioe.2024.1459903

https://www.frontiersin.org/articles/10.3389/fbioe.2024.1459903/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1459903/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1459903/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1459903/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1459903/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2024.1459903&domain=pdf&date_stamp=2024-11-05
mailto:zhuxc@jlu.edu.cn
mailto:zhuxc@jlu.edu.cn
https://doi.org/10.3389/fbioe.2024.1459903
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2024.1459903


1 Introduction

Temporomandibular disorders (TMD) is a collective term for
skeletal and neuromuscular diseases involving the
temporomandibular joint (TMJ), masticatory muscles, and
associated tissues (Adèrn et al., 2014). It is one of the most
common disorders among oral and maxillofacial diseases
globally. Clinical manifestations include localized pain in the
face and preauricular region, restricted mandibular movement,
joint popping and murmurs (Sousa et al., 2019; Yap et al., 2022b;
Zhang et al., 2023). Additionally, symptoms such as head and
neck pain, dizziness, hearing loss, and earache or tinnitus have
been reported (Porto De Toledo et al., 2017; Song et al., 2018;
Kang, 2020; 2021; Naderi et al., 2023). Studies have shown that
TMD has a high prevalence in adults, with approximately 40%–

70% of adults exhibiting at least one sign of TMD (Suzuki and
Iwata, 2016), and the prevalence is significantly higher in women
than in men (Winocur et al., 2006; Bueno et al., 2018). TMD has a
significant impact on the quality of life and oral health of adults.
Pain and functional limitations cause patients to suffer from
distress in daily activities, including difficulty eating, speaking,
and chewing, and psychological problems such as anxiety and
depression. In addition, TMD may be associated with sleep
disturbances, further affecting patients’ quality of life
(Almoznino et al., 2016).

The pathogenesis of TMD is complex and not yet fully defined,
and the commonly accepted etiologic theory is the biopsychosocial
model, which considers the influence of biological and psychosocial
factors (Suvinen et al., 2005; Ohrbach and Dworkin, 2016). Several
studies have shown that the etiology of TMD involves anatomical
structures, biomechanical factors, psychosocial factors, genetic
factors, and environmental factors (Marpaung et al., 2018; Sousa
et al., 2019; Zhang et al., 2023), and that the combined effect of these
factors contributes to the development and progression of TMD.
Although there has been some progress in the research on TMD,
there have been few studies on the prediction of TMD risk.
Currently, existing risk prediction tools often only cover certain
aspects of risk factors and fail to comprehensively and deeply
integrate more dimensions of potential risk. Therefore, it is of
great significance to comprehensively consider various potential
factors leading to TMD and establish a risk prediction model
for adult TMD.

With the widespread use of ML in clinical medicine, some ML
techniques have been used to develop predictive models for
diseases (Lee et al., 2021; Jp et al., 2023). Compared to
traditional methods, ML has advantages in handling large-
scale data with multidimensional features, accurately
identifying disease risk factors, and effectively generating
predictive models. Lundberg et al. (2020) proposed the SHAP
algorithm, which quantifies the impact of variables on the model
through SHAP values, effectively solves the “black box” problem
of the ML model that is difficult to interpret, and enhances the
transparency and reliability of clinical applications. This study
aims to apply ML methods to identify more comprehensively the
primary risk factors affecting the occurrence of TMD in adults,
develop and validate an interpretable ML risk prediction model,
achieve early prediction of TMD, and provide effective auxiliary
tools for clinical diagnosis and treatment.

2 Materials and methods

2.1 Study population

Adults who underwent oral examination at Stomatology
Hospital of Jilin University from February 2023 to April
2024 were selected as the study population. Inclusion criteria:
adults aged ≥18 years who agreed to participate in the study.
Exclusion criteria: (1) systemic diseases; (2) tumours, craniofacial
deformities, and craniofacial trauma; (3) undergoing treatment
with medications that could mask symptoms of TMD, such as
non-steroidal anti-inflammatory drugs or analgesics; and (4)
individuals with a history of temporomandibular joint trauma
or surgery. The study was approved by the Ethics Committee of
the Stomatology Hospital of Jilin University (Approval number:
JDKQ2023098) and was conducted under the Declaration of
Helsinki. All subjects were informed and consented to
participate in the study.

