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Biodielectrics is a subset of biological and/or bioinspired materials that has
brought a huge transformation in the advancement of medical science, such
as localized drug delivery in cancer therapeutics, health monitoring, bone and
nerve repair, tissue engineering and use in other nanoelectromechanical systems
(NEMS). While biodielectrics has long been used in the field of electrical insulation
for over a century, polar dielectric properties of biological building blocks have
not been well understood at the fundamental building block level. In this review
article, we provide a brief overview of dielectric properties of biological building
blocks and its hierarchical organisations to include polar dielectric properties
such as piezo, pyro, and ferroelectricity. This review article also discusses recent
trends, scope, and potential applications of these dielectrics in science and
technology. We highlight electromechanical properties embedded in rationally
designed organic assemblies, and the challenges and opportunities inherent in
mapping from molecular amino acid building blocks to macroscopic analogs of
biological fibers and tissues, in pursuit of sustainable materials for next-
generation technologies.
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1 Introduction

The term biodielectrics can be defined as the materials exhibiting dielectric property
which originate in, or derived from, or inspired by living systems in nature. Examples
include gutta-percha, wood, amino acids, tissues, bioceramics and bone. They may or may
not have undergone further modifications or engineering for the use as dielectric materials.
Similarly, they may or may not be bio or environmentally degradable although general
expectation will be that they are more readily degradable than similar materials of
petrochemical origin such as synthetic polymeric dielectrics. In recent times,
biodielectrics has been put forward in many sectors in the field of science and
technology, like healthcare (Reibetanz, 2021; Pethig et al., 2003; Grant, 1984), energy
harvesting (Venkat et al., 2011), or environment (Arif et al., 2023), as a potential alternatives
to replace or substitute conventional dielectric materials. The impetus comes from non-
toxicity, biocompatibility, biodegradability, flexibility, sustainability, and relative ease of
processing of biodielectrics. As such, and through further engineering of these materials, it
may be possible to develop devices for day to day use, for example, as sensors, wearable
electronics, and other self-powered devices (Wu et al., 2021; Zaszczyńska et al., 2020; Voit
et al., 2015; Knapkiewicz and Kawa, 2023). Alongside, biodielectrics can bring forward

OPEN ACCESS

EDITED BY

Pavel Zelenovskii,
University of Aveiro, Portugal

REVIEWED BY

Vladimir Bystrov,
Institute of Mathematical Problems of Biology
(RAS), Russia
Kausik Kapat,
National Institute of Pharmaceutical Education
and Research, Kolkata, India

*CORRESPONDENCE

Hema Dinesh Barnana,
dinesh.Barnana@ul.ie

Syed A. M. Tofail,
Tofail.Syed@ul.ie

RECEIVED 02 July 2024
ACCEPTED 10 September 2024
PUBLISHED 03 October 2024

CITATION

Barnana HD, Tofail SAM, Roy K, O’Mahony C,
Hidaši Turiničová V, Gregor M and ul Haq E
(2024) Biodielectrics: old wine in a new bottle?
Front. Bioeng. Biotechnol. 12:1458668.
doi: 10.3389/fbioe.2024.1458668

COPYRIGHT

© 2024 Barnana, Tofail, Roy, O’Mahony, Hidaši
Turiničová, Gregor and ul Haq. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Review
PUBLISHED 03 October 2024
DOI 10.3389/fbioe.2024.1458668

https://www.frontiersin.org/articles/10.3389/fbioe.2024.1458668/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1458668/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2024.1458668&domain=pdf&date_stamp=2024-10-03
mailto:dinesh.Barnana@ul.ie
mailto:dinesh.Barnana@ul.ie
mailto:Tofail.Syed@ul.ie
mailto:Tofail.Syed@ul.ie
https://doi.org/10.3389/fbioe.2024.1458668
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2024.1458668


advanced medical applications, e.g., in localized drug delivery in
cancer therapeutics, real-time health monitoring, bone, muscle and
nerve repair, tissue engineering and use in nanoelectromechanical
systems (NEMs) (Stroe et al., 2013; Fine et al., 1991; Raghavan et al.,
2012; Fernandez-Yague et al., 2015). Due to the inherent and
engineerable dielectric properties and environmental
sustainability, biodielectrics can become alternative to
conventional dielectrics in technical applications including
sonars, sensors, accelerometers, resonators, medical devices,
wearable electronics, smart devices, and other energy harvesting
applications (Singhwal et al., 2021; Pelrine et al., 2001; Kornbluh
et al., 2002).

The extensive study of dielectric properties in biological systems
started with the discovery of qualitative piezo and pyroelectricity in the
wool fibers bounded by shellac in 1941 by A. J. Martin (Martin, 1941).
The discovery of piezoelectricity in wood by Bazhenov and
Konstantinova in the middle of 20th century and later confirmed by
Fukada (Fukada, 1955) developed interests in biological
macrostructures. Fukada and Yasuda went on to report shear and
tensile piezoelectricity in bone and tendon collagen in 1957 and
1964 respectively (Fukada and Yasuda, 1957; Fukada and Yasuda,
1964). Lang reported pyroelectricity in bone in 1966 (Lang, 1966).
Piezoelectricity in amino acid powders was first reported byVasilescu in
1970 (Vasilescu et al., 1970). Piezoelectric properties in materials of
biological origin such as collagen, blood vessel walls, intestines, trachea,
horn keratin, DNA, lobster shell apodome chitin, and myosin and actin
of muscles became a matter of curiosity, most often qualitatively
(Fukada and Hara, 1969; Fukada and Ueda, 1970) (Fukada et al.,
1975; Ando and Eiichi, 1976; Ando, Fukada, and Glimcher, 1977;
Fukada and Yasuda, 1964; Lang, 1966; Athenstaedt, 1968). Successful
discovery and demonstration of piezoelectricity and pyroelectricity of
biological materials made researchers look also for a ferroelectric
phenomenon in biologicals. Polonsky and Stanford carried out some
of the earliest investigations on the bio-ferroelectricity on
deoxyribonucleic acid (DNA) (Polonsky et al., 1960) and ribonucleic
acid (RNA) (Stanford and Lorey, 1968).

