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Jaw cyst is a fluid-containing cystic lesion that can occur in any part of the jaw and
cause facial swelling, dental lesions, jaw fractures, and other associated issues.
Due to the diversity and complexity of jaw images, existing deep-learning
methods still have challenges in segmentation. To this end, we propose
MARes-Net, an innovative multi-scale attentional residual network
architecture. Firstly, the residual connection is used to optimize the encoder-
decoder process, which effectively solves the gradient disappearance problem
and improves the training efficiency and optimization ability. Secondly, the scale-
aware feature extraction module (SFEM) significantly enhances the network’s
perceptual abilities by extending its receptive field across various scales, spaces,
and channel dimensions. Thirdly, the multi-scale compression excitation module
(MCEM) compresses and excites the feature map, and combines it with
contextual information to obtain better model performance capabilities.
Furthermore, the introduction of the attention gate module marks a
significant advancement in refining the feature map output. Finally, rigorous
experimentation conducted on the original jaw cyst dataset provided by Quzhou
People’s Hospital to verify the validity of MARes-Net architecture. The
experimental data showed that precision, recall, IoU and F1-score of MARes-
Net reached 93.84%, 93.70%, 86.17%, and 93.21%, respectively. Compared with
existing models, our MARes-Net shows its unparalleled capabilities in accurately
delineating and localizing anatomical structures in the jaw cyst image
segmentation.
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1 Introduction

Jaw cyst is a cystic mass that develops from dental tissue, dental epithelium, or residual
epithelial cells, which is usually filled with fluid. Its causes vary from person to person, but
usually involve an abnormal disruption in the development of tooth structures, leading to
the growth of cystic lesions. Diagnosing a jaw cyst often requires multiple methods. Initially,
clinicians perform visual examinations and palpations, relying on their extensive experience
and expertise to detect the presence and general location of the lesion. CT scans and X-rays
are then used to provide detailed images of the internal structure, helping to confirm the
size, shape, and relationship of the cyst to surrounding bones and teeth. Treatment for jaw
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cysts usually depends on the size, type, and location of the cyst and
may include surgery or medication. Early diagnosis and intervention
are crucial to prevent further cyst development and to reduce patient
discomfort. Visual examination and palpation rely heavily on the
physician’s clinical experience and expertise. However, the size and
shape of jaw cysts can change over time, and the complexity of
surrounding anatomy can interfere with accurate judgment. While
CT scans and X-rays offer more detailed image analysis, they are also
influenced by the evolving nature of the cyst and the complexity of
nearby structures. Although these methods are widely used in
clinical practice, each has limitations. Visual examinations and
palpations depend on the physician’s skill and the patient’s clear
communication, whereas imaging methods may be constrained by
changes in cyst characteristics and the complexity of the
surrounding anatomy.

As an important research direction of artificial intelligence,
deep-learning becomes a promising solution to overcome the
above challenges. By utilizing neural networks and large data
sets, deep-learning algorithms can autonomously learn patterns
and features from medical images to provide a more objective
and accurate diagnosis. With the continuous development and
maturity of deep-learning, its impact on clinical practice will be
further expanded and large number of algorithms are applied to
medical image segmentation (Zhao et al., 2024; Mikhailov et al.,
2024; Zhang et al., 2023; Peng et al., 2023; Buddenkotte et al., 2023).
For example, U-Net (Ronneberger et al., 2015) is a deep learning
architecture that has many advantages due to its unique U-shaped
network and skip connection mechanism. Firstly, the U-shaped
structure allows information transfer between encoders and
decoders to help extract multi-level features and preserve high-
resolution spatial information, which can better capture target
details and context information. Secondly, the skip connection
(Nodirov et al., 2022; Shi et al., 2019; Wang et al., 2023)
mechanism enables the decoder to effectively utilize the feature
maps in the encoder, thereby improving the quality of segmentation
results. In addition, U-Net are usually combined with data
augmentation techniques to achieve good performance with a
small amount of labeled data. Based on the above advantages,
many scholars conducted in-depth research based on U-Net, and
achieved extremely obvious improvements. Among them, He et al.
(2016) proposed a residual learning framework, which aimed to
simplify the complexity of training deeper networks. By combining
residual connections and U-Net structure, ResUnet can train deep
networks more efficiently and achieve better performance in image
segmentation tasks. Yu et al. (2022) proposed a two-branch network
for region segmentation of jaw cysts and tumors. Under this dual-
path structure, the model can effectively capture both global
contextual information and local fine-grained features within the
image data. Furthermore, the segmentation subnetwork embedded
within this framework serves as a powerful tool for refining
classification performance and facilitating the interpretation of
diagnostic results. Kanauchi et al. (2023) proposed a new method
combining YoLov5 and UNet++ to address the challenge of renal
cyst detection in ultrasound imaging. By inputting ultrasound
images of renal cysts into YoLov5 and then seamlessly integrated
into the UNet++ framework, it can predict the location of lesions
with high accuracy in a very short time and provide doctors with a
fast and reliable diagnostic tool. Rai and Chatterjee (Rai and