2.2 Assessment of TMD

This study used the presence or absence of TMD in adults as the
outcome variable. According to the Diagnostic Criteria for
Temporomandibular Disorders (DC/TMD) published by the
International Society for Dental Research in 2014 (Ohrbach and
Dworkin, 2016), subjects who met one or more of the subcategories
of the DC/TMD criteria were classified into the TMD group, and
those who did not meet these criteria were classified into the no
TMD group. The diagnostic criteria for DC/TMD is shown in the
Supplementary DC/TMD Diagnostic Criteria.

2.3 Data collection

Clinical data were collected from all subjects, including
demographic information, oral-related medical history, occlusal
factors, oral behavioral habits, lifestyle habits, sleep status, and
psychological state in multiple dimensions. These indicators
include age, gender, orthodontics, root canal therapy, facial cold
stimulation, unilateral chewing, chewing hard substances, chewing
gum, biting of soft tissues (lips, tongue, cheeks), grinding teeth,
clenching teeth, excessive mouth opening, mouth breathing, uneven
or crowded teeth, missing posterior teeth, malocclusion, faulty
restoration, prone or lateral sleeping, infrequent exercise, resting
chin on the hand, staying up late, prolonged mobile phone use,
insomnia, smoking, drinking, obesity, stress, anxiety, and
depression, for a total of 29 indicators.

The Generalized Anxiety Disorder 7-item scale (GAD-7) and
the Patient Health Questionnaire 9-item scale (PHQ-9) were
used to assess patients’ anxiety and depression. The GAD-7
contains 7 items, each item is rated on a 4-point scale from
0 to 3, and the total score ranges from 0 to 21. Rating scale: no
anxiety (0-4 points), mild anxiety (5-9 points), moderate anxiety
(10-14 points), and severe anxiety (15-21 points). PHQ-9
contains 9 items, each item is rated on a 4-point scale from
0 to 3, with a total score ranging from 0 to 27. Rating scale: no
depression (0-4 points), mild depression (5-9 points), moderate
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depression (10-14 points), moderately severe depression (15-
19 points), and severe depression (20-27 points). The Chinese
versions of the GAD-7 and the PHQ-9 have been widely used in
healthcare organizations and have good reliability and validity
(Li et al., 2014).

2.4 Model development and evaluation

The development cohort consisted of adults who underwent
oral examinations between February 2023 and December 2023 at
the Stomatology Hospital of Jilin University, and the external test
cohort consisted of adults who underwent oral examinations
between February 2024 and April 2024 at the same hospital. This
study included 29 predictors. Due to potential multicollinearity
among predictors that could affect prediction accuracy,
Spearman correlation analysis was used to exclude highly
correlated predictors. A heatmap visualization was employed,
and among highly correlated features (ρ > 0.7), only one was
retained for model construction. The model was developed using
predictors that were not highly correlated.

Five different ML algorithms were used for model
development and comparison to determine the optimal model.
These algorithms included random forest (RF), extreme gradient
boosting (XGboost), logistic regression (LR), decision tree (DT),
and gradient boosting decision tree (GBDT). To optimize the
models, grid search combined with manual tuning was used to
obtain the final hyperparameters for each model. The SHAP
algorithm was used for feature selection and model
interpretation. Initially, the SHAP values of each feature were
computed to quantify their contributions to the model’s
predictions, and a SHAP summary plot was generated to
visualize feature importance. Based on the importance ranking
of features, unimportant features were systematically removed
while monitoring changes in model performance, aiming to
balance performance with complexity. Ultimately, key features
were retained, and the model that maintained high predictive
performance while being simplified was selected as the
final model.

To enhance the model’s reliability, 10-fold cross-validation was
applied to the training cohort. In this process, the development
cohort was randomly divided into 10 groups. In each iteration,
9 groups were used as the training set to train the model, and the
remaining 1 group served as the internal validation set to evaluate
the model’s performance on unseen data. Additionally, to further
assess the model’s generalizability, an independent external test set
was used for evaluation, with data from the test set not involved in
the model training process.

The evaluation indexes for the model included AUC,
accuracy, sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and F1 score.
Furthermore, the precision-recall curve (PR) and area under
the PR curve (AP) were used to assess the model’s
discrimination, the calibration curves were used to assess the
agreement between the predicted and actual probabilities of the
model, the Brier scores were used to assess the accuracy of the
model, and the decision curves analysis (DCA) were used to
assess the clinical utility of the models.

2.5 Model explanation

The SHAP method was used to explain the model at both global
and local levels. The global explanation demonstrates the relative
contribution of each feature to TMD risk and its importance
ranking, while the local explanation is specific to a single sample
and demonstrates the specific contribution of each feature to the
prediction of that sample.