The existence of piezoelectricity in a variety of biological systems
and molecules has been established (Stapleton et al., 2016; Karaffová
et al., 2021). This led to these structures, which are embedded in
almost all living organisms, must play some physiological roles
through their endogenous electric fields. Examples include embryo
development, tissue regeneration, and neural networks systems
(Burr, 1952; Zhao et al., 2006; Levin and Stevenson, 2012;
Canadas et al., 2020; Kapat et al., 2020). Piezoelectricity has often
been implied as the cause or governing mechanism in callus
formation, fracture healing, and tissue and nerve regeneration.
Molecular mechanisms of such physiological roles still allude us.
The 2021 Nobel Prize in Physiology or Medicine awarded to David
Julius and Ardem Patapoutian for their discoveries of temperature
and touch receptor Piezo one and Piezo two proteins brings to fore
the importance of studying dielectric nature of biological building
blocks such as amino acids, peptides, proteins, and tissues.
Interestingly, piezoelectric effects have yet to be claimed in the
electrical behaviour of these proteins although fibrillar, globular and
membrane proteins have all been found quantitatively to be
piezoelectric in the classical sense.

This article gives, after a brief introduction to the fundamentals
of dielectrics and their subclassifications, a discussion on biological

and bioinspired materials that can be classified as biodielectrics as
shown in Figure 1. We discuss recent trends, scopes, and potential
applications of the science and technology of these dielectrics in
pursuit of sustainable materials for next-generation technologies
such as Internet of Things (IoTs), human-machine interfaces, and
brain-inspired computing.

2 Fundamentals of dielectrics

The term “dielectric” was derived from Greek language ‘‘Dia’’
which means through, and it was first coined byWilliamWhewell in
1837 (Daintith, 2008). A dielectric material is a poor conductor of
electricity and is capable of supporting an electrostatic field to store
energy and release it upon demand or if necessary. One of the
earliest applications of dielectrics is the so-called Leyden jar
developed in 1745 (Conway and Conway, 1999). It consisted of a
glass used as a capacitor to store charge (Ho et al., 2010; Conway and
Conway, 1999). The dielectric undergoes a change in its state
(polarisation) when subjected to an external electric field. A few
dielectrics retain the stored energy and discharge energy in the form
of electrical charge. The ability of a material to store energy storing
charges/polarisation in an electric field is shown by all dielectrics.
There is another class of dielectrics that can store charges or remain
polarized even when the electric field is removed. This class of
“electrified” materials are termed as electrets, following the analogy
from magnetism that retains magnetization. Most biodielectrics are
either natural electrets (bioelectrets) or can be made electrets by
subjecting to electrical polarisation.

Based on the alignment of positive and negative charge carriers and
the resultant dipole moments, the dielectrics can be classified into two
groups-polar dielectrics and non-polar dielectrics. In non-polar
dielectrics, the constituting molecules have no net dipole moment
because of the match in center of mass of positive and negative
atoms. To polarize non-polar dielectrics, we use different poling
techniques that are based on the trapping of electric charges. These
are, for example, contact poling method, electromagnetic method,
electron beam irradiation, corona poling, and thermo-electric method.

On the other hand, polar dielectrics are constituted of molecules
with a net dipole moment arising from the non-alignment of center
of mass of positive atoms and negative atoms in the molecules. In the
thermodynamic equilibrium state the dipoles are randomly oriented
and the net dipole moment of a piece of material is zero. However,
when subjected to an electric field, the randomly arranged dipole
moments in polar dielectrics align in the direction of the applied
electric field. Upon removal of electric field, they return to their
quasi-permanent level. These materials have held charge for years
and used in many aerospace and sonar applications.

Based on the symmetry, 21 of the 32 point groups are non-
centrosymmetric meaning that they lack a centre of symmetry and
the remaining are centrosymmetric. Centrosymmetric materials show
electrostriction, tribo- and flexoelectricity. Non-centrosymmetric
dielectric materials can be further divided into piezo-, pyro-, and
ferroelectrics based on their response to the applied electric field.
Except for the non-centrosymmetric cubic group 432, the remaining
20 non-centrosymmetric groups show piezoelectric behavior (Park
et al., 2020). Piezoelectrics is a subgroup of dielectric materials
which generates polarisation when mechanical stress or strain is
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exerted. The converse phenomenon involves an applied electric field
which distorts the piezoelectric material causing mechanical strain.
These piezoelectric materials are used in applications such as high-
voltage generators, gas igniters, positioners, actuators, and transformers.

Pyroelectrics is a subgroup of non-centrosymmetric materials
that possesses spontaneous dipoles that allows generating electricity
upon application of heat and vice versa. Among the 21 non-
centrosymmetric group symmetries, 10 groups possess the so
called polar symmetry that allow them to show spontaneous
polarisation, and exhibit both piezo and pyroelectric properties.
Within these 10 groups, a further subgroup possesses reversible
spontaneous polarisation. These are ferroelectric materials that
exhibit piezo, pyro and ferroelectric properties.

