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Editorial on the Research Topic
Emerging bioanalytical techniques and therapies for human
disease models

Modeling a human disease advances in-depth understanding of its progress and paves
the way for effective treatments. With the continuous progress in the convergence of
pharmacology, molecular biology, medicine/medical techniques and engineering, models
that can faithfully recapitulate various physiological or pathological processes within
humans are increasingly in demand (Moroni et al., 2018; Searson, 2023; Zhou et al.,
2023). In addition, approaches that can rapidly and accurately monitor the onset and
progress of events within the model at cellular, sub-cellular, and molecular levels are equally
important during the development of these advanced disease models (Leng et al., 2023;
Clarke et al., 2021; Fuchs et al., 2021). The integration of modeling and sensing technologies
not only provides robust support for new drug discovery (Guo et al., 2022a), but also lays a
solid foundation for the development of personalised therapeutics.

So far, traditional two-dimensional (2D) cell cultures and animal models are still the
main approaches to establish human disease models and perform drug screening. However,
they fail to provide effective and accurate preclinical assessment of drug efficacy and toxicity
(Brancato et al., 2020). Although in vitro cell culture in Petri dishes is a simple, high-
throughput method for preliminary drug screening and testing, these cellular models
usually lack in vivo tissue microstructure and physiological functions, resulting in an
inability to mimic cellular functions and signaling pathways in tissues (Linville et al., 2022;
Guo et al., 2019). In addition, there are significant differences in species between animals
and humans, albeit animal experiments are the gold standard for preclinical validation in
drug development (Brancato et al., 2020; Jucker, 2010). FDA therefore revoked the
requirement of animal tests for new drugs in its recent Modernization Act 2.0
(Wadman, 2023). Additional limitations of animal experiments include the microscopic
imaging (Cheng and Cheng, 2021), the presence of confounding variables (Schellinck et al.,
2010; Narayan et al., 2021), the costs and the availability (e.g., non-human primates) (Chu
et al., 2022), and animal ethics. Therefore, there is an urgent need for alternative tissue
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models that better mimic human pathophysiology to bridge the gap
in disease research as well as in the development of new drugs.

The recent development of 3D spheroid (Zhang et al., 2022;
Zhang et al., 2021; Yan et al., 2023), organoid (Broutier et al., 2017;
Tuveson and Clevers, 2019; Beydag-Tasöz et al., 2023), organ-on-a-
chip (Guo et al., 2022b; Shin et al., 2024; Del Rio et al., 2023; Fang
et al., 2023), and 3D bioprinting (Tang et al., 2020; Tang et al., 2024;
Tung et al., 2024) have facilitated the creation of physiological tissue
models and complex disease models that are more compatible with
physiological and pathological studies. Such preclinical models are
critical to more effective translate cancer research into new
treatment options for cancer patients. Figure 1 briefly introduces
the application scenario of organ-on-chip that covers the Research
Topic of papers published in this Research Topic.

In this Research Topic, Zhu et al. summarised and discussed
recent advances in 3D modeling for liver cancer research, including
the creation of 3D models, traditional 3D cell culture techniques,
and microfluidic techniques for constructing “organ-on-chip”. In
addition, the application of 3D bioprinting technology to develop of
liver cancer organoid and patient-derived xenograft (PDX) models
was also discussed (Zhu et al.). They pointed out that 3D models
provide realistic and reliable tools for advancing liver cancer
research. By simulating tumour heterogeneity and
microenvironment, these models contribute to a better
understanding of disease mechanisms and provide new strategies
for personalised treatment (Zhu et al.). In this momentum,

engineered 3D ex vivo tissue models have also been developed to
significantly boost accurate human disease modelling. Significant
advances in tissue engineering, microfabrication techniques, and cell
biology have led to the development of organotypic models with
higher complexity for mechanobiological studies and therapeutic
trials. Advanced model systems also allow in vivo reconstruction of
fundamental cellular component aspects of organ tissues, as well as
natural-like mechanical conditions (i.e., matrix stiffness, shear
stress) to maintain cells and engineered tissues in physiologically
relevant microenvironments.

Review of the haemodynamic mechanisms behind exercise-
induced vascular adaptations by Sun et al. provides a scientific
basis for understanding how exercise promotes vascular health. For
example, organ-on-a-chip can provide a unique platform for
vascular system research by controlling microchannel flow rates
while accommodating multiple cell types, realistically simulating
blood perfusion and building multiple vascular models based on
different pathological conditions. The construction of new models
overcomes the limitations of current research models and methods.
It is therefore expected to address the shortcomings in individual
differences, providing a more comprehensive understanding of the
effects of exercise on the vascular system.