Chatterjee, 2021) proposed LeU-Net architecture inspired by the
renowned Le-Net and U-Net. Drawing upon the strengths of these
frameworks, LeU-Net strikes a delicate balance between model
complexity and computational efficiency, positioning it as a
versatile tool for image classification tasks.

However, despite deep-learning has achieved significant
successes, several formidable challenges remain. Firstly, medical
images are usually limited in quantity, and the labeling process is
not only time-consuming but also labor-intensive, which severely
limits the training of deep-learning models. Secondly, medical
images are particularly susceptible to various forms of noise,
artifacts, and even deliberate manipulation, which can
significantly compromise the performance and robustness of deep
learning models. Furthermore, an additional challenge stems from
the inherent class imbalance present in medical image datasets.
Lastly, the intricate nature of medical images, characterized by
complex anatomical structures and overlapping features, poses a
significant obstacle to accurate segmentation. Despite advances in
deep-learning techniques, existing medical image segmentation
algorithms are still unable to achieve consistent and reliable
clinical results.

In the domain of medical image analysis, due to the fuzziness
and uncertainty of jaw cyst images, traditional deep-learning
performs poorly in global information modeling and multi-scale
feature extraction, and with the deepening of the network, problems
such as gradient disappearance will occur, leading to the
deterioration of segmentation performance. In response to the
above problems, we established a MARes-Net framework based
on residual network for jaw cyst segmentation. The MARes-Net
framework utilizes a residual network architecture to mitigate the
disappearing gradient problem and facilitate deeper network
training. On this basis, several innovative modules are integrated:
including scale-aware feature extraction module, multi-scale
compression excitation, attention gate module. Through the
synergistic fusion of these modules, the segmentation network
demonstrates notable improvements in performance. Specifically,
metrics such as precision, recall, IoU and F1-score have all shown
significant improvements, with values reaching remarkable levels of
93.84%, 93.70%, 86.17%, and 93.21% on the original jaw cyst dataset.
The contributions of this article have the following three points:

1) A scale-aware feature extraction module is proposed, which
uses expanded convolution and CBAM to expand the receptive
field and extract key feature information in channels and
spatial dimensions.

2) A multi-scale compression excitation module is introduced to
compress feature maps layer by layer so that the network can
have richer contextual information.

3) An attention gate module has been introduced to selectively
focus the network’s attention on salient regions within
the image.

2 Materials and methods

In recent years, the advancement of deep-learning technology
has heralded major breakthroughs in the field of medical image
segmentation. Among various architectures, U-Net network has

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Ding et al. 10.3389/fbioe.2024.1454728

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1454728


emerged as a formidable contender, which can offer clinicians and
researchers a robust framework for clinical diagnosis. Our proposed
MARes-Net builds upon the foundation of the U-Net architecture,
which is mainly consisted of residual connection, down-sampling,
multi-scale compression excitation module, scale-aware feature
extraction module, up-sampling, attention gate module, and
output layer. Specifically, firstly, the residual connection is
introduced in the encoding and decoding stages of traditional
convolutional blocks, so that the network can learn the residual
function more efficiently. This enhancement enables the model to
better adapt to different datasets and real-world scenarios, while
minimizing the risk of overfitting. Moreover, the integration of
multi-scale compression excitation module and scale-aware feature
extraction module further enriches the feature representation
capability of MARes-Net. The former can dynamically adjust the
weight of feature mapping by compression excitation operation to
strengthen the attention of salient features and enhance the
generalization ability. Meanwhile, the scale-aware feature
extraction module uses extended convolution technology to
capture the feature representation of spatial information more
comprehensively and promote more detailed segmentation
results. Lastly, the attention-gate module enhances the network’s
focus on key input data and dynamically adjusts the weights to
prioritize salient features. This meticulous attention to the
importance of input information significantly improves the
model’s performance in specific tasks, with greater accuracy and
robustness in a variety of medical imaging scenarios.