Ferroelectric materials are characteristic by their spontaneous
electric polarisation that can be reversed by an external electric field.
Usually, there is no iron in ferroelectrics. The name is simply an analogy
to ferromagnetic materials, because the properties exhibited by
ferroelectric materials, such as hysteresis loop, response to stress,
and spontaneous electric polarisation, are analogous to
ferromagnetic materials. Few exhibits spontaneous polarisation and
forms hysteresis (similarly to ferromagnetic materials which retain the
magnetism even after removal of field) and they are called ferroelectrics.

3 Low k dielectrics

As it has been stated before, dielectrics are used in a variety of
technical applications and have been employed in a number of
potential advanced capacitors, actuators, or transducers applications

such as nanogenerators (Zhao et al., 2021), wearable health monitors
(Su et al., 2021), smart textiles for electricity generation (Chen et al.,
2020a). These involve dielectrics materials with a range of relative
permittivity (k). Most of the biological materials, in their native and
un-engineered state, possess relatively low range of magnitude of
dielectric permittivity. This can be advantageous in numerous
applications where low-k dielectrics are actively sought after. For
example, the search for new materials for integrated circuits has
resulted from the unrelenting quest for microprocessors that are
quicker and more efficient. The interconnects within integrated
circuits became a bottleneck for performance enhancement at the
0.25 μm technology node. In high frequency communication
devices, ensuring faster signal transmission with minimal signal
loss requires materials with lower relative permittivity and low
dielectric losses. These low k dielectric materials have advantages
like lower dielectric loss, faster signal transmission compared to
traditional dielectric materials made them to use in high frequency
microelectronics such as printed circuit boards (PCBs) and
antennas, as well as microwave communication components used
in, for example, Internet of Things (IoT), Fifth Generation (5G),
inter-satellite gesture sensing, communications, and automotive
radar applications. thus, interconnection point of view, usage of
low k dielectric materials are necessary to limit electronic crosstalk,
charge build-up, and signal propagation delay. Low k dielectrics are
considered as materials with dielectric constant lower than that of
silicon dioxide (k ~ 3.9). Researchers developed novel materials to
lower capacitance and connection resistance in order to overcome
this. One such turning point was the switch from aluminum (Al) to
copper (Cu). Silicon dioxide which is used for such applications

FIGURE 1
Showing the Biodielectrics that typically belong to the category of low dielectrics, with a more detailed breakdown into Biopieoelectrics,
Biopyroelectrics, and Bioferroelectrics, along with their possible utilization in specific fields.
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whose relative permittivity ~4 which is less when compared with
existing inorganic dielectric materials, but still, it is high results in
high dielectric losses.

There are two ways to reduce the k value, one is to create pores,
and the other is to reduce polarisation at the molecular level by
replacing polar atoms or groups with with atoms or groups of
relatively low polarity such as replacing oxygen (O) in the structure
by C-H. Going to the fundamental aspects of polarizability, the
materials containing polar components (e.g., Si-O) has higher
dielectric constant compared with the materials containing less
polar components (e.g., C-C, Si-F, Si-C, C-H). The dipole
formation is a result of electronic polarisation (displacement of
electrons), distortion polarisation (displacement of ions), or
orientation polarisation (displacement of molecules) in an
alternating electric field. These phenomena have characteristic
dependencies on the frequency of the alternating electric field,
giving rise to a change in the real and imaginary part of the
dielectric constant between the microwave, ultraviolet, and
optical frequency range. This led researchers to investigate
materials that inherently possess relatively low dielectric
constants based on less polar polymeric materials such as
polyimides, polyphenylene oxides, and fluoropolymers. These
materials offer lower dielectric constants than that of silicon
dioxide (typically between 2.5 and 4) but often suffers from low
thermal stability, poor mechanical properties, and higher moisture
absorption. Polymer based or other inorganic low k dielectrics
cannot withstand the high processing temperature (Singh and
Ulrich, 1999). Here are two ways to answer this, one is the
development of low k high temperature resistant dielectric
materials, and the other is the development of methods to reduce
the processing temperature to use currently available low k dielectric
materials (Singh and Ulrich, 1999). Also, these materials often
originate from petrochemical precursors and create
environmental burden and are often toxic. Sustainability of these
materials are often a major concern.

The other way to reduce the dielectric constant is using porous
dielectric materials or inducing porosity. Silicon dioxide (SiO2), due
to its process compatibility, good thermal and mechanical
properties, has long been used in semiconductor industry as a
robust interlayer dielectric. Dielectric constants can further be
brought down by introducing porosity in the structure (Xie et al.,
2022). For example, has prepared nanoporous SiOF, into which they
injected fluorine molecules to create less polar Si-F. Ultra-low k
porous SiCOHmaterials were created to preserve low capacitance as
devices scaled further.

Biodielectrics with permittivity in the range suitable for low k
dielectric applications are numerous even without introducing
porosities. Biological materials such as jute, cotton, coir have
historically used as insulating materials in large scale
communication cables, for example, submarine cables for
transatlantic telegraph cables. Biodielectrics can thus be
important materials to be considered as potential alternatives to
conventional inorganic and polymer based low k dielectric
materials. One more problem with low k dielectrics is the low
thermal conductivity that limits heat dissipation especially in
high powder density chips. Biodielectrics can be engineered to
possess high thermal conductivity with low dielectric permittivity
to address these problems. Inspiration for such engineering strategy

can be taken from two dimensional covalent organic frameworks
developed for better heat dissipation (Evans et al., 2021). Usually,
silica based low k dielectric materials have a dielectric constant of
three or four, better thermal stability and high thermal
conductivities. Organic dielectric materials have shown success in
obtaining desirable low k dielectric properties even without inducing
pores, but only with inadequate heat resistance, mechanical stability
and thermal conductivities. Organo-metallic dielectric materials, on
the other hand, offer solution but they can be very expensive.
Biodielectrics such as bio-inspired peptide nanotubes, for
example, have successfully incorporated metal ions with better
heat resistance, mechanical stability and thermal conductivities
while keeping dielectric constant low. These biodielectrics can be
further explored for low k dielectric applications. Porous calcium
phosphates such as hydroxyapatites or its derivatives can also be
another route to explore.