2.6 Statistical analysis

Statistical analyses were performed using R version 4.2.3 and
Python version 3.11.4. Categorical variables were presented as n (%)
and compared using the chi-square test or Fisher’s exact test. For
normally distributed continuous variables, they were presented as
mean ± standard deviation and compared using the t-test.
Continuous variables that did not fit a normal distribution were
presented as the median and interquartile range (IQR) and
compared using the Mann-Whitney U test. A two-tailed
p-value < 0.05 was considered statistically significant.

3 Results

3.1 Baseline characteristics

From February 2023 to December 2023, 799 adults who
underwent oral examinations were included in the development
cohort with 460 (57.57%) females and 339 (42.43%) males, and an
average age of 36 years. There were 336 (42.05%) subjects with TMD
and 463 (57.95%) without TMD. From February 2024 to April 2024,
150 adults who underwent oral examinations were included in the
external test cohort, with 92 (61.33%) females and 58 (38.67%)
males, and an average age of 35 years. There were 73 (48.67%)
subjects with TMD and 77 (51.33%) without TMD. The study flow is
shown in Figure 1.

Demographic and clinical characteristics of the development
cohort are shown in Table 1, and those of the external test cohort are
shown in Supplementary Table S1. Baseline characteristics showed
no significant differences (p > 0.05) between the development and
external test cohorts, indicating a balanced distribution between the
two cohorts, as shown in Supplementary Table S2.

3.2 Model development and performance
comparison

Because multicollinearity between features may affect the
predictive accuracy, we performed Spearman correlation analysis
during model development. The results showed a high correlation
between anxiety and depression with a correlation coefficient of
0.83, as shown in Supplementary Figure S1. Based on clinical
experience and relevant research, we excluded the feature of
depression and used the remaining 28 features for model
development.

We used 5 different ML algorithms to construct a TMD risk
prediction model, trained the model through 10-fold cross-
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validation, and evaluated its performance. The discriminative
performance of the 5 models is shown in Table 2. The AUCs of
the RF model on the training set and internal validation set were
0.925 and 0.863, respectively, showing the best predictive
performance, as shown in Figures 2A, B. The PR curves showed
that the average precision (AP) of the RF model on the training set
and the internal validation set were 0.908 and 0.823, respectively,
and also showed the best discriminative performance, as shown in
Figures 2C, D. To comprehensively evaluate the model performance,
we also analyzed the calibration curve and the DCA curve. The
calibration curve showed that the predicted probabilities of the RF
model had good agreement with the actual observations, with a Brier
score of 0.159, as shown in Figure 2E. The DCA curve showed that

the RF model had a good net clinical benefit in clinical applications,
as shown in Figure 2F. The above results indicated that the RFmodel
had the best predictive performance among the 5 ML models.

The SHAP summary plot of the top 20 features for the RF model
is shown in Figure 3A, while those for the other 4 ML models are
shown in Supplementary Figure S2. These plots visualize the
contribution of the different features to the model prediction
results. Based on the feature importance ranking, we gradually
eliminate unimportant features and reduce the number of
features in the model from 28 to 3. During the feature reduction
process, the RF model consistently retained the best predictive
ability, as shown in Figure 3B. Therefore, we selected the RF
models for the development of the final model.

FIGURE 1
Flow chart of the study design.
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TABLE 1 Demographic and clinical characteristics on the development cohort.

Characteristic Total (n = 799) Non-TMD (n = 463) TMD (n = 336) p-value

Age, Mean ± SD 36.06 ± 13.22 34.94 ± 13.19 37.59 ± 13.13 0.005

Gender, n (%) Female 460 (57.57) 229 (49.46) 231 (68.75) <0.001

Male 339 (42.43) 234 (50.54) 105 (31.25)

Orthodontics, n (%) No 676 (84.61) 404 (87.26) 272 (80.95) 0.015

Yes 123 (15.39) 59 (12.74) 64 (19.05)

Root canal therapy, n (%) No 577 (72.22) 362 (78.19) 215 (63.99) <0.001

Yes 222 (27.78) 101 (21.81) 121 (36.01)

Facial cold stimulation, n (%) No 716 (89.61) 445 (96.11) 271 (80.65) <0.001

Yes 83 (10.39) 18 (3.89) 65 (19.35)