Figure 1 is a visual representation of the MARes-Net
architecture, which shows the interaction of the various

components. Unlike the original U-Net and ResNet architectures,
we have integrated the SFEM in the skip connections. This module
effectively merges contextual information, allowing shallow and
deep features to collaborate intelligently. At the network’s deepest
level, we introduced the MCEM, which leverages dilated
convolutions to delve deeper into the data and capture more
significant features. Additionally, we incorporated attention
mechanisms that dynamically adjust the spatial position of each
pixel in the feature map, thereby refining the model’s focus. Finally,
by utilizing the sigmoid function for lesion segmentation, we achieve
precise and effective results. In subsequent chapters, we will delve
into the above important modules and clarify their contribution to
medical image analysis.

2.1 Residual connection

In traditional neural networks, the input of each layer undergoes
a series of nonlinear transformations to gradually extract high-level
features, which are then used as the input of the subsequent layer.
However, as the network depth increases, the gradient gradually
decreases during backpropagation. This phenomenon makes
training exceptionally difficult and hinders the network’s ability
to learn and adapt effectively. To overcome this problem, residual
connection (Yoganathan et al., 2023; Chen et al., 2022; Liu et al.,
2023) is introduced, which alleviate the vanishing gradient situation
by directly funneling the output of one layer into the input of the
next. This direct path promotes a smooth flow of gradients, which
allows them to traverse shallower layers more easily. If the output of

FIGURE 1
Network architecture of our MARes-Net.
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the previous layer is represented as x and the input of the subsequent
layer is represented as y, the expression of the residual connection is:

y � f x( ) + x (1)
The addition of the identity mapping term x ensures the

preservation of original information, while the function f(x)
introduces additional transformations tailored to capture intricate
features and patterns. Consequently, this optimization design can
optimize the network parameters more effectively and improve the
training efficiency of deep neural networks.

2.2 Multi-scale compression
excitation module

In U-Net, skip connections are widely used to build the encoder-
decoder structure. These connections establish direct links between
feature maps in the encoder and their corresponding counterparts in
the decoder, which helps to retrieve details lost during down-
sampling and improve segmentation performance. Furthermore,
the squeeze-and-excitation (SE) module (Yu et al., 2022; Zhang et al.,
2022; Chowdary et al., 2023) is an attention mechanism designed to
enhance the performance of deep neural networks. It achieves this
by introducing a learning process that dynamically adjusts the
importance of each feature map channel, thereby improving the
network’s performance on specific tasks. The core concept of the SE
module is to use global information to calculate importance weights
for each channel, which are then used to reweight the feature
map. This approach not only significantly enhances the network’s
performance in various computer vision tasks, such as image
classification, object detection, and semantic segmentation, but

also effectively improves feature expression and discrimination
without adding additional computational complexity.

To further elevate model performance, we introduce a multi-
scale compressed excitation module, which accepts feature maps
from different resolutions as input. As shown in Figure 2, the input
feature mappings from layer one to layer four are represented as
{X1, X2, X3, X4}. Initially, these features undergo convolution
operations with a 3 × 3 convolution kernel, serving to extract and
enhance key features within each layer. Following this, SE module
is used to adaptively weight the feature mappings of each channel,
and then further processed by 1 × 1 convolution layer, culminating
in the derivation of new feature sets denoted as {Y1, Y2, Y3, Y4}. In
this framework, the output features of layer four are further split
into two different paths, one path continues uninterrupted towards
the specified output F4, while the other diverges and intersects with
the output Y3 of Layer three. This strategic divergence and
merging mechanism imbue the features traversing the layer
three path with contextual insights garnered from layer four,
enriching their understanding and enhancing their
discriminative power. Similarly, F1 and F2 are derived similarly
to F3. Finally, the final output {F1, F2, F3, F4} is passed to the
corresponding decoding layer respectively. In summation, the
framework embodies a complex multi-scale compression
excitation strategy, which can deal with feature mappings of
different resolutions skillfully. By seamlessly integrating SE
modules, the network gains the ability to adaptively allocate
attention to the functions of different channels. In addition,
despite the inherent information differences between shallow
and deep features, their fusion produces a collaborative mix
that ultimately enhances the model’s performance and ability to
generalize across specialized tasks.