4 Biopiezoelectricity

The breakthrough in the field of dielectrics happened in the year
1880 when French physicists, brothers Jacques and Pierre Curie,
discovered piezoelectricity while compressing a certain type of
naturally occurring crystals, such as quartz, topaz, Rochelle salt,
cane sugar and tourmaline (Koptsik and Rez, 1981). A year later
(1881), Lippaman predicted the converse piezoelectric effect,
i.e., expansion or contraction of a non-centrosymmetric materials
in response to the applied electric field (Tichý et al., 2010), yet the
experimental validation was done in the year 2002 (Kornbluh et al.,
2002). Piezoelectrics were only of laboratory interest until they were
used in sonar applications during World War I by P. Langevin and
French co-workers (Szabo, 2004). This led to an increase in research
and development of new piezoelectric materials and their
applications (King et al., 1990). The piezoelectric effect was later
identified and measured in crystals of potassium dihydrogen
phosphate (KDP) and ammonium dihydrogen phosphate (ADP)
in the early 1940s (Mason, 1946). The ADP crystals were then
utilized in high power acoustic transducers (S. Zhang et al., 2015).
During the time of World War II, some synthetic piezo-crystals,
such as barium titanate (BaTiO3 K > 1100) (Vul and Goldman, 1945;
Hippel et al., 1946; Iding, 1971), or lead zirconate titanate (PZT)
(Cross and Newnham, 1987), were developed and showed relatively
high piezoelectric coefficients. The breakthrough in piezoelectric
polymers happened in the year 1969 with the discovery of
piezoelectricity in poled polymers, such as nylon and
polyvinylidene fluoride (PVDF) (Kawai, 1969). Nowadays, PVDF
and its copolymers are the most commercially available piezoelectric
polymers finding applications in nanogenerators, sensors, energy
harvesting, and biomedical fields (Kalimuldina et al., 2020; Xia and
Zhang, 2018; Namsheer and Rout, 2021).

Piezoelectricity in biological materials have been widely studied for
the last few decades owing to its biocompatibility, natural degradability,
environmental friendliness and potential to replace conventional
piezoelectrics such as, inorganic/ceramic piezoelectric materials and
synthetic polymers in many aspects. A variety of bio-piezoelectric
systems have been explored so far. Here, we provide a brief
overview of research progress in biological piezoelectric materials
precisely amino acids, peptides, and polysaccharide especially cellulose.
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Amino acids are essential building blocks for peptides, proteins,
and integral components of life. Piezoelectricity in amino acid
crystals is the result of non-centrosymmetry in the crystal
structure which allows a net polarisation in different directions.
In 1970, Vasilescue et al. first experimentally investigated
piezoelectricity in amino acid powders (Vasilescu et al., 1970).
Since then, a lot of studies have been conducted in proteinogenic
amino acid crystals and powders (Lemanov 2000; Guerin et al.,
2019). Namely, glycine is a non-chiral amino acid found to exhibit
piezoelectricity in its β - glycine and γ - glycine form, which have
non-centrosymmetric space group P31 and P32 respectively
(Albrecht and Corey, 1939; Guerin et al., 2018a). The highest
theoretically obtained shear piezoelectricity (d16) value of β
glycine is 195 p.m./V, which has been further experimentally
established and the measured value is 178 ± 11 p.m./V (Guerin
et al., 2018b). In addition, the highest measured longitudinal
piezoelectric coefficient (d33) value for γ - glycine is 10.4 p.m./V
(Kumar et al., 2011). Furthermore, numerous works have been
carried out on glycine piezoelectricity till date (Zelenovskiy et al.,
2016; Sui et al., 2022; Yang et al., 2021; Zhang et al., 2023a). In
addition to glycine crystal, Guerin et al. also explored the
piezoelectricity of other amino acid crystals (Guerin et al., 2018;
O’Donnell et al., 2020).

Peptides are composed of small chains of amino acids and
exhibit piezoelectricity because of the same non-centrosymmetry
feature and it includes diphenyl alanine (FF),
fluorenylmethyloxycarbonyl diphynylalanine (Fmoc-FF), cyclo-
phenylalanine-tryptophan (cyclo-FW), cyclo-glycine-tryptophan
(Cyclo-GW) etc (Kholkin et al., 2010; Bosne et al., 2013; Vasilev
et al., 2016; Ryan et al., 2015; Tao et al., 2019a; Tao et al., 2019a).
Among them, the most investigated natural peptide is FF peptide,
and a strong piezoelectric anisotropy was explained from PFM of FF
microtubes (d15 ~ 80 ± 15 p.m./V and d33 of 18 ± 5 p.m./V) (Vasilev
et al., 2016).

