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Pandemics like COVID-19 have highlighted the potential of Photoacoustic
imaging (PAI) for Brain-Computer Interface (BCI) communication and lung
diagnostics. However, PAI struggles with the clear imaging of blood vessels in
areas like the lungs and brain due to their cavity structures. This paper presents a
simulation model to analyze the generation and propagation mechanism within
phantom tissues of PAI artifacts, focusing on the evaluation of both Anisotropic
diffusion filtering (ADF) and Non-local mean (NLM) filtering, which significantly
reduce noise and eliminate artifacts and signify a pivotal point for selecting
artifact-removal algorithms under varying conditions of light distribution.
Experimental validation demonstrated the efficacy of our technique,
elucidating the effect of light source uniformity on artifact-removal
performance. The NLM filtering simulation and ADF experimental validation
increased the peak signal-to-noise ratio by 11.33% and 18.1%, respectively.
The proposed technique adds a promising dimension for BCI and is an
accurate imaging solution for diagnosing lung diseases.
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1 Introduction

The lungs, key organs for gas exchange, are susceptible to harmful substances such as
toxic gases, inhalable particles, pathogens, and pollutants during respiration (Lucero and
Chan, 2021), which may affect their function and metabolism. In severe cases, exposure to
these elements can be life-threatening. The emergence of COVID-19 (Xu et al., 2020) has
heightened global concern and the need for lung function assessments to identify
pathological changes. While nucleic acid testing can confirm a COVID-19 infection, the
pathological characteristics of the disease are mainly determined on the basis of lung
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conditions. The primary cause of COVID-19-related mortality is
abnormal alveolar fluid metabolism, which results in fluid
accumulation in the alveoli, known as lung edema (Cui et al.,
2021). Edema results from an imbalance in lung tissue fluid
formation and reabsorption, which leads to fluid buildup in the
lung interstation and alveoli and severely impairs ventilation and
gas exchange.

Computed tomography (CT) scans are used to diagnose lung
edema in COVID-19 patients, revealing a progression from early
insidious interstitial lung edema to later severe alveolar edema
(Wiersinga et al., 2020). These symptoms are characteristic of
lung viral infections. However, traditional imaging techniques,
including CT scans, detect changes in the lung tissue structure
and not in the minute capillaries. Moreover, the ionizing radiation
from CT renders it unsuitable for long-term use and early
pneumonia screening. Therefore, detection technologies with
higher resolutions and specificities are urgently required to
identify changes safely and effectively in small capillaries. Such
advancements could enable earlier intervention and treatment for
patients. Additionally, the demand for non-contact assistive
communication devices post-viral infection is expanding, leading
to a surge in research on multimodal brain-computer interfaces for
assistive communication and even language decoding. This includes
functional Near-Infrared Spectroscopy devices, which focus on
spatial dimensions by detecting changes in blood oxygen levels in
the brain to assess neural activity and are suitable for contactless
scenarios. However, their resolution and depth penetration for
vascular details are relatively low, limiting their efficacy in certain
clinical applications.

Photoacoustic imaging (PAI) excels as an innovative imaging
modality, facilitating effective imaging of biological tissues up to
several centimeters deep. This capability is largely attributed to
sound scattering being 1,000 times (Wang and Hu, 2012;
Lengenfelder et al., 2019) lower than light scattering. PAI merges
the benefits of optical and ultrasound imaging and delivers high
resolution, specificity, and remarkable penetration depth (Pang
et al., 2022). It has a wide range of applications in both research
and clinical stages, enabling anatomical, functional, and metabolic
imaging (Yang et al., 2021a). Presently, PAI is being explored for
various applications, including the detection of skin melanoma
(Breathnach et al., 2018), breast tumors (Xi et al., 2012), and
carotid artery blood vessels (Li et al., 2017) and brain functional
imaging (Zhang et al., 2018), and has been instrumental in whole-
body imaging and disease detection in small animal models (Jeon
et al., 2016). Molecules with strong absorption in biological tissues,
such as hemoglobin (Guggenheim et al., 2015), melanin (Longo
et al., 2017), lipids (Guggenheim et al., 2015), nucleic acids (Yao
et al., 2012), and proteins (Zhang et al., 2011) serve as endogenous
detection targets for PAI (Zheng et al., 2022). Hemoglobin detection
plays an important role in PAI. Recent studies on microvascular
detection in small animals or even human brain (Yao and Wang,
2014) have demonstrated the potential of PAI in BCI (Bodea and
Westmeyer, 2021) or in detecting capillary changes during early-
stage pneumonia, supporting its application in brain and lung
detection. Furthermore, several studies based on deep learning
for low-light reconstruction (Paul and Mallidi, 2024), as well as
research on light-source types and penetration depth (Yang et al.,
2024), have paved the way for addressing the issues of light

scattering and absorption in tissues, enabling deep organ image
reconstruction for the brain or lungs.