FIGURE 2
The structure of multi-scale compression excitation module.
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2.3 Scale-aware feature extraction module

To effectively capture the intricate detail present in multi-scale
regions of interest, we build a scale-aware feature extractionmodule that
combines atrous convolution (Yin et al., 2023; Ying et al., 2023) and
convolutional block attention module (CBAM) (Nguyen and Nguyen,
2024; Xiong et al., 2024). As depicted in Figure 3, this module can
increase the receptive domain of the convolution kernel by introducing
additional intervals, and it can capture a larger range of contextual
information without adding additional parameters. Specifically, we first
splitFin into three branches and use different expansion sizes (1, 3, 5) to
capture a rich array of spatial hierarchies and contextual intricacies

present. Then, we employ the element-wise operation as a pivotal step
in our methodology, which is defined as:

F12 � F3×3,r�1
conv Fin( ) ⊕ F3×3,r�3

conv Fin( )
F23 � F3×3,r�3

conv Fin( ) ⊕ F3×3,r�5
conv Fin( ) (2)

where Fn×n,r
conv represents the convolution with kernel size denoted by

n, and r represents the spacing rate of the atrous convolution, ⊕
represents the connection. Subsequently, 3 × 3 convolution is
performed on feature maps F12 and F23, and then CBAM is used
to lock more areas of interest to further enhance the model’s focus
on key features. Finally, combining the above feature maps, the new
functional map Fout is:

FIGURE 3
The structure of scale-aware feature extraction module.

FIGURE 4
The structure of CBAM. (A) CAM. (B) SAM. (C) CBAM.
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F12
′ � CBAM F3×3,r�1

conv F12( )( ) ⊕ F1 ⊕ F2

F23
′ � CBAM F3×3,r�1

conv F23( )( ) ⊕ F2 ⊕ F3

Fout � F12
′ ⊕ F23

′ ⊕ Fin

(3)

In the scale-aware feature extraction module, the CBAM
represents a pivotal innovation in the realm of neural network
architectures, particularly in the domain of computer vision. As
depicted in Figure 4, it contains two sub-modules: channel attention
module (CAM) (Lee et al., 2020; Song et al., 2023) and spatial
attention module (SAM) (Tao et al., 2019; Zhang et al., 2023). The
advantage of CBAM is that it cleverly integrates the two submodules
of channel attention and spatial attention, which enables the
network to identify and prioritize key channels and spatial
regions in the input feature map. According to the structure of
CAM in Figure 4A, the maximum and average pooling operations
are applied to the feature map to generate two different 1 × 1 × C
feature mappings. Subsequently, these feature maps undergo
processing through a two-layer multi-layer perceptron (MLP)
with shared weights for learning the dependencies between
channels. Finally, the output of MLP undergoes an elemental
summation, followed by weighting through the sigmoid function.
The result of CAM is calculated as:

MCA F( ) � σ MLP AvgPool F( )( )( ) ⊕ σ MLP MaxPool F( )( )( )
(4)

where σ(·) represents the sigmoid function and MCA(F) is the
output of CAM.

According to the structure of SAM in Figure 4B, the maximum
and average pooling operations are performed to extract different
aspects of the spatial information. Subsequently, these two feature
maps are combined by concatenating them along the channel
dimension. This splicing operation merges the distinct
information captured by the maximum and average pooling into
a single, unified feature map. Then, a 7 × 7 convolution kernel is
applied to perform channel dimensionality reduction on the spliced
feature map, and the dimensionality is reduced to a single-channel
feature map, that is, the size is H×W×1. Finally, the dependencies
between spatial elements are learned through the sigmoid function
to generate the weights of the spatial dimensions. The result of SAM
is calculated:

MSA F( ) � σ F7×7
conv AvgPool F( );MaxPool F( )[ ]( )( ) (5)