In FF-based peptide nanotubes as well as other amino acids and
dipeptides, chirality plays an important role in their dielectric
properties (Bystrov et al., 2019; Tverdislov et al., 2022) and, in
turn, relevant to their bio-ferroelectricity as shown in the works of
(Bystrov et al., 2019; Zelenovskiy et al., 2019; Bystrov et al., 2020;
Bystrov, 2024). Peptide nanotubes generally exhibit piezoelectric,
pyroelectric, and ferroelectric properties. The chirality of the original
amino acids and dipeptides changes during their self-assembly into
nanotubes, which corresponds to the law of changing the type (sign)
of chirality when moving to a higher level of self-organization of
molecular structures (Tverdislov et al., 2022). Biomolecular
structures in living organisms are built on left-handed amino
acids (L-type). Peptide nanotubes based on such left-handed
amino acids and dipeptides, in particular, the L-FF are well
studied. Recently, Zelenovskiy et al. synthesize peptide nanotubes
based on right-handed amino acids (D-type|) and dipeptides (D-FF)
(Zelenovskiy et al., 2019). It turned out that in addition to the
obvious differences (between these peptide nanotubes, L-FF and
D-FF, were different in optical dichroism, obviiuslt but there were
also different in mechanical and dielectric properties. For example,
peptide nanotubes synthesized based on D-FF templates were
shorter and stiffer than those synthesized based on L -FF
templates.,Total dipole moment, polarization and piezoelectric
coefficients were also different and often 50% greater in D-FF

based nanotubes (Zelenovskiy et al., 2019; Bystrov et al., 2020;
Bystrov, 2024). Additionally, other self-assembled peptides such
as, Fmoc-FF and cyclo-GW displayed the highest piezoelectric
co-efficient of d15 ~ 33.7 p.m./V and d16 ~ 14 pC/N (Ryan et al.,
2015; Tao et al., 2019b). Peptide nanotubes based on the dipeptides
leucine (L) and isoleucine (I) have also been studied in both left-
handed (L-LL, L-II) and right-handed chirality (D-LL, D-II)
(Bystrov, 2024). Many of the FF nanotubes have been designed
for piezoelectric energy harvesting. Proteins are higher ordered
structure of peptides composed of multiple amino acids.
Piezoelectricity has been found in a variety of proteins such as
collagen, elastin, lysozyme, and silk (Yucel, Cebe, and Kaplan, 2011;
Harnagea et al., 2010; Denning et al., 2014) etc. Interestingly so
many discrepancies can be observed in the experimentally obtained
piezo constant values for these protein materials from a limited
number of experiments. This inconsistency in measurements for a
particular protein material identifies the lack of fundamental
understanding about the origin of biopiezoelectricity.

Besides piezoelectricity of amino acids to proteins, plant-based
polysaccharide material also exhibits piezoelectric effect. Cellulose is
the most abundant polysaccharide, the major component of plant
biomass. It’s a fibrous polymeric polysaccharide consisting of β-1,4-
linked D-glucose residues. Research activities in cellulose started
with studying the piezoelectric effect in wood by Fukada et al. in
early 1950s (Fukada, 1955; Fukada, 1968). Since then, a lot of effort
has been paid to deconstruct the cellulose piezoelectricity which
covers cellulose microfibrils, cellulose films, and cellulose
nanocrystals (CNCs) (Rajala, Siponkoski, Sarlin, Mettanen, et al.,
2016; Csoka et al., 2012; Zhai et al., 2020). Subsequently, their
electromechanical responses have been evaluated both
experimentally and theoretically. As an outcome, a wide range of
piezoelectric coefficient values (shear, transverse and longitudinal)
for different cellulose samples prepared from different sources and
preparation methods (Chae et al., 2018). Therefore, it could raise
some probes like involvement of other electromechanical coupling
during measurements and true origin of the piezoelectricity in these
biological materials.In addition, plenty of excellent review papers are
reported in last few years explaining the intrinsic piezoelectric
properties of different biological materials, preparation methods,
piezoelectricity measurement techniques and their application in
different fields ranging from mechanical energy harvesting, sensing,
tissue regeneration to biomedical engineering (Chae et al., 2018;
Wang, Sui, and Wang, 2022; Xu et al., 2021; Kim et al., 2020;
Tuszynski, Craddock, and Carpenter, 2008; Amdursky et al., 2010;
Li et al., 2013; Bystrov et al., 2014).

5 Biopyroelectricity

The effect of pyroelectricity is known for over two millenia since
the Greek philosopher Theophrastus wrote, on stones, c. 315 B.C “It
[Lyncurium: Tourmaline, found in urine extracts of Lynx] has the
power of attraction, just as amber has, and some say that it not only
attracts straws and bits of woods, but also copper and iron, if the
pieces are thin” (Caley and Richards, 1956). Tourmaline is
inorganic, trigonal (3m) crystal. Its property of attraction was
attributed to electric phenomenon in 1747 by French Physician
and Chemist Linné, who called it lapis electricus. Amber is fossilised
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tree resin, C12H20O having no crystal structure. “It is asserted, too,
that these stones [flame coloured stone known as lychnis], when
heated by the sun or rubbed between the fingers, will attract chaff
and filaments of paper.” Pliny the Elder, Natural History, c. First
Century, A.D. (Lang, 1974). Lychnis is a kind of ruby (corundum,
Al2O3 trigonal, -3m, with some Cr) “lampstone”. In the year 1824,
David Brewster, recognized for his work in optics, was the first
author to use the term “pyroelectricity” and to observe
pyroelectricity phenomenon in various crystals, one among which
was Rochelle salt (Brewster, 1824).

Not long after the discovery of piezoelectricity in bone and
tendon, pyroelectricity was found by Lang in 1966 (Lang, 1966) in
phalanges and hoof tendons of a cow. Since then, pyroelectricity has
been observed in various biological entities which includes amino
acids, plant leaves, thorax of live insects, hydroxyapatite, lysozyme,
etc (Lang, 1966; Lang and Herbert, 1977; Athenstaedt and Claussen,
1981; Tofail et al., 2009; Lang et al., 2011; Stapleton et al., 2018;
Lemanov 2000). It was previously concluded that the pyroelectric
effect of bone originated from collagen but not from hydroxyapatite
based on the formerly established centrosymmetric crystallographic
space group for hydroxyapatite, which precluded piezoelectricity.
Later on, the crystal group assignment was corrected, which allows
both piezo- and pyroelectricity. The measured pyroelectric co-
efficient for unpoled hydroxyapatite ceramics is 12 μC/m2K,
whereas that of poled hydroxyapatite is ranging from 0.1 to
40 nC/cm2 K at 300°C–500 °C (Tofail et al., 2009; Lang et al., 2011).