Unilateral chewing, n (%) No 411 (51.44) 291 (62.85) 120 (35.71) <0.001

Yes 388 (48.56) 172 (37.15) 216 (64.29

Chewing hard substances, n (%) No 514 (64.33) 345 (74.51) 169 (50.30) <0.001

Yes 285 (35.67) 118 (25.49) 167 (49.70)

Chewing gum, n (%) No 686 (85.86) 419 (90.50) 267 (79.46) <0.001

Yes 113 (14.14) 44 (9.50) 69 (20.54)

Biting of soft tissues, n (%) No 584 (73.09) 376 (81.21) 208 (61.90) <0.001

Yes 215 (26.91) 87 (18.79) 128 (38.10

Grinding teeth, n (%) No 677 (84.73) 437 (94.38) 240 (71.43) <0.001

Yes 122 (15.27) 26 (5.62) 96 (28.57)

Clenching teeth, n (%) No 613 (76.72) 405 (87.47) 208 (61.90) <0.001

Yes 186 (23.28) 58 (12.53) 128 (38.10)

Excessive mouth opening, n (%) No 534 (66.83) 339 (73.22) 195 (58.04) <0.001

Yes 265 (33.17) 124 (26.78) 141 (41.96)

Mouth breathing, n (%) No 515 (64.46) 325 (70.19) 190 (56.55) <0.001

Yes 284 (35.54) 138 (29.81) 146 (43.45)

Uneven or crowded teeth, n (%) No 487 (60.95) 316 (68.25) 171 (50.89) <0.001

Yes 312 (39.05) 147 (31.75) 165 (49.11)

Missing posterior teeth, n (%) No 729 (91.24) 438 (94.60) 291 (86.61) <0.001

Yes 70 (8.76) 25 (5.40) 45 (13.39)

Malocclusion, n (%) No 505 (63.20) 349 (75.38) 156 (46.43) <0.001

Yes 294 (36.80) 114 (24.62) 180 (53.57)

Faulty restoration, n (%) No 647 (80.98) 399 (86.18) 248 (73.81) <0.001

Yes 152 (19.02) 64 (13.82) 88 (26.19)

Prone or lateral sleeping, n (%) No 158 (19.78) 120 (25.92) 38 (11.31) <0.001

Yes 641 (80.22) 343 (74.08) 298 (88.69)

Infrequent exercise, n (%) No 459 (57.45) 304 (65.66) 155 (46.13) <0.001

Yes 340 (42.55) 159 (34.34) 181 (53.87)

Resting chin on the hand, n (%) No 456 (57.07) 302 (65.23) 154 (45.83) <0.001

Yes 343 (42.93) 161 (34.77) 182 (54.17)

(Continued on following page)
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3.3 Identification of the final model

During the feature reduction process of the RF model, we
evaluated the effects of different numbers of features on the
model performance, as shown in Figure 3C and Supplementary
Table S3. When the number of features was increased from 6 to 7,
the predictive ability of the model was significantly improved, with
the AUC increasing from 0.838 to 0.854. However, further increases
in the number of features did not result in a significant increase in
predictive ability, and the model with 7 features performed similarly
to the model with more features. Furthermore, the PR curve showed
that the model with 7 features had a higher average accuracy (AP =
0.817), as shown in Figure 4A. Meanwhile, the calibration curve and
the DCA curve showed well-calibrated and good net clinical benefit
for models with 7 features, as shown in Figures 4B, C. Considering
the model performance, complexity and computational efficiency,

we selected the RF model with 7 features (gender, malocclusion,
unilateral chewing, chewing hard substances, grinding teeth,
clenching teeth, anxiety) as the final model. The mean AUC of
the final model is 0.892 (95% CI, 0.869–0.916) on the training set
and 0.854 (95% CI, 0.771–0.937) on the internal validation set, as
shown in Figures 5A, B. In addition, the final model achieved an
accuracy of 0.803 on the validation set, with a sensitivity of 0.821,
specificity of 0.783, and F1 score of 0.773.

3.4 External test of the final model

The final model was externally tested using an independent
dataset. The final RF model predicted TMD with an AUC of 0.857
(95% CI, 0.798–0.915), demonstrating the stability and reliability of
the model, as shown in Figure 5C. The final model achieved an

TABLE 1 (Continued) Demographic and clinical characteristics on the development cohort.