However, brain or lung imaging with PAI presents significant
challenges owing to the cavity structures, e.g., the ear canals and
esophagus or acoustic signals being attenuated by air in the alveoli
(Lucero and Chan, 2021). Especially for the lungs, the current results
of whole-body imaging in small animals suggest that optical path
imaging can only discern the outer contour of the lungs, failing to
reveal specific internal details (Raes et al., 2016). This limitation
arises from the unique structure of the lungs, which includes flexible
lobe tissues, blood vessels, the trachea, and air. Variations in sound
velocity passing through pulmonary tissue and air, which cause
reflection and attenuation, significantly affect acoustic signal
transmission. These factors substantially hamper the transmission
of photoacoustic signals (Gröhl et al., 2021). Therefore, investigating
the generation and transmission of photoacoustic signals in tissues
with cavity structures is crucial for advancing the application of PAI
in lung imaging.

In addition to this pioneering work on cavity-structure artifact
generation and transmission using simulation and experimental
validation, our study includes the selection of appropriate filters
for artifact removal in PAI. We focused on artifacts from air tubes,
line artifacts arising from sound wave superposition, and
background noise due to uneven light source distribution.
Although Gaussian filters are widely used, including for
functional MRI (Ashburner and Friston, 2000), their main
drawback lies in edge blurring caused by the averaging of pixels
over dissimilar patterns. To circumvent this, edge-preserving filters
such as the anisotropic diffusion filter algorithm (hereafter ADF)
have emerged as a preferred alternative (Perona and Malik, 1990;
Gerig et al., 1992; Samsonov and Johnson, 2004). ADF effectively
reduces simple model cavity structures imaging artifacts caused by
ultrasound wave fluctuations yet is ineffective for noise attributed to
uneven light distribution. Conversely, the non-local means filter
algorithm (hereafter NLM) employs a noise reduction strategy based
on the similarity between image regions (Manjón et al., 2008),
making it particularly effective for enhancing continuous vascular
structures in PAI and reducing noise. This capability makes NLM
highly suitable for correcting artifacts in complex PAI scenarios.

However, the application in PAI of neither the ADF nor NLM
filters has been extensively studied (Coupé et al., 2009; Guezzi et al.,
2022), presenting a significant opportunity for future research to
investigate more effective artifact correction strategies for PAI.
Furthermore, the work of Steven Guan et al., which successfully
implemented a Fully Dense U-Net for artifact removal in sparse 2-D
photoacoustic tomography, underscores the potential of deep
learning in this field (Guan et al., 2019). While there are
concerns about interpretability and the scarcity of data samples,
research continues to explore potential clinical applications.

Therefore, we investigated the generation and transmission of
photoacoustic signals in cavity-structure tissue, as well as the
effectiveness of high-interpretability, low-data-demand ADF and
NLM artifact-removal algorithms. The remainder of the paper is
organized as follows: Section 2 discusses materials and methods;
Section 3 presents the results of the simulation and physical
verification, including the de-artifact algorithms and evaluation
parameters. Section 4 discusses the results described in Sections
3, 5 comprehensively reviews the overall experiment.
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FIGURE 1
Materials and methods mind map.

FIGURE 2
Introduction to a simplified cavity structuresmodel: (A) Schematic of the structure of human lungs; (B) Simplified cavity structuresmodel used in this
experiment; (C) Schematic of inclusion distribution in models; (D) Schematic of a physical verification system.
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2 Materials and methods

Herein, we present a detailed exploration of various aspects
related to cavity structures PAI simulation, encompassing physical
verification, detailed descriptions of filters, and evaluation metrics.

Section 2.1 is dedicated to the PAI simulation of cavity
structures. It includes the creation of a cavity structures model
(Section 2.1.1), outlines optical simulation methods (Section 2.1.2),
discusses acoustic simulation (Section 2.1.3), and details image
reconstruction techniques (Section 2.1.5). Section 2.2 focuses on
the methods used for physical verification. The description of filters
is provided in Section 2.3, with ADF explained in Section 2.3.1 while
Section 2.3.2 details the NLM filter. Section 2.4 discusses the
evaluation metrics used to assess imaging quality. To facilitate
understanding, Figure 1 mind maps this section.

2.1 Cavity structures PAI simulation

2.1.1 Cavity structures model
Figure 2 shows the simplified cavity structures model used in the

experiment. It comprises four parts. All numerical experiments were
conducted using MATLAB R2022a on the same computer with an
Intel i7-13700K CPU and 64 GB RAM.

Figure 2A shows the lung structure as representative of the
organs with cavity structures, emphasizing details of the lung alveoli;
the main components, lung lobes, blood, and air, are highlighted.

The cavity structures are simplified in Figure 2B into two key
components: a cuboid substrate with circular inclusions, representing
muscle, blood, and air. Notably, this model effectively images
individual blood tubes, whereas the air and water tubes are
negligibly imaged. To investigate the cavity structures’ artifact
generation mechanisms and control for the air tubes, a water tube
with parameters identical to those of air tubes was included in the
cavity-structures phantom design. In this representation, the square
symbolizes the substrate, and the circles symbolize water, blood, and
air. This simplified model was designed to study and analyze the
fundamental mechanisms of sound wave propagation and
photoacoustic signal generation in specific regions of the cavity
structures. Reducing the complex lung structure to three tubes
effectively minimized the computational complexity while
controlling the model parameters, thereby concentrating on the
key factors in photoacoustic imaging. Although the brain and lung
structures are complex, at the preliminary research stage, using three
representative tubes served as an initiation point to capture the basic
phenomena in cavity structures using PAI.