In addition, Martin first observed pyroelectric and piezoelectric
phenomena in bundles of wool and hair (Martin, 1941). Athenstaedt
investigated pyroelectricity in wheat and showed the temperature
dependence of the pyroelectric constant for the epidermis of wheat
grains (Athenstaedt, 1976). It is interesting to note that winter wheat
and spring wheat show quite different results, reflecting the different
temperature variation of residual polarisation in the grains. It is
assumed that the polarisation in winter wheat decreases more
sharply than that in spring wheat with increasing temperature.

Fukada et al. found that thin films of aromatic polyurea shows
pyroelectricity. pyroelectric activity is generated in these films by a
poling treatment (Takahashi et al., 1989)]. The orientation of urea
bonds (NH- CO-NH) with a dipole moment of 4.9 D is responsible
for a large residual polarisation in these films.

The pyroelectric coefficient reported for γ glycine (13 × 10−6 C/
m2K) is more than three times higher than that of tourmaline,
illustrating that strong pyroelectricity is present even in the smallest
biological building blocks (Lemanov 2000). Pyroelectric properties
of some glycine-based materials are even higher.

In 2018, Stapleton et al. investigated the pyroelectricity in
polycrystalline aggregate films of globular protein lysozyme
prepared on IDE electrode and the measured pyroelectric
coefficient is 1441 ± 536 μC/m2K (Stapleton et al., 2018). The
coefficient is the till date highest obtained among all biological
materials and comparable to PZT grown on SrTiO3 substrate (Botea
et al., 2013). In addition, Kholkin et al. discovered pyroelectric effect
and polarisation instability after a certain temperature change in
self-assembled diphenyl alanine microtubes. The obtained
pyroelectric co-efficient for the micro tube bundle is 2 μC/m2K
(Esin et al., 2016). Interestingly, a paper by Tofail et al. listed and
compared the pyroelectric coefficients of different biological
materials (Tofail, 2023).Recently, Kim et al. demonstrated heat

induced electrical polarisation in virus. Precisely, they
investigated the pyroelectric properties of vertically aligned
M13 bacteriophage film and obtained a pyroelectric coefficient of
0.13 μC/m2 °C (Kim et al., 2023). It may pave the way for new bio-
inspired pyroelectric devices.

6 Bioferroelectricity

As it has been discussed in previous sections, a subgroup of polar
dielectrics, i.e., piezoelectric and pyroelectric materials can be
ferroelectric exhibiting hysteresis, polarisation switching, and
Curie point below or beyond which ferroelectric state may cease
to exist. Hysteresis in ferroelectric materials occurs through
interaction between the electric field and the material, which is
polar. In linear or paraelectric dielectric, polarisation returns to its
original unpolarised, “virgin” state when the applied electrical field is
removed. Ferroelectrics retain their polarisation after the field is
removed; the amount of this polarisation is known as Remnant
polarisation (PR). The state of zero polarisation can be restored by
applying an electrical field in the direction that is opposite to the
direction of the original applied field. This switching field is the
electric coercivity (EC). The maximum amount of polarisation that
can be induced in the material at high electric field strength is known
as the saturation polarisation (Ps).

An electret, again, derived from drawing analogy with a magnet,
retains electrical charge and/polarisation quasi-permanently.
Electrically charged and/or polarised state can be naturally
present or induced by charge injection to create space charge or
dipolar orientation/reorientation. Ferroelectrets, in practice,
generally includes space-charge electret foams and films with
cavities that, when charged, form macroscopic dipoles that can
be switched by reversing the polarity of the charging electrical field.
These materials show hysteresis like traditional ferroelectrics as well
as piezo and pyroelectric behaviours and can be useful as nonlinear
components in many systems and circuits, memory devices as well
as energy generation, sensing and actuation. Unlike ferromagnetic
materials, ferroelectrics have only a limited level of adoption. Newer
areas of electro-optics and electronics can take advantage of
ferroelectrics to create a broad range of devices, however.

Since the discovery of piezoelectric and pyroelectric properties
in bone in the 1950s and 1960s respectively, questions arose about
ferroelectricity in biological systems. The focus of the curiosity was
mainly on the anatomical structure, which, in the case of bone was,
initially attributed to its mineral constituent, hydroxyapatite
(Shamos and Lavine, 1967). A. R. von Hippel suggested in
1970 that true relations might exist between ferroelectricity,
liquid crystals formation, and the generation of electric impulse
in nerves and muscles (Hippel, 1970). Experimental evidence of
ferroelectricity alluded anticipation, however, as ferroelectric
hysteresis in the classical sense was investigated in biomass and
its building blocks. Ferroelectric behaviour as neat as those observed
in non-biological systems has rarely been observed. Biological
systems contain water, a polar molecule with relatively high
dielectric constant (~80 in the free state). The presence of water
is deleterious in classical measurements of ferroelectricity due to
charge leakage. Biological systems also contain bound water, to
complicate matters further. Kubisz et al. (1984) investigated collagen
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from Achilles tendon with a 10% water content for a hypothetical
dielectric hysteresis loop that showed a maximum shift along the
direction of the electric field applied in the vicinity of 375 K.
However, very large dielectric losses at low frequencies made it
difficult to interpret the collagen ferroelectricity.