Characteristic Total (n = 799) Non-TMD (n = 463) TMD (n = 336) p-value

Staying up late, n (%) No 259 (32.42) 191 (41.25) 68 (20.24) <0.001

Yes 540 (67.58) 272 (58.75) 268 (79.76)

Prolonged mobile phone use, n (%) No 234 (29.29) 141 (30.45) 93 (27.68) 0.395

Yes 565 (70.71) 322 (69.55) 243 (72.32)

Insomnia, n (%) No 640 (80.10) 410 (88.55) 230 (68.45) <0.001

Yes 159 (19.90) 53 (11.45) 106 (31.55)

Smoking, n (%) No 652 (81.60) 383 (82.72) 269 (80.06) 0.338

Yes 147 (18.40) 80 (17.28) 67 (19.94)

Drinking, n (%) No 724 (90.61) 423 (91.36) 301 (89.58) 0.395

Yes 75 (9.39) 40 (8.64) 35 (10.42)

Obesity, n (%) No 684 (85.61) 406 (87.69) 278 (82.74) 0.049

Yes 115 (14.39) 57 (12.31) 58 (17.26)

Stress, n (%) No 457 (57.20) 309 (66.74) 148 (44.05) <0.001

Yes 342 (42.80) 154 (33.26) 188 (55.95)

Anxiety, median [IQR] 4.00 [0.00,7.00] 1.00 [0.00,5.00] 6.00 [4.00,7.00] <0.001

Depression, median [IQR] 3.00 [0.00,8.00] 1.00 [0.00,5.00] 6.00 [3.00,9.00] <0.001

Note: Chewing gum (more than 3 pieces per day), Infrequent exercise (less than 75 min of moderate-intensity exercise per week), Prolonged mobile phone use (more than 4 h of use per day),

Staying up late (going to bed after 11 p.m. more than 3 nights per week), Insomnia (more than three nights per week), Smoking (1 or more cigarettes per day), Drinking (alcohol consumption for

3 or more days per week), Obesity (BMI > 24).

TABLE 2 Performance of the 5 ML models on the internal validation set.

Models AUC Accuracy Sensitivity Specificity PPV NPV F1 score

RF 0.863 0.795 0.776 0.861 0.757 0.825 0.765

XGBoost 0.852 0.786 0.831 0.795 0.753 0.813 0.787

LR 0.843 0.772 0.761 0.831 0.728 0.807 0.742

DT 0.796 0.751 0.750 0.773 0.715 0.779 0.730

GBDT 0.854 0.783 0.836 0.777 0.743 0.819 0.783
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accuracy of 0.773 on the external test set, with a sensitivity of 0.712,
specificity of 0.844, and F1 score of 0.750. The clinical performance
of the model on an external test set was further evaluated. The
calibration curve showed a good agreement between the predicted
probabilities of the model and the actual observations. The Brier
score of the model was 0.155, and further validation showed that the
model had a good prediction accuracy, as shown in Figure 5D. The
DCA curve showed that using our model to guide clinical decisions
results in greater net benefit when the risk threshold is between
0.03 and 0.93, as shown in Figure 5E.

3.5 Model explanation

To make the prediction model more transparent, we used the
SHAP algorithm to explain the prediction model. The SHAP
algorithm quantified the contribution of each feature to the
prediction result and provided an explanation for the final output
of the model. Figure 6A shows the 7 features of the model and the
specific contribution of each feature to the model output. Figure 6B

shows the ranking of the importance of the 7 features as follows:
anxiety, unilateral chewing, malocclusion, clenching teeth, chewing
hard substances, gender, and grinding teeth. In addition, the
interpretability of the model was demonstrated through two
specific cases. One was a low-risk case with a low SHAP
predictive score (0.14); the other was a high-risk case with a high
SHAP predictive score (0.92), as shown in Figures 6C, D.

4 Discussion

In this study, using the ML approach, we identified the
7 important predictors of TMD occurrence in adults (anxiety,
unilateral chewing, malocclusion, clenching teeth, chewing hard
substances, gender, and grinding teeth), and based on these
factors, we successfully developed an interpretable risk prediction
model for TMD in adults, which provides new ways for TMD
prevalence risk assessment and disease diagnosis.