Figure 2C shows the distribution of inclusions in all models. The
left-hand side of the dashed line represents a simple object
arrangement, where s1 to s3 illustrate the states of single media
(air, blood, water) existing independently, serving as control groups
to evaluate the effects of other combinations. Each arrangement
from s4 to s6 includes a combination of three different media,
systematically positioned to study their interactions and the effects
on artifact generation in PAI. The right side of the dashed line
employs both control groups (S1-S3) and a 3 × 3 Latin square (S4-
S6) to simulate the generation and propagation of artifacts in PAI.
This ensures that each experimental condition is evenly distributed
(each substance appears in every row and column only once),

thereby eliminating the interference of uneven arrangement. The
specific arrangements start with blood, air, and water randomly
placed in the first row, with the second and third rows generated
through cyclic shifting. This arrangement ensures that each medium
appears exactly once in every row and column, facilitating a
balanced analysis of how different media affect imaging. The
representative simple object arrangements of S4-S6 and the
matrix object arrangements of S5 are presented in the
“Results” section.

Last, Figure 2D describes the projection of light sources onto the
imaging plane, depicting the general relationship between the light
source projection and tube positioning on the plane. A more
comprehensive explanation of light source distribution is
provided in Section 2.1.2.2.

2.1.2 Optical simulation methods
Herein, we particularly focus on optical simulation methods,

distinguishing between simulations with uniform and non-uniform
light sources. The values in Table 1 are used for simulations
assuming a uniform light source to directly generate initial sound
pressure, while the values in Table 2 are used for optical-acoustic
simulations with non-uniform light sources and are cross-validated
with physical experiments. This distinction is crucial because it
influences the accuracy and realism of simulated PAI. The
simulations employ a uniform light source, which is associated
with consistent light distribution. This approach enables us to
study the mechanisms underlying artifact generation in cavity
structures PAI more precisely and provides a baseline for
assessing the appropriateness of the study’s selected objective
evaluation metrics. Additionally, it aids in choosing suitable
parameters for the filtering algorithms, thereby enhancing the
PAI’s quality and reliability. After designing the evaluation
metrics and filtering algorithm parameters, we noticed
discrepancies between the results of the uniform light source
simulations and physical experiments. To elucidate the reasons
for these discrepancies, Section 2.1.2.2 discusses the complexities
of non-uniform light source simulations and considers more
realistic scenarios with variable light distributions.

Selecting a wavelength of 800 nm for light absorption and a
Gaussian beam in PAI are strategic choices with several advantages.
Being situated in the near-infrared spectrum, this wavelength
penetrates deeper into tissue and reduces scattering. It effectively
targets vital chromophores such as oxyhemoglobin and
deoxyhemoglobin, which is essential for vascular imaging and
oxygenation assessment. Importantly, at 800 nm, light is
minimally absorbed by air or water, which reduces interference
from non-target elements. This feature, along with the safety of NIR
light and its compatibility with current imaging systems, makes
800 nm the ideal choice for accurate and efficient PAI. However, to
generate the Gaussian beam, the laser of the physical object must
pass through a fiber bundle. Its diffusivity is similar to that of a
common Gaussian light source. Moreover, the simplicity of the
Gaussian beam parameters (waist radius) reduces the difficulty of
explaining the relationship between the uniformity of the light
source and the imaging effect (Yang et al., 2021b; Yang et al., 2024).

This section intends to elucidate how these two simulation
approaches affect the PAI of cavity structures and underscores
the importance of considering both in comprehensive research.
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2.1.2.1 Uniform light source simulation
To enhance the PAI’s accuracy and minimize artifacts from

uneven light distribution, we adopted a method based on the linear
relationship between initial sound pressure and optical absorption,
grounded in the fundamentals of the photoacoustic effect. The
relationship between the initial sound pressure P0 and the optical
absorption coefficient μa can be expressed as:

P0 � Γ · η · μa · F, (1)
where Γ is the photoacoustic conversion efficiency, η is the heat
transfer efficiency and F is the optical fluence. This implies a linear
correlation between initial sound pressure and light absorption
under our experimental conditions.

The optical absorption coefficients were calculated from
absorption spectra measured using a UV-VIS-NIR
Spectrophotometer (UV-3600 Plus, SHIMADZU, Japan).
Measurements in the sphere absorbance module were conducted

using a photometric integrating sphere with an inner diameter of
60 mm, using standard PMT/InGaAs/PbS detectors to ensure a
uniform distribution of light in the measurement cavity, thereby
reducing the potential impact of non-uniform light absorption on
optical fluence F. Each measurement began with auto-zeroing the
baseline to 100% transmittance (0 absorbance) and calibrating the
background using an empty cuvette. The detection quartz glass
cuvette had a transmittance length of 10 mm, with spectra collected
from 300 to 1,300 nm at 1 nm intervals. The measured and used
parameters are shown in Figure 3A; Table 1.