2.4 Attention gate module

The attention gate module (Hao and Li, 2023; Chen et al., 2024)
is an advanced mechanism designed to significantly enhance the

performance of neural networks, particularly in complex tasks such
as image segmentation. This module plays a crucial role in refining
the model’s focus by dynamically adjusting the importance of each
pixel within the feature map based on their spatial positions. As
depicted in Figure 5, the feature map generated by the MCEM and
the up-sampled feature map are respectively subjected to F1×1

conv

convolution operations. After the convolution operations, the
feature maps are passed through a batch normalization layer to
improve the stability and generalization capability. Subsequently,
the above features are connected, and then nonlinear is introduced
through ReLU function, which further increases the nonlinearity
and expression ability of the network. Moreover, the output is passed
through a F1×1

conv convolution and a batch normalization layer to
extract higher-level feature information to a certain extent. Finally,
pixel-level prediction and segmentation are performed through
Sigmoid function to obtain the final output feature map.

3 Experimental results

In this section, we present a comprehensive series of
experiments aimed at evaluating the performance of the
proposed MARes-Net. All experiments were conducted in a
Python 3 environment using the powerful computational
capabilities of the Quadro RTX 6000 GPU, alongside TensorFlow
2.4.0 as the framework. We set the batch size to 4, which strikes a
balance between memory efficiency and training speed. The training
process was carried out over 200 epochs, the learning rate to 0.001,
and we employed the Adam optimizer to optimize the training
process and Dice as the loss function. As shown in Table 1, the image
data comes from the records of Quzhou People’s Hospital. The jaw
cyst dataset consisted of 1535 images, of which 306 were used for
testing, 922 for training, and 307 for validation. The dataset after
data augmentation consisted of 4,602 data sets, 910 for testing,
2,765 for training, and 920 for validation. These experimental
settings ensure the consistency of the experiments and provide us
with reliable evaluation results. After the model is built and trained,
we monitor its performance over the training period to ensure it is
learning effectively and improving its predictive capabilities.
Figure 6 illustrates the changes in both loss and accuracy values
throughout the training process on the original jaw cyst dataset.

To assess the performance of MARes-Net, we use the following
metrics: precision (Shu et al., 2024; Xia et al., 2024), recall (Sun et al.,
2024; Yuan et al., 2024), IoU (Fan et al., 2024;Wang et al., 2024), and
F1-score (Li et al., 2024; Tang et al., 2024). IoU is commonly used to
measure the performance of object detection or segmentation tasks,
evaluating the similarity between the segmentation mask predicted
by the model and the ground-truth mask. Precision measures the

FIGURE 5
The structure of attention gate module.
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proportion of correctly predicted positives over those predicted by
the model, and recall measures the ability of the model to identify
positives, which is the probability of correctly predicting all
positives. The F1-score combines precision and recall through its
harmonic mean, providing a balanced performance metric. Using
these metrics, we can comprehensively evaluate the model’s
performance in segmentation tasks and its effectiveness in
handling unbalanced data sets. Their relevant formulas are
as follows:

precision � TP

TP + FP
(6)

recall � TP

TP + FN
(7)

IoU � TP

TP + FP + FN
(8)

F1 − score � 2 × precision × recall

precision + recall
(9)

The learning rate is an important parameter in neural network
training. It controls the step size that the model takes along the
gradient direction each time the parameters are updated. A learning
rate that is too high can cause the model to converge too quickly to a
suboptimal solution or even diverge, as the updates might overshoot
the optimal point. On the other hand, a learning rate that is too low
can make the training process excessively slow, potentially getting
stuck in local minima or requiring an impractical amount of time to
converge. Therefore, selecting an appropriate learning rate is vital, as
it has a direct impact on both the convergence speed and the final
performance of the model. To understand the effect of different
learning rates on our model’s performance, we conducted a series of

experiments on the original jaw cyst dataset with various learning
rate values, as summarized in Table 2. The experimental data clearly
show that setting the learning rate to 0.001 results in optimal
performance.

3.1 Ablation experiment

3.1.1 The role of residual connection
In addition, we also tested whether there is a residual

connection. Table 3 presents the performance metrics of MARes-
Net on the original jaw cyst dataset, including precision, recall, IoU
and F1-score. Specifically, MARes-Net achieved precision of 93.70%,
recall of 93.83%, IoU of 86.17%, and F1-score of 93.21%. These
results clearly indicate that the inclusion of residual connections
substantially enhances the model’s performance across all
key metrics.