The measurement of an electrical field dependent polarisation-
hysteresis and promptly jumping into claim of ferroelectricity has
remained a practice for quite some time. For example, Lemnaov
et al. questioned the experimental data presented in the 1960s when
claiming ferroelectricity in deoxyribonucleic acid (DNA) and
ribonucleic acid (RNA). On the other hand, there are more careful
and skeptical observations of hysteresis that have often been overlooked
in the discussion of ferroelectricity in biological systems. For example, a
plot of the polarisation versus the applied electric field revealed an
apparent ferroelectric character in single crystal chlorapatite, a chlorine
substitute of mineral analogue of bone mineral hydroxyapatite. The
authors did not claim ferroelectricity as such a claimwould have been in
conflict with their original crystallographic conviction that apatite
should have belong to nonpolar space groups such as P63/m or
P21/b. Haverty et al. provided evidence that polar space groups are
indeed possible for apatite, yet hydroxyapatite should not be
ferroelectric due to crystallographic restrictions. They corrected this
promptly by using a ferroelectric to antiferroelectric transition in
hydroxyapatite to explain an experimentally observed dielectric
anomaly in hydroxyapatite ceramics. The claim of ferroelectricity in
hydroxyapatite was then substantiated by contact poling and e beam
poling of hydroxyapatite ceramics and thin films and measurement of
hysteresis in poled hydroxyapatite. Hydroxyapatite can be in both
ferroelectric and non-ferroelectric states depending on the
orientation of its hydroxyl (OH) groups within the OH channel of
the hydroxyapatite crystal structure (Bystrov, 2015; Bystrov, 2019; Hu
et al., 2017; Lang, 2016). This was clearly seen both experimentally
(Lang, 2016) and theoretically from atomistic simulations (Bystrov,
2015; 2019; Hu et al., 2017). Physiological impact of such polarisation
switching was demonstrated by showing selective attachment of
lysozyme, an enzyme that has an electropositive charge envelop in
natural pH of body fluid. The group then went on to discover piezo,
pyro and ferroelectricity in lysozyme crystal. Ferroelectricity in amino
acids glycine and thymine have also been reported (Bystrov et al., 2015).

Turning to the synthetic constructs of biological building blocks
provided a much better platform to measure properties of biodielectrics
and critically reevaluate historic claims of ferro-, pyro- and piezo-
electricity in hierarchical structures. Additionally, the approach has
opened the probability of finding technologically relevant biological
materials as well as physiological relevance of dielectric properties of
biological building blocks and their hierarchical structural
organisations. Importantly, the approach can provide a new
premises where parallel developments in the field of
electrophysiology can actually converge with the observation of
dielectric properties of biological structures. For example, when Cole
and Curtis first demonstrated that the action potential was associated
with a large increase in the conductance of the cell membrane (Cole and
Howard, 1939), we understood that this behaviour is similar to a leaky
capacitor between ion-conducting intra and extracellular fluids.
Hodgkin and Huxley provided fundamental insights into nerve cell
excitability that led to the understanding of voltage-gated ion channels
(VGICs) give rise to propagating action potentials, but also the very
framework for studying and analysing ion channel kinetics (Hodgkin

and Huxley, 1939; Hodgkin and Huxley, 1952). The magnitude of
piezoelectricity of collagen can provide such voltage under stress in
physiological conditions (Guerin et al., 2023).

In 1992, Beresnev et al. (1992) alluded a similarity between
biological membranes built of multilayer structure with tilted lipid
and protein molecules and ferroelectric liquid crystals (Goodby,
1991). Ferroelectricity was considered to be an underlying
mechanism behind the propagation of excitation in biological
membranes. Earlier on, Leuchtag (Leuchtag, 1987a; Leuchtag,
1987b; Leuchtag, 1995) proposed ferroelectric models of ion
channels of the excitable biological membranes, where the
opening/closing processes of these channels ensure the passage of
ion currents (Na/K) resulting in membrane’s resting potential and
action potential in accordance of a ferroelectric phase transition. The
nonlinear behavior of dielectric permittivity k in the vicinity of this
phase transition depended on temperature and electric field. This
was an important difference from the Hodgkin-Huxley model
(Hodgkin and Huxley, 1952), in which the dielectric permittivity
k was independent of temperature and electric field. In fact,
Leuchtag observed (Leuchtag, 1995) the existence of Curie-Weiss
law (Lines and Glass, 2001) of ferroelectric transition, through the
nonlinear behavior of the dielectric permittivity k in the ion
channels of an excitable biological membrane. Experimental data
of the temperature variation of capacitance of a biological
membrane consisting of ion channels (Palti and Adelman, 1969)
exhibited ferroelectric nature (Lines and Glass, 2001). Leuchtag,
Bystrov and others continued this line of enquiry (Bystrov, 1992;
Bystrov and Leuchtag, 1994; Bystrov et al., 1994; Leuchtag and
Bystrov, 1999) that paved the way to finding bio-ferroelectricity and
bio-piezoelectricity in bio-molecular structures such as peptide
nanotubes (Bystrov et al., 2019; Tverdislov et al., 2022;
Zelenovskiy et al., 2019; Bystrov et al., 2020; Bystrov, 2024),
which are discussed previously later in this article. The role of
internal electric fields in living systems, were also analyzed in detail
by Leuchtag’s in his book (Leuchtag, 2008), including ferroelectric
phenomena (Lines and Glass, 2001; Goodby, 1991) associated with
electric fields in various biomolecular systems.