2.1.2.2 Non-uniform light source simulation
Gaussian light sources were selected as representative for

validating that the observed changes in the results of physical
verification were not due to the design of the filter parameters
and to further investigate the effect of uneven light source
distribution on artifact removal in the PAI of cavity structures.

TABLE 1 Measured and used parameters in uniform light source simulation.

Agarose Air Blood Water

Light absorption measured at 800 nm 0.056362 0.015132 2.994754 0.002734

Parameters used during the simulation μa (1/cm) 0 0 3 0

Note: All parameters are rounded to one decimal place.

TABLE 2 Optical properties of cavity structures tissues at an optical wavelength of 800 nm.

Tissue layers Absorption coefficient
μa (1/cm)

Scattering coefficient, μs (1/cm) Anisotropy factor, g Refractive index, n

Background 0.0001 0.1 1.0000 1

Water 0.06 1 0.99 1.3

Blood 2.38 522 0.9 1.4

Air 0.001 347 0.001 1.0

Note: The optical parameters of blood were arterial blood at 800 nm (Li et al., 2011). The optical parameters of water (Liu et al., 2018). Air’s absorption is defined as 0.001 cm−1. based on high

transmittance (Wang et al., 2021). Atmospheric molecules are considered to be symmetrically scattered; therefore, the scattering anisotropy is close to zero. The atmospheric refractive index was

1.0 with one decimal place reserved (Penndorf, 1957). The scattering coefficient of clean air is measured at 750 nm (Wu et al., 2004).

FIGURE 3
Optical simulation method: (A) Variation of the absorption coefficient of main objects; (B) Laser emission directions.
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This light source had a waist radius varying from 1 to 20 mm in
1 mm increments, enabling the simulation of the effect of light
source distribution on the artifact removal algorithm.

The simulation of optical fluence and absorption was
performed in a 3D space using the Monte Carlo method,
facilitated by an open-source MATLAB toolbox named
“mcxlab” (Yu et al., 2018). A simulated 12 cm × 12 cm ×
12 cm geometry was established, within which a 5 cm ×
5 cm × 5 cm agarose block containing embedded sealed tubes
of 1 mm diameter and 5 cm length was placed to emulate cavity
structures tissues. The light source, defined as a Gaussian shape,
was illuminated from five directions, each spaced at a uniform
angle of 39°. The width of each laser beam was set to 1 mm, with a
10 mm length for the laser source. The total photon number for
simulation was set to 108.

The ending time and time-gate width of the simulation were
both set to 10–10 s, with the laser emission position shown in
Figure 3B. The optical properties of the cavity structures tissues
at the 800 nm wavelength are shown in Table 2.

The optical fluence was computed using this simulation model.
Subsequently, the optical absorption, denoted as A, was computed
according to Equation 1, identical to that in Section 2.1.2.1.

2.1.3 Acoustic simulation
After the optical simulation to obtain the initial PA signal, we

acoustically simulated how a PA wave is propagated and received.
This simulation used the k-space pseudo-spectral method,
facilitated by the MATLAB k-wave toolbox (Treeby and
Cox, 2010).

A 2D half-ring transducer array comprising 128 elements was
evenly distributed with a radius of 55 mm to capture the acoustic
signals. To account for acoustic heterogeneity, we included the
air region (sound speed: 340 m/s; density: 1.2 kg/m3) and the
other regions (water, blood, and substrate) using the parameters
for water (sound speed: 1,500 m/s; density: 1,000 kg/m3). The
initial pressure for the simulation was calculated on the basis of
the optical absorption derived from the optical simulations. A
121 × 121 grid with a 1 mm pitch was used for the calculations,
and 4,096 samples were computed at each transducer location,
with a temporal resolution of 12.5 ns.

It is important to note that acoustic attenuation was not
explicitly modeled in this study. The simulation parameters were
chosen to provide a baseline understanding of wave propagation
without the inclusion of energy loss due to acoustic attenuation.

2.1.4 Frequency selection
As the PAI simulation of cavity structures differs slightly from

that of substantive organs, wherein the sound velocity changes
insubstantially, the speed of sound in air considerably affects the
size of the simulation frequency, depth, and grid size.

Ultrasonic transmission between 10 kHz to approximately
1 MHz can aid in detecting changes in air and fluid in the thorax
owing to their distinct acoustic properties (Rüter et al., 2010).
Additionally, ultrasound frequencies between 1 kHz and 10 kHz
cannot effectively penetrate the thorax. Frequencies ranging
from 10 to 750 kHz can penetrate the human thorax during
expiration (Zhang et al., 2024). Because the ultrasonic speed in
air is approximately 1/5th of that in water, the maximum

frequency supported by ultrasonic waves in air with the same
simulation grid size is close to 1/5th of that in water. To retain
more high-frequency signals and accurately capture the
expected reflection and refraction on high-acoustic impedance
interfaces, we selected 750 kHz as the highest supported
frequency in water.

Subsequently, the imaging depth could be approximately
calculated based on the maximum supported frequency using
Depthmax � Ns•c

fmax
. Given the speed of sound in air (c = 340 m/s)

and the number of sampling points (Ns � 4096), with the maximum
supported frequency set at fmax � 750KHz, wave phenomena can
be accurately simulated up to a depth of 1.857 mwhich is suitable for
imaging the brain or lungs.