The innovation of the study is its broad and deep consideration
of multidimensional predictors. The study included 28 predictors

FIGURE 2
Performance comparison of 5 ML models. (A) ROC and AUC of the training set. (B) ROC and AUC of the validation set. (C) PR curve and AP of the
training set. (D) PR curve and AP of the validation set. The y-axis is precision, and the x-axis is recall. The higher the AP value, the better the model
performance. (E) Calibration curves of the validation set. The x-axis is the average prediction probability, the y-axis is the actual probability of the event,
and the dashed diagonal is the reference line. The closer the fitting line is to the reference line, the lower the Brier score, and the more accurate the
model prediction is. (F) DCA curves of the validation set. The black dotted line represents the assumption that all patients have TMD, and the red dotted
line represents the assumption that no patient has TMD.
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FIGURE 3
Feature attributes in SHAP for RF model and predictive performance with varied numbers of features. (A) The SHAP summary plot of the top
20 features for RF model. The horizontal coordinate represents the SHAP value, and each line indicates a feature. A dot represents the SHAP value of the
corresponding feature for a patient, with high feature values shown in red and low feature values shown in blue. (B)AUCs of the fiveMLmodels with varied
numbers of features. (C) AUC, sensitivity, specificity, and F1 score of the RF model with varied numbers of features.

FIGURE 4
Predictive performance of the RF model after reducing features. (A) PR curves, (B) Calibration curves, and (C) DCA curves of the RF model with
different features.
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covering multiple dimensions, including demographic information,
oral-related medical history, occlusal factors, oral behavioral habits,
lifestyle habits, sleep status, and psychological state. This
multidimensional consideration allows the model to more
comprehensively and accurately assess the risk of developing
TMD. Furthermore, we used a feature reduction method to
screen predictors, optimizing model performance by progressively
eliminating less important predictive factors. Finally, based on the
comprehensive consideration of model utility, efficiency and
accuracy, we identified the 7 most important predictors for
model construction. This approach not only improves the
predictive performance and computational efficiency of the
model, but also enhances the interpretability and stability of the
model, making it more applicable to medical practice.

Another innovation of this study is the use of the SHAP
algorithm to provide both global and local explanations for the
model. The SHAP algorithm is based on the Shapley values from
cooperative game theory. It calculates the marginal contribution of
each feature across different combinations to explain the impact of
each feature on the model’s prediction outcomes. By simulating the
contribution of each feature to various model decisions, SHAP
quantifies the importance of features on a unified scale. Due to
its ability to provide consistent feature importance explanations

across various machine learning models, SHAP has become widely
used for visualizing and interpreting complex algorithms. We not
only quantified the specific contributions of the 7 predictors to the
model’s predicted outcomes, but also ranked them in order of
importance based on these contributions, thus providing
clinicians with more comprehensive and detailed reference
information. In addition, the model can clearly show the impact
of different predictors on the prediction results for each specific
individual. This personalized explanation enables clinicians to
understand each patient’s specific risk profile and formulate more
precise and effective preventive measures and treatment strategies.
The use of the SHAP algorithm significantly enhances clinicians’
understanding and application of the model, further improving the
model’s practicality and reliability in clinical decision making.

The results of this study showed that gender is a significant risk
factor for the occurrence of TMD in adults. Studies have indicated
that the prevalence of TMD in females is almost twice that of males
(Bueno et al., 2018). This gender disparity is primarily attributed to
biological factors, hormonal fluctuations, and psychosocial factors.
Estrogen and progesterone in females may play critical roles in
regulating pain perception, inflammatory responses, and cartilage
protection of the TMJ, and changes in these hormones may increase
the risk of TMD in women (Ribeiro-Dasilva et al., 2009; Farook and

FIGURE 5
Predictive performance of the final RFmodel. (A)ROCand AUCof the training set. (B)ROC and AUCof the validation set. (C) ROCand AUCof the test
set. (D) Calibration curve of the test set. (E) DCA curve of the test set.
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Dudley, 2023). Additionally, structural characteristics of the TMJ in
females, such as a shallow glenoid fossa and a larger condyle, may
also increase the risk of joint instability (Ayyıldız et al., 2021).