In terms to physiological relevance of ferroelectricity, Leuchtag
and Bystrov (Leuchtag and Bystrov, 1999) suspected two distinct
types of biological structures to have ferroelectric properties:
microtubules and voltage-dependent ion channels found widely
available in cell membranes that regulates bioelectric signal
conduction in nerve and muscle cells. Both microtubules and ion
channels involve proteins with the possibility of information
processing at the cellular level. Leuchtag and Bystrov (Leuchtag
and Bystrov, 1999), outlined the principles of bioferroelectricity
defining the field as one dealing with ferroelectricity and related
phenomena in biological systems. Important work on microtubules,
and the passage of action potentials and nerve impulses were
considered where ferroelectricity models can be applied (Brown
and Tuszynski, 1999; Gordon et al., 1999; Tasaki, 1999). Leuchtag
(Leuchtag, 2023), has recently elaborated a condensed matter
approach to link ferroelectricity with the operation of ion
channels of excitable biological membranes.

Proton pumping membrane protein cytochrome C ba3 oxidase
has been found to exhibit out of plane and in plane piezoelectricity
when measured in piezo response force microscopy suggesting a
pyroelectricity is possible. Ferroelectricity has not been reported.
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Fibrillar proteins such as collagen have been reported to be both
ferro and antiferroelectric. Elastin, another highly explored protein-
based macromolecule in organs such as the skin, blood vessel walls,
and the lungs of the human body, has also been reported to be
piezoelectric (Fukada and Hara, 1969) and ferroelectric (Liu et al.,
2014). The claim of ferroelectricity in aortic vessel wall made of
muscle protein elastin was later refuted from conventional Sawyer-
Tower measurements.

7 Application of biodielectric materials

Owing to the biocompatibility and biodegradability of bio-
dielectric materials, they are the promising candidates for
different applications such as biomechanical energy harvesting,
tissue engineering, sensing and precisely for implantable
biomedical applications. However, it is too early to claim the
competency of bio-dielectrics compared to the well-established
synthetic polymers and ceramic dielectric materials. In this
section, we will demonstrate a brief idea about the ongoing
research progress towards different directional applications of
bio-dielectrics.

Biomechanical energy harvesting especially focuses on collecting
and converting the mechanical energy associated to different motions
like joint movement, muscle bending-stretching, heartbeat and
breathing (Roy et al., 2021; Roy et al., 2020)] through piezoelectric
phenomenon. Additionally, the time dependent temperature
fluctuation during inhale-exhale process can also be used for
pyroelectric energy harvesting (Ghosh et al., 2020; Roy et al., 2019).
Among the bio-piezoelectric materials, cellulose, silk, collagen,
lysozyme, viruses, amino acids and peptide-based materials have
been widely cultivated for piezoelectric device, i.e., nanogenerator
(NG) fabrication and used as implantable devices, motion sensors,
human physiological signal monitoring and charging portable devices
(Rajala et al., 2016; Yun et al., 2008; Maiti et al., 2017; Ghosh et al., 2017;
Karan et al., 2018; Yucel et al., 2011; Lee et al., 2018; Nguyen et al., 2016;
Yang et al., 2021; Zhang et al., 2023b; Ghosh andMandal, 2016b; Ghosh
and Mandal, 2016a; Roy et al., 2024). In addition, bio-inspired
(i.e., composite biomaterials) systems have been designed for
piezoelectric devices to harvest energy from different body motions
and to improve the piezo-output (Vivekananthan et al., 2018; Maity
et al., 2018; Zheng et al., 2016; Wu et al., 2021). Therefore, bio-
piezoelectric devices can serve the purpose of self-powered pressure
or force sensors. The most promising parts of using these materials are
their natural abundance and complete degradation in body
environment without causing any adverse effect. Still there remains
some limitations which need to be improved and established to identify
an economical way to construct a bio-piezoelectric device, for example,
low piezoelectric co-efficient and energy conversion efficiency, difficulty
in large scale assembly, lack of understanding of the origin of
piezoelectricity and surface charge contributions during measurements.

Another interesting side of bio-dielectric based application is to
develop tissue scaffolds for tissue regeneration. After the discovery
of bone piezoelectricity, bio-piezoelectric materials particularly
collagen and chitosan have been intensively studied to construct
biomimetic tissue scaffolds to facilitate tissue growth and bone
regeneration using electrical stimulation (ES) (Chen et al., 2019;
Chen et al., 2020b; Prokhorov et al., 2020; Ribeiro et al., 2015;

Goonoo and Bhaw-Luximon, 2022; Zaborowska et al., 2010).
Fernandez-yague et al. demonstrated the effect of collagen
analogue based bio-piezoelectric device on the dynamic response
of tendon cells in a rat achilles acute injury model by modulating the
response of ion channels and specific tissue regeneration signalling
pathways (Fernandez-Yague et al., 2021). Moreover, Du et al.
fabricated a PEDOT/chitosan core shell nanofibers and showed
the synergetic interplay between external ES and piezoelectric
voltage for nerve tissue engineering (Du et al., 2020). Therefore,
it is obvious that the ES-guided tissue engineering has promising
advantages in the field of postinjury tendon regeneration, self-
powered healing and bone regeneration.

8 Conclusion

The field of biodielectrics is old but has attracted new interests in
both fundamental science and technological applications. In this
article, we have discussed these renewed interests in the field within
the purview of its historical context. We have provided a critical
discussions on the developments in the field of piezo, pyro, and
ferroelectricity in biological and bioinspired materials as well as
potential for such materials in, for example, low k dielectric
applications due to their inherently low permittivity. We
conclude that biodielectrics will play an important role in our
pursuit of developing sustainable materials for next-generation
technologies.
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