Having established the maximum imaging depth, we now
turn to the critical task of determining the appropriate grid size.
Calculating the grid size on the basis of maximum supported
frequency involves two approaches: the wavenumber vector and
the Nyquist sampling theorem. These ensure the simulation’s
accuracy while accommodating the highest frequency of interest
within the physical medium. The methodologies are unified
under the principle that the spatial step size (Δx) must be
sufficiently small to resolve the shortest wavelength (λmin)
corresponding to the maximum frequency (fmax) in the
medium with sound speed c. The optimal spatial step size is
derived by:

Δx≤ c

2fmax
(2)

Wavenumber Vector Approach: This method allows the
maximum resolvable wavenumber (kmax) to be calculated based
on the spatial step size (Δx), employing the relationship kmax � π

Δx.
Subsequently, the maximum supported frequency is determined by
relating kmax to the sound speed of the medium (c), given by
fmax � kmax•c

2π , which simplifies to Equation 2 upon substitution.
Both methods converge on the identical requirement for Δx,
highlighting the fundamental physical and mathematical
consistency underlying spatial sampling in wave propagation
simulations. Given sound’s speed in air as (c � 340m/s) and a
maximum frequency of interest (fmax � 750 kHz), the spatial step
size should not exceed 0.226 mm if the wave phenomena in a
120 mm × 120 mm domain are to be accurately simulated.
Therefore, we used a 120 × 120 grid with a 1 mm pitch for the
calculations.

2.1.5 Image reconstruction
The delay and sum (DAS) algorithm was selected for image

reconstruction. Notably, to ensure that the frequency of the
simulation was consistent with that of the physical
reconstruction, we performed 750 kHz low-pass filtering on the
sampled data before using the DAS algorithm.

For image reconstruction, all parameters of the sensor in the
simulation must be consistent with the real shape, size, center
frequency, and bandwidth. The speed of sound in water was
defined as 1429m/s, whereas that in air was defined as 430m/s
to accommodate the delay. In addition to the density of the air pipe,
the density of water is 1000 kg/m3, and the air pipe density is
1.2 kg/m3. A 1,200 × 1,200 grid with a 0.1 mm pitch was selected for
DAS reconstruction.
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2.2 Physical verification

2.2.1 Phantom preparation
Phantoms were constructed for image acquisition using a

PAI system. The materials selected for the phantom included
water, bovine blood (HQ60089, EDTA anticoagulant, Hongquan
Biological Technology Inc., Guangzhou, China), agarose (CAS:
9012366, Aladdin, Aladdin Biochemical Technology Co. Ltd.,
Shanghai, China), and polytetrafluoroethylene (PTFE) tubes
(Liangqi Inc., Shanghai, China) with an inner diameter of
0.5 mm and an outer diameter of 0.9 mm. Owing to market
availability, we opted for a tube diameter of 0.9 mm instead of
the ideal 1 mm. The mold for the phantom was a 5 cm × 5 cm ×
5 cm cubic box with an opening on top, fabricated using a
3D printer.

The PTFE tubes were cut to a length of 3 cm and filled with
either water, air, or blood. The tube ends were sealed with a gel. The
agarose solution, prepared from a 1 mg: 100 mL mixture of agarose
powder and pure water, was heated in a microwave until boiling and
became clear. The solution was then kept warm in an oven at 50°C.
Once all components were ready, the agarose solution was poured
into the mold in layers to the required height, based on the structure
of the phantom.

The tubes were placed while pouring and solidifying the agarose
solution. After solidification, the phantom was removed from the
mold, as shown in Figure 4.

2.2.2 Imaging system
The physical equipment and its structure diagram are shown

in Figures 5, 6. The PACT system comprises: an illumination
laser, an optical parametric oscillator (OPO), a half-ring
ultrasonic transducer array, a data acquisition system, and a

computer. For photoacoustic excitation, a 523 nm optical beam
from a laser (Nimma 900; Beamtech Inc., Beijing, China; 10 Hz
pulse repetition rate; 8 ns pulse width) was modulated to the
required wavelength using an OPO (BB-OPO-532; Deyang Tech
Inc., Zhejiang, China; output wavelengths ranging from 680 nm
to 960 nm) and transmitted through custom optical fiber
bundles (Qingpai Tech. Inc., Beijing, China). Initially, a
mirror reflected the light beam, altering its propagation
direction before entering the OPO. A beam dump was
positioned on the optical path to absorb the 532 nm light
reflected from the OPO.

A half-wave plate then adjusted the polarization of the 532 nm
laser beam to match the polarization state required by the OPO.
Subsequently, any remaining 532 nm light was redirected by a
dichroic mirror before entering the fiber bundle.