By observing the predicted segmentation shown in Figure 7,
we can find that in a network without residual connections, the
segmentation map has defects in feature extraction and cannot
perfectly extract all features. In contrast, networks with residual
connections can better overcome the problem of feature
extraction and generate more accurate segmentation maps.
This shows the importance of the residual connection
structure in the MARes-Net, which can help the network
better learn and transfer feature information. By ensuring that
crucial features are preserved and effectively utilized throughout
the network, residual connections significantly contribute to the
model’s ability to generate high-quality, accurate
segmentation results.

TABLE 1 The parameter about the datasets.

Dataset
Training data Validation data Test data Image size Label size

Original jaw cyst dataset 922 307 306 256 × 256 256 × 256

Dataset after data augmentation 2765 920 917 256 × 256 256 × 256

FIGURE 6
Iterative parameter training curve on the original jaw cyst dataset.
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3.1.2 Different attention modules
In this section, we adopt CBAM in the scale-aware feature

extraction module to obtain channel and spatial information. To
assess the effectiveness of CBAM, we conducted comparative
experiments on the original jaw cyst dataset with different
connection methods: direct connection, CAM connection, and
SAM connection. As listed in Table 4, we can observe that the
network connected using CBAM is slightly inferior to several other
connection methods in the precision indicator, but is significantly
better than the other several connection methods in the recall

indicator. By comparing the results in Table 4, we can conclude
that the network with CBAM connections performs better in terms
of overall performance.

In addition, through the results of image segmentation Figure 8,
we can see that when using SAM and CAM connections alone, there
is an erroneous segmentation of the area of interest and the image
cannot be perfectly segmented. However, when using CBAM
connections, we can observe that the accuracy of segmented
regions is improved, indicating that CBAM connections can
better guide the network to accurately segment regions of interest.

TABLE 2 The effect of different learning rates on the original jaw cyst dataset.

Learning rate Precision (%) Recall (%) IoU (%) F1-score (%)

0.01 92.68 91.16 83.56 91.28

0.0025 94.09 91.73 83.96 90.92

0.005 92.29 91.49 82.91 91.76

0.0001 93.23 91.49 83.61 90.65

0.001 93.84 93.70 86.17 93.21

TABLE 3 Residual connection experiment.

Precision (%) Recall (%) IoU (%) F1-score (%)

No residual connection 92.56 93.73 84.35 91.96

With residual connections 93.70 93.83 86.17 93.21

FIGURE 7
Residual connection experiment. (A) Original images. (B) Label images. (C) No residual connection. (D) With residual connection.
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3.1.3 Other module experiments
To evaluate the superiority of MARes-Net, we conducted other

module ablation experiments on the original jaw cyst dataset. These
experiments were designed to understand the contribution of each
component within the network. Table 5 presents a detailed
comparison of the performance metrics with various
configurations of MARes-Net. When there was only a multi-scale
compression excitation module, the model had the lowest
comprehensive data performance, such as precision of 93.07%,
recall of 92.02%, IoU of 82.02% and F1-score of 90.19%.
Conversely, when all modules were integrated into the MARes-
Net network structure, the model demonstrated substantial
improvements across all evaluation metrics and both indicators
maintained high values: precision reached 93.84%, recall was at
93.70%, and the comprehensive performance metrics were equally
impressive with an F1-score of 93.21%, and an IoU of 86.17%. In
addition, through Figure 9, we can observe that the partially

combined network structure performs poorly in the segmentation
task of jaw cysts and cannot accurately capture image information.
In contrast, the complete MARes-Net network shows more accurate
capabilities in image segmentation and localization.

3.2 Compare networks

To comprehensively evaluate the accuracy of MARes-Net in the
task of original jaw cyst image segmentation, we compared it with seven
classic and recently releasedmodels, includingHRNet (Sun et al., 2019),
ICNet (Zhao et al., 2018), scSEUnet (Roy et al., 2018), SK_U_Net (Byra
et al., 2020), CLNet (Zheng et al., 2021), CLCI_Net (Yang et al., 2019),
U-Net (Ronneberger et al., 2015). The experimental data are shown in
Table 6 below. The results show that MARes-Net is slightly inferior to
scSEUnet in terms of precision, but performs best on other evaluation
indicators. Compared with U-Net, MARes-Net improved IoU by

TABLE 4 The Impact of different attention modules.