The association betweenmalocclusion and TMD has long been a
subject of debate. Malocclusion alters the condylar movement
trajectory, subjecting the TMJ to additional stress, and leading to
injury of the articular disc and condylar cartilage, thereby
precipitating TMD symptoms (Ono and Yonemitsu, 2024).
Studies have shown a positive correlation between malocclusion
complexity and the occurrence of TMD, with greater malocclusion
complexity increasing the risk of TMD (Zúñiga-Herrera et al., 2023).
Occlusal features such as deep overjet, ≥ 5 mm overbite, anterior
open bite, and posterior crossbite are recognized as common
manifestations of malocclusion in TMD (Macrì et al., 2022).
Simulation studies by Usui et al. (2003) suggest that patients with
anterior open bite may exert greater strain on the TMJ with their
occlusal force. Thilander et al. (2002) observed a significant
correlation between TMD and posterior crossbite, emphasizing
the importance of early correction of malocclusion. A study by
Henrikson (2000) confirmed that orthodontic treatment helps to

improve the symptoms of TMD patients with the presence of
malocclusion. However, some scholars suggest that existing
evidence is insufficient to fully establish the relationship between
occlusion factors and TMD, warranting further in-depth research
(Manfredini et al., 2017; Al-Ani, 2020). Despite ongoing
controversies regarding the role of occlusal factors as etiological
agents in TMD, our findings supported the viewpoint of considering
occlusal intervention when evaluating and treating TMD patients.

In terms of oral parafunctional movements, our study showed
that teeth grinding and clenching are important risk factors for the
occurrence of TMD. Teeth grinding and clenching increased the risk
of TMD, consistent with previous research findings (Karakis and
Dogan, 2015; Da Silva et al., 2017; Yalçın Yeler et al., 2017;
Marpaung et al., 2018; Wu et al., 2021; Câmara-Souza et al.,
2023). Prolonged grinding and clenching exert sustained pressure
on the joints, potentially leading to disc displacement, capsular and
ligamentous laxity, thereby precipitating symptoms such as pain,
clicking, and limited mouth opening. Additionally, these behaviors
may increase the tension of masticatory muscles and induce
compensatory muscle hypertrophy, as evidenced by significantly

FIGURE 6
SHAP interprets of the final RF model. (A) Feature attributes in SHAP for the final model. The horizontal coordinate represents the SHAP value, and
each line indicates a feature. A dot represents the SHAP value of the corresponding feature for a patient, with high feature values shown in red and low
feature values shown in blue. (B)Ranking of feature importance in the finalmodel. Thematrix of the SHAP summary plot describes the importance of each
feature of the finalmodel. (C) SHAP force plot by patients without TMD and (D)with TMD. The features that increase the risk of TMD are shown in red,
and those that decrease the risk of TMD are shown in blue. Predictors include unilateral chewing, malocclusion, clenching teeth, chewing hard
substances, and grinding teeth, where 1 indicates the presence of the factor and 0 indicates its absence. Gender is coded as 0 for female and 1 for male.
Anxiety level is measured by GAD-7 scores.
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increased masseter and temporalis muscle thickness in TMD
patients compared to healthy individuals (Garip et al., 2018). In
this study, unilateral chewing was also identified as a significant risk
factor for TMD. Several studies have confirmed that individuals
habitually engaging in unilateral chewing are more prone to TMD
symptoms (Yalçın Yeler et al., 2017; Paulino et al., 2018; Wu et al.,
2021). Unilateral chewing alters the normal movement path of the
condyle, increasing the complexity of its movement trajectory,
thereby increasing the risk of developing TMD. Moreover,
Prolonged unilateral chewing can lead to internal force
imbalances within the TMJ, potentially triggering structural
remodeling of the joint and alterations in the fiber structure of
masticatory muscles, consequently resulting in mandibular
asymmetry and discordant bilateral muscle movements, and
increasing the risk of developing TMD (Heikkinen et al., 2022).
Our study also showed that long-term chewing of hard substances is
another important risk factor for developing TMD. A study by
Paulino et al. (2018)confirmed a significant correlation between the
occurrence of TMD and chewing hard substances, and a study by
Akhter et al. (2004) in Bangladeshi adolescents also found the
frequency and type of hard food intake were significantly
associated with the development of TMD. Prolonged chewing of
hard substances increases the burden on the TMJ, leading to fatigue
and spasms of the masticatory muscles, and may also lead to
abnormal wear of the teeth, which affects the balance of
masticatory forces and increases the risk of developing TMD.