In the PAI system, a custom half-ring ultrasonic transducer
array (Qingpai Tech. Inc., Beijing, China; 128 elements; 110 mm
ring diameter; 5 MHz central frequency) was used for 2D panoramic
detection. A semicircular array was selected because of its unique
geometric layout, which enabled a more precise exploration of the
principles underlying artifact formation. Particularly when
analyzing artifacts caused by internal structures such as ducts, a
semicircular array mitigates the issue of linear artifacts potentially
being mistaken for the shape of the probe. Additionally,
distinguishing imaging artifacts of circular arrays from the
anisotropic artifacts of circular tubes can be challenging.
Therefore, the selection of a semicircular array was crucial for
accurately identifying and interpreting specific features in the
imaging results. Furthermore, this transducer array was
connected to a data acquisition module (Marsonics128; Langyuan
Tech. Inc., Tianjin, China; 128 Channels) capable of 80 MSPS and a
maximum amplification of 128 dB.

FIGURE 4
Phantom cube (Top view).
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FIGURE 5
Ultrasonic probe and light source physical arrangement.

FIGURE 6
Schematic of the PACT system configuration: HWP, half-wave plate; OPO, optical parametric oscillator; DAQ, data acquisition module, PC,
personal computer.
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2.3 Filter description

In the PAI of cavity structures, noise can arise from various
factors, including the uneven distribution of light and the effect of
acoustic impedance on sound wave propagation. This noise is
primarily multiplicative, characterized by stronger noise in
brighter areas of the image and weaker noise in darker areas.
Handling multiplicative noise is more complex than handling
additive noise because it varies with the image signal strength. To
address such noise, we selected ADF, which concentrates on local
image features, and NLM, which is suitable for cavity-structure
images with repetitive patterns and structures. Both algorithms are
also effective in dealing with additive noise, as they can smooth
interior regions while preserving edges (Yu and Acton, 2002).

2.3.1 Anisotropic diffusion filter
This type of algorithm simulates natural diffusion processes,

dynamically adjusting the diffusion process based on the local
characteristics of the image, to maintain the edges and details of the
image while eliminating noise. In the approach introduced by Perona
and Malik (Perona and Malik, 1990), an anisotropic coefficient is used
to stop diffusion across image edges. This is expressed as:

∂I
∂t

� div c ∇| I |( )∇I[ ]
I t � 0( ) � I0

⎧⎪⎨⎪⎩ (3)

c x( ) � 1

1 + x/2( )2
c x( ) � exp − x/k( )2[ ]

⎧⎪⎪⎨⎪⎪⎩ , (4)

where ∇ is the gradient operator, div represents the divergence
operator, | | denotes magnitude, c(x) is the diffusion coefficient, and
I0 is the initial image. Two diffusion coefficients are suggested in
Equation 4: where k is a parameter indicating edge magnitude.

In anisotropic diffusion, the gradient magnitude is used to
identify image edges or boundaries as step discontinuities in
intensity (Yu and Acton, 2002). If ∇I> k, then c(|∇I|) → 0,
resulting in an all-pass filter; if ∇I< k, then c(|∇I|) → 1, leading
to isotropic diffusion (Gaussian filtering) (Bavirisetti and Dhuli,
2015). The discrete form of this Equation 3 is given by Equation 5

It+Δts � Its +
Δt
ns| |∑p∈η

c ∇Its,p( )∇Its,p (5)

where Its is the discretely sampled image, s denotes the pixel position
in a discrete two-dimensional grid, Δt is the time step size, ns
represents the spatial neighborhood of pixel s, and |ns| denotes the
number of pixels in the window (usually four, except at image
boundaries) (Yu and Acton, 2002). The difference between pixel
intensities is represented as Equation 6

It+Δts � Itp − Its,∀p ∈ ηs (6)

To effectively implement ADF in practice, these partial
differential equations must be digitized.

2.3.2 Non-local means filter
In contrast to ADF, which is dependent on the immediate

neighborhood of a pixel, NLM considers the similarity between

distant pixels or regions. Fundamentally, it involves replacing the
intensity of each pixel with a weighted average of intensities from all
other pixels in the image, where the weights are determined by the
similarity between pixel neighborhoods (Bhujle and Vadavadagi,
2019). This approach is particularly suitable for images of vascular
structures with repetitive patterns. The NLM filtering process is
mathematically represented as follows Equation 7 (Manjón et al.,
2008; Buades et al., 2011):

I′ p( ) � 1
C p( )∑qϵIf p, q( )•I q( ) (7)

where I′(p) represents the filtered intensity of pixel p, I(q) is the
intensity of a pixel q, and f(p, q) is a weight function based on the
similarity between the neighborhoods of pixels p and q. C(p) is a
normalization factor defined as Equation 8

C p( ) � ∑
qϵIf p, q( ) (8)

The weight function f(p, q) is typically defined as an
exponentially decreasing function of the Euclidean distance
between the intensity vectors of the neighborhoods of p and q.
This often includes a Gaussian filtering component (Manjón et al.,
2010) Equation 9:

f p, q( ) � exp − v p( ) − v q( )���� ����2
h2

⎛⎝ ⎞⎠ (9)

where υ(p) and υ(q) are vectors representing the neighborhoods of
pixels p and q, respectively, whereas h is a filtering parameter that
controls the rate of decay of the exponential function.