Precision (%) Recall (%) IoU (%) F1-score (%)

Direct connection 94.07 92.09 84.50 90.92

CAM connection 93.69 92.83 84.93 92.25

SAM connection 94.34 91.89 84.30 91.05

CBAM connection 93.84 93.70 86.17 93.21

FIGURE 8
The results of different attentionmodules. (A)Original images. (B) Label images. (C)Direct connection. (D)CAM connection. (E) SAM connection. (F)
CBAM connection.
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4.36%, and F1-score by 2.46%. Due to the variety and complexity of
images of jaw cysts, identifying the cyst area presents certain challenges.
It is obvious from Figure 10 in the third row that the compared
networks failed to fully capture information in segmentation, resulting
in missing information and incomplete segmentation results. In
contrast, our proposed MARes-Net has obvious advantages in
segmentation and localization.

To address the challenges posed by limited sample sizes and
class imbalance in jaw cyst datasets, we employed various data
augmentation techniques to enhance the diversity of our training
and validation datasets. These techniques included random
transformations, scale adjustments, displacement transformations,
and local stretching, aimed at improving the model’s comprehensive
recognition ability for jaw cysts. Through these strategies, we aimed
to enhance the model’s robustness and generalization across
different conditions, ensuring accurate identification of jaw cysts
from various angles and scenarios. During the experimental phase,
we trained and evaluated these strategies on augmented datasets

using seven classical and recently published models (HRNet (Sun
et al., 2019), ICNet (Zhao et al., 2018), scSEUnet (Roy et al., 2018),
SK_U_Net (Byra et al., 2020), CLNet (Zheng et al., 2021), CLCI_Net
(Yang et al., 2019), U-Net (Ronneberger et al., 2015). Detailed results
are presented in Table 7. The findings indicated a slight decrease in
IoU and F1 scores for these models on the augmented dataset.
However, surprisingly, MARes-Net, in combination with SFEM and
MCEM, achieved improved segmentation results when handling
complex images. As illustrated in Figure 11, MARes-Net
demonstrated its capability to produce high-quality and accurate
segmentation results from these lesion segmentation images.

3.3 Computational analysis and efficiency
comparison

In model evaluation, the number of parameters and training
time is a critical aspect. The number of parameters directly impacts

TABLE 5 Ablation experiments of each module.

Precision (%) Recall (%) IoU (%) F1-score (%)

ResU + AG 93.07 92.41 83.32 91.92

ResU + SFEM 93.62 92.65 82.25 92.16

ResU + MCEM 93.62 92.02 82.02 90.19

ResU + AG + SFEM 94.16 91.38 83.65 91.59

ResU + AG + MCEM 91.72 93.26 83.71 92.74

ResU + SFEM + MCEM 93.22 91.70 83.97 91.35

ResU + AG + SFEM + MCEM 93.84 93.70 86.17 93.21

FIGURE 9
Results of ablation experiments for eachmodule. (A)Original images. (B) Label images. (C)ResU +AG. (D)ResU+ SFEM. (E)ResU +MCEM. (F)ResU+
AG + SFEM. (G) ResU + AG + MCEM. (H) ResU + SFEM + MCEM. (I) ResU + AG + SFEM + MCEM.
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TABLE 6 Comparison of our model with other models on the original jaw cyst dataset.

Precision (%) Recall (%) IoU (%) F1-score (%)

HRNet (Sun et al., 2019) 93.33 90.46 82.34 90.06

ICNet (Zhao et al., 2018) 91.41 87.24 79.47 88.08

scSEUnet (Roy et al., 2018) 94.02 91.93 78.69 87.82

SK_U_Net (Byra et al., 2020) 93.86 92.85 82.91 90.44

CLNet (Zheng et al., 2021) 92.85 92.04 80.34 88.67

CLCI_Net (Yang et al., 2019) 93.37 91.28 82.48 90.02

U-Net (Ronneberger et al., 2015) 93.38 91.41 81.81 89.55

MARes-Net 93.84 93.70 86.17 92.47

FIGURE 10
Comparison with other models on the original jaw cyst dataset. (A)Original image. (B) Label image. (C–I) are the results of HRNet, ICNet, scSEUnet,
SK_U_Net, CLNet, CLCI_Net, U-Net, MARes-Net.