This study further confirmed that psychological factors are closely
related to the occurrence of TMD. Studies have shown that anxiety and
depression are significantly associated with the occurrence of TMD
(Paulino et al., 2018; Yap et al., 2022a; Natu et al., 2018; Al-Khotani et al.,
2016; Castaño Joaqui et al., 2023; Simoen et al., 2020). Psychological
disorders increase the risk of TMD by activating the stress response,
inhibiting immune function, and promoting the development of chronic
inflammation (Jo et al., 2016). These negative emotions can also cause
muscle tension in the temporomandibular region, increasing the burden
on the TMJ, which may trigger or exacerbate TMD symptoms. Studies
have also shown that the association between psychological disorders and
TMDmay be due to behaviors triggered by psychological stress, such as
bruxism and clenching, which significantly increase the risk of TMD
(Karibe et al., 2015; Al-Khotani et al., 2016; de Paiva Bertoli et al., 2018).
In the correlation analysis of predictive factors, we found Spearman’s
correlation coefficient of 0.83 for anxiety and depression, indicating that
they are highly correlated. Including them both in themodel may lead to
redundant effects and reduce the predictive power of the model. In
clinical practice, the prevalence of anxiety is generally significantly higher
than that of depression (Li et al., 2019). Moreover, anxiety symptoms are
often easier to identify and manage, as patients tend to have stronger
cognitive recognition and coping abilities for anxiety, which can usually
be alleviated more quickly through interventions. In contrast, the
treatment of depression tends to require a longer period, and the
intervention strategies are more complex. Additionally, studies by
Liou et al. (2023) and Medeiros et al. (2020)) suggest that anxiety
may have a greater impact on the risk of TMD than depression.
Based on clinical experience and research, we prioritized anxiety as a
predictor to eliminate multicollinearity, improve model accuracy and
stability, and better reflect actual clinical conditions.

In the detection and prediction of TMJ disorders, researchers have
employed variousmethods. Fang et al. (2023) used the LASSOmethod to

select important features and developed a logistic regression model for
detecting degenerative TMJ disease based on cephalometric images.
Bianchi et al. (2020) constructed a combination model of XGBoost
and LightGBM for diagnosing TMJ osteoarthritis by selecting interaction
variables. Vinayahalingam et al. (2023) achieved automatic TMJ image
segmentation using a 3DU-Net deep learningmodel. Jp et al. (2023) used
the Chi-squared Automatic InteractionDetector (CHAID) algorithm for
variable selection and predicted the risk for TMD in adolescents.

In this study, we used 5 ML algorithms: RF, XGBoost, GBDT, DT,
and LR to develop a risk prediction model for adult TMD. Random
Forest mitigates overfitting and improves model stability and
generalization by integrating multiple decision trees. XGBoost and
GBDT, as boosting algorithms, balance bias and variance effectively.
The DT, while simple and prone to overfitting, handles non-linear
features well. LR offers interpretability and fast modeling, making it
ideal for baseline comparisons. Ultimately, the RF model showed
optimal performance in predicting adult TMD risk, offering both
stability and generalizability, and providing strong support for
clinical application. Compared to other studies, we employed the
SHAP algorithm for predictor screening. By visualizing each factor’s
contribution to the model’s predictions, we progressively removed less
important predictors to achieve variable selection. After feature
reduction, the model demonstrated strong generalization capabilities.
An AUC of 0.854 and an accuracy of 0.803 for the validation set, and an
AUC of 0.857 with an accuracy of 0.773 for the external test set. These
results indicate that the model performs well not only during
development but also maintains stable predictive performance in
real-world clinical applications. Importantly, the data required for
the model are easily accessible and suitable for collection in clinical
and epidemiological studies. Since the model does not rely on imaging
devices or biomarker testing, it offers high generalizability and
practicality, making it well-suited for large-scale clinical
implementation.

Although this study has made some progress in identifying
TMD risk factors and developing a risk prediction model, it also has
certain limitations. Firstly, the sample size and diversity of the study
were limited, and future research should consider using larger and
more diverse samples to improve the generalizability of the results.
Secondly, because the pathogenesis of TMD has not been fully
clarified, the model may not be able to comprehensively capture all
factors that are closely associated with the risk of TMD. To obtain a
more accurate and comprehensive TMD risk assessment, future
studies need to further explore the pathogenesis of TMD in depth
and identify more potential influencing factors to further improve
the accuracy and usefulness of the prediction model.

5 Conclusion

We appliedMLmethods to successfully identify 7 important risk
factors for the occurrence of TMD in adults and developed an
efficient and interpretable TMD risk prediction model. This model
not only demonstrates good predictive performance, but also further
enhances its clinical applicability through SHAP methods. It will
help clinicians to more accurately and conveniently predict and
assess the risk of TMD in adults, and provide decision support for
the implementation of personalized prevention and medical
interventions.
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