2.4 Evaluation metrics

To evaluate the effectiveness of these artifact-removal
algorithms in PAI, we employed a combination of subjective and
objective assessment methods. Recognizing that objective
evaluations may not fully represent the quality of image
improvement, (Hore and Ziou, 2010), we aimed to achieve a
more comprehensive and in-depth understanding of the true
effectiveness of the algorithms by analyzing results from both
approaches. Additionally, we adjusted our objective evaluation
metrics to account for variations caused by changes in the light-
source distribution.

We selected objective evaluation metrics that were statistically
used in more than 20% of cases, as identified in a review (Gröhl et al.,
2021), along with additional indicators that enhanced visual details
and image quality. These include peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM), mean square error (MSE), and
normalized absolute error (NAE), as deduced in MATLAB® (Cadik
and Slavik, 2004; Hore and Ziou, 2010). In contrast to a previous
study (Yalavarthy et al., 2021) that used the NLM filter and focused
only on decibel improvement, we aimed to compare lift rates
between the anticipated imaging, the original image, and filtered
image of the anticipated imaging-original image. In essence, these
metrics were calculated using anticipated imaging Ga and the
original image Go. Given the filtered image Gf of the original
image, the equation for lift rates is in Equation 10:
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Xlift ratio � X Ga, Gf( ) − X Ga, Go( )
X Ga, Go( ), (10)

where X represents various evaluation metrics.
These metrics cover various aspects, from pixel-level errors

(such as MSE and NAE) to structural and visual quality (such as
PSNR and SSIM). This diverse range of metrics ensures a
comprehensive evaluation, aiding comparison and highlighting
the strengths and potential limitations of ADF and NLM. This
comprehensive approach ensures their effectiveness and reliability
in practical applications.

An optimal filtering algorithm should yield higher values in
PSNR, SSIM while maintaining lower values in MSE and NAE. High
PSNR, SSIM scores indicate superior image quality, fidelity, and
structural integrity, whereas lower MSE and NAE values signify
minimal reconstruction errors and discrepancies compared with
those in the original image.

3 Results and discussions

This study thoroughly analyzed the generation, propagation,
and reconstruction of PA signals, focusing on signals from three
objects: blood, water, and gas. The simulation and explanation of
artifacts generated by these materials form the core of our analysis,
and the results are shown in the following sections.

It is noteworthy that in this section, as exemplified by Figure 7,
the second column (Figures 7B, F, J) displays the distribution of
initial sound pressure. These images show the initial sound pressure
derived from a linear equivalence based on absorption intensity,
thus the represented data are dimensionless. The sensor data shown
in the third column (Figures 7 C, G, K), derived from these initial
sound pressure data, are also dimensionless. Finally, all result data
have been normalized to ensure that they represent relative changes
rather than specific physical units, maintaining the consistency of
the dataset being dimensionless. This approach not only simplifies
the comparison and analysis of data but also helps to more clearly
demonstrate the relative differences in how various materials affect
photoacoustic signals.

3.1 Simulation results

3.1.1 Uniform light source
3.1.1.1 Simple object arrangement (Three nonidentical
inclusions arranged horizontally)

Figure 7 shows the initial sound pressure, sensor data, and image
reconstruction for three different inclusions within the substrate.
The first to third rows correspond to s4-blood–air–water (Figures
7A–D), s5-air–blood–water (Figures 7E–H), and s6-
air–water–blood (Figures 7I–L) configurations, respectively.

FIGURE 7
Image reconstruction results of three embedded nonidentical inclusions. Results from the first to fourth columns belong to ideal arrangement
(A,E,I), initial sound pressure (B,F,J), sensor data (C,G,K), and image reconstruction result (D,H,L), respectively. Results from the first to third rows belong
to blood–air–water (A–D), air–blood–water (E–H), and air–water–blood (I–L), respectively.
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One significant observation from the simulation is the close
relationship between artifact formation and the anisotropy of air
inclusions. This becomes particularly evident when comparing air
inclusions with water inclusions. Despite their similarity in
parameters such as light absorption, they differ in anisotropy.
Further analysis revealed that density and the sound speed in the
air medium affect acoustic signal propagation. However, a more
fundamental factor appears to be the effect of acoustic impedance on
sound wave propagation. At interfaces between media with
mismatched acoustic impedances, strong sound wave reflections
occur, leading to artifact formation.

To demonstrate artifact occurrence more clearly, we conducted
two types of simulations and subtracted their results, as shown in
Figure 8. One simulation included artifacts (with air, water, and
blood inclusions) and the other was artifact-free (featuring only
blood inclusion). By subtracting these results, we isolated pure
artifact images from the sensor data (Figures 8A–C) and image
reconstruction results (Figures 8D–F). We observed that in
simulations with horizontal inclusion arrangements, the main
form of artifacts in anisotropic simulations with air inclusion
appeared as a semicircle.

This semicircle was centered at the air inclusion, with its radius
being the distance from the blood inclusion to air inclusion, and the
blood inclusion being the starting point of the semicircle.

3.1.1.2 Advanced object arrangement (Nine nonidentical
inclusions arranged in a matrix)

In our model, the arrangement of inclusions was varied to
analyze their effect on sensor data and artifact formation. The
first row (Figures 9A–D) followed the arrangements of S5,
whereas the second row (Figures 9E–H) was set to S5.