TABLE 7 Results of our method with other models on data augmentation dataset.

Precision (%) Recall (%) IoU (%) F1-score (%)

HRNet Sun et al. (2019) 94.34 83.97 80.40 88.87

ICNet Zhao et al. (2018) 90.16 76.86 70.40 81.68

scSEUnet Roy et al. (2018) 95.00 87.01 78.11 91.78

SK_U_Net Byra et al. (2020) 95.50 85.83 82.30 91.03

CLNet Zheng et al. (2021) 85.30 84.22 78.98 89.44

CLCI_Net Yang et al. (2019) 59.81 73.47 43.57 79.06

U-Net Ronneberger et al. (2015) 95.27 94.60 81.51 89.67

MARes-Net 95.24 85.25 82.15 90.25
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the training duration of the model. Generally, a higher parameter
count indicates greater model complexity, necessitating more
computational resources and time to complete training.
However, models with more parameters also pose significant
challenges in terms of training time and resource consumption,
requiring extended training periods, large datasets, and high-
performance computing resources. As shown in Table 8, ICNet
(Zhao et al., 2018), scSEUnet (Roy et al., 2018), and UNet
(Ronneberger et al., 2015) have notably fewer parameters, albeit
at the expense of performance. Table 8 illustrates that these three
models exhibit significantly lower IoU and F1 scores compared to
other models in the comparison. Conversely, despite MARes-Net
requiring more time and parameters during training, its
integration of SFEM and MCEM enhances the incorporation of
contextual information, thereby improving its ability to capture
complex data patterns. This advantage translates into superior
predictive accuracy.

4 Conclusion

As deep learning continues to achieve remarkable success in the
field of medical image segmentation, this paper focuses on the image
segmentation of jaw cysts and proposes an innovative network
structure, namely, MARes-Net. Firstly, the overall integration of
residual connections helps model optimization and training.
Secondly, the scale-aware feature extraction module is used to
combine atrous convolution and CBAM mechanisms to increase the
receptive field and accurately locate the area of interest. Furthermore,
the feature map is stimulated and compressed through a multi-scale
compression excitation module to obtain rich contextual information
and improve the model’s performance capabilities. Finally, an attention
gate module is introduced to adjust the feature map obtained by the
multi-scale compression excitation module and up-sampling to
improve the model’s attention to the target area and reduce
interference to the background area. A series of experimental results
on the original jaw cyst dataset show that the precision, recall, IoU, and
F1-score, and of our proposed method can reach 93.84%, 93.70%,
86.17%, and 93.21%, respectively., which is significantly better than
other classic models cited in this article. This research aims to apply
innovative technologies to a wider range of medical image analysis tasks
and bring important breakthroughs and contributions to the research
and application of medical image segmentation.

While our approach has been remarkably successful in segmenting
jaw cyst images, the complexity of the model presents challenges in
achieving real-time performance and computational efficiency. Future
research should give priority to improving the real-time and
computational efficiency of the model to better adapt to clinical
applications. This requires not only optimizing existing models, but
also exploring and applying new deep learning techniques to further
improve the accuracy and reliability of medical image segmentation.
These advances will allow us to better meet actual medical needs and
provide patients with more effective diagnostic and treatment support.

FIGURE 11
Visual results of various models on data augmentation dataset. (A)Original image. (B) Label image. (C–J) are the results of HRNet, ICNet, scSEUnet,
SK_U_Net, CLNet, CLCI_Net, U-Net, MARes-Net.

TABLE 8 Comparison of parameter counts and computational time among
different models.

Parameter (M) Time (ms/step)

HRNet Sun et al. (2019) 7.98 350

ICNet Zhao et al. (2018) 1.71 150

scSEUnet Roy et al. (2018) 1.96 135

SK_U_Net Byra et al. (2020) 3.94 240

CLNet Zheng et al. (2021) 3.60 130

CLCI_Net Yang et al. (2019) 12.56 565

U-Net Ronneberger et al. (2015) 1.97 110

MARes-Net 4.58 200
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