Zhu et al. presented recent advances in lung-like organs and
organ-on-a-chip and discussed their applications in lung cancer
research and drug evaluation. These developments range from
realistic simulations and mechanistic probes of lung cancer to the

FIGURE 1
Schematic illustration of Organ-on-chips applications: (A) Allow for multimodal imaging and in silico study. (B) Combining with advanced
biofabrication and 3D printing leads to organ-on-chips more precisely mimic real human tissues. (C) Presence of shear stress and vascular structures
make Organ-on-chips more suited for organoid growth than traditional models. (D) Combining with microfluidics technology allows for precise control
of temperature, oxygen, shear forces, etc. (E)Organ-on-chips mimics human movement for simulation of the influence from physical movements
on vascular biology. (F) Perspective of using Organ-on-chips to predict the therapeutic effects of acupuncture and Tuina on peripheral nerve injuries.
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evaluation of chemotherapeutic agents and targeted therapeutic
interventions. The ability of the model to mimic the pathological
and physiological microenvironment of the lung allows it to
complement or replace existing 2D culture and experimental
animal models and has the potential to enable personalised lung
cancer therapy.

Furthermore, as previously stated, visualization studies in
animal models remain one of the major bottlenecks in current
scientific research. Significant progress has been made in small
animal imaging in recent years, and a series of advanced
techniques, including two-photon imaging, two-region near-
infrared imaging (NIR-II), and intravital microscope, have been
applied to real-time imaging of tumour metastasis in murine
models. However, there are various technical constraints in the
practical application, including limitations in imaging depth
(1–2 mm), dependence on contrast agent labelling, and limited
observation time, etc.

This directly leads to the “black box” status in drug discovery
and screening. For example, while wemight know the final effect of a
drug against lung cancer metastasis, it is difficult to clarify which
intermediate steps in the metastatic process are effectively inhibited
or “off-target” by the drug. To this end, Li et al. designed and
synthesized a series of near-infrared (NIR) fluorescent probe
substrates to monitor BChE activity, and ultimately selected a
NIR fluorescent probe substrate named CYBA. This probe can be
selectively metabolized by BChE, showing enhanced infrared
fluorescence with high selectivity and sensitivity. This provides a
novel, practical, and reliable method to monitor and visualize
BChE activity.

To date, Chinese medicine rehabilitation methods have been
validated to be effective for therapy of various diseases, but their
cellular and molecular mechanisms are still unknown. Liu et al.
summarised the molecular mechanisms of Chinese medicine
rehabilitation techniques and new biomaterials in the treatment
of peripheral nerve injuries and explored the research direction of
the combination of the two for precision treatment at both macro
andmicro levels. By combining Tui Na with newmaterials and other
advanced fabrication techniques including organ-on-chip models,
the microenvironment of peripheral nerve injury and regeneration
are recapitulated in vitro. Implementation of Tui Na with novel
organ-on-chip models allows researchers to objectively and
quantitatively study the effects of various Tui Na techniques on
peripheral nerve regeneration, such as different strengths, angles,
frequencies, intervention times, treatment times, etc. The
combination of Tui Na and microfluidic technology, as well
as imaging or sensing technologies, can significantly advance
its application in injury regeneration or pharmacological
researches (Ma et al., 2023; Wang et al., 2023; Chen et al., 2023;
Liu et al.).

In summary, an advanced human model with high fidelity to the
human environment, high-throughput screening, and visualization
research is becoming a pressing Research Topic (He et al., 2022;
Zhang et al., 2023). Emerging technologies such as 3D bioprinting,
organ (organoid)-on-a-chip, biosensing, and imaging are
continuously developing (Dai et al., 2022), and are expected to

have a profound impact on medical research and clinical practice in
the future. However, organ-on-a-chip systems are still not broadly
employed in the pharmaceutical industry due to the challenges in
addressing the practical standardization for rapid drug discovery
and accurate preclinical assessment. In the long term, the continued
integration of new concepts and technologies into organ-on-a-chip
platforms promises to bridge the biological and technological gap
between translational, preclinical, and clinical research. Therefore,
we envisage the capability of organ-on-a-chip applications in the
pharmaceutical industry and its increasingly bright future in the
field of personalized and precision medicine.
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