A noticeable difference was observed between the sensor data
values from the ultrasound transducer elements in simulations that
included air tubes (Figures 9A–D) and those without air tubes

(Figures 9E–H). By subtracting the results from two DAS
algorithms, we isolated pure artifact images (Figure 10). In these
images, artifacts from the simulations with air tubes had distinct
shapes, forming a semicircle with the air tube at the center. The
radius of this semicircle was the distance from the blood tube to the
air tube, with the blood tube being the starting point. The direction
of this semicircle was determined by the orientation of the sensor
toward the air tube.

3.1.2 Physical results
3.1.2.1 Simple object arrangement (Three nonidentical
inclusions arranged horizontally)

Figure 11 shows images reconstructed from the experiments,
which show trends similar to the simulated results. The blood tubes
exhibit the strongest signal in the images, whereas the signals from
air and water tubes are less visible. Unlike the simulated predictions,
the images displayed faint signals from the PTFE tubes containing
blood, air, water, and artifacts from the holder and fixture in contrast
to the background. Furthermore, owing to the limited field of view of
the half-ring array, the regions below it had missing information and
half-circle artifacts.

In summary, comparing the simulation and experimental results
of the model with three object tubes indicated that the blood tube
yielded a stronger signal than the air and water tubes. The contrast in
the water tubes was the lowest among all groups. Artifacts were
notably generated in the presence of both blood and air tubes.

3.1.2.2 Advanced object arrangement (Nine nonidentical
inclusions arranged in a matrix)

In the advanced matrix phantom setup, the simulations and
experiments revealed more complex reconstructed images, with a
higher number of objects leading to increased artifacts. In the pure
blood tube model (Figures 9E–H), distinct artifacts around the blood
tube were observed, differing from those caused by the acoustic

FIGURE 8
Sensor data (A–C) and image reconstruction results (D–F) of pure artifact images for three nonidentical inclusions arranged horizontally. (Uniform
light source): The columns from left to right are pure artifacts of blood–air–water, air–blood–water, and air–water–blood respectively; the simulation
layout conditions are marked at the top right-hand corners of images.
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heterogeneity of air. In models with blood tubes surrounded by air
or water tubes (Figures 9A–D), the surrounding air tubes
significantly deformed the artifacts of the blood tubes, while the
deformations arising from the water tubes were relatively minor.

Artifacts in the blood tubes (Figure 12) appeared as large arc-like
intersecting lines. Initially, these artifacts were less noticeable in simple
object arrangements owing to the substantial signal intensity of the blood
tubes, making them less conspicuous compared with the artifacts caused
by air. Consequently, they were ignored in our initial observations.
However, in thematrixmodels, these artifacts becamemore pronounced
and were notably altered by the presence of air tubes.

3.2 Artifact removal

The objective evaluation metrics given in Section 3.2 indicate
that applying the two algorithms improved the processing
performance. Notably, the lower MSE and NAE values correlate
with better image quality, suggesting that reductions in these values
signify an enhancement in image quality.

3.2.1 Uniform light source artifact removal
The performance of NLM was superior to that of ADF in

simulations with simple uniform light source anisotropy
arrangements. This is summarized in Table 3.

The objective results demonstrate the superiority of the NLM
method in the simulations. It preserved the edges of the blood tubes
more effectively than ADF and filtered out background noise caused
by the superposition of acoustic characteristics. In particular, the
PSNR results were considerably improved, indicating that NLM
effectively retained structural content and differentiated between
background and object more effectively than ADF. We believe that
this observation is inseparable from the characteristics of NLM. In
scenarios with simple arrangements, the conditions often exhibit
repetitive patterns, which establish favorable conditions for NLM’s
filtering capabilities. Considering these findings alongside the image
results, our choice of indicators was evidently rational. The
correction images (Figure 13) and corresponding subjective
results are summarized below.

The subjective results confirm that with uniform lighting, NLM
effectively removed background noise and air artifacts from the
horizontal arrangement (Figures 13D, I). Although slightly less
effective in matrix arrangements, NLM still cleanly processed the
background. Overall, NLM outperformed ADF under uniform
background or lighting conditions, emphasizing its utility in
specific PAI scenarios.

FIGURE 9
Image reconstruction results of multi-inclusion matrix arrangement model. Results from the first to fourth columns correspond to ideal
arrangement (A,E), initial sound pressure (B,F), sensor data (C,G), and image reconstruction result (D,H), respectively. (Uniform light source): results from
the first to second rows correspond to three inclusions in matrix arrangement (A–D), and only blood in matrix arrangement (E–H), respectively.

FIGURE 10
Pure artifact for a multi-inclusion matrix arrangement model
(Figures 9D–H): Simulation layout conditions are marked at the top
right-hand corners of the images.
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3.2.2 Real experiment’s artifact-removal
Under real experimental conditions, the evaluation results

were contrary to those under uniform lighting conditions.
Surprisingly, even in a repetitive environment with a
multichannel arrangement, where NLM was expected to
perform well, its performance remained inferior to that of
ADF. This is summarized in Table 4.

We experimentally investigated the superiority of the ADF
method, as demonstrated by the evaluation data, in actual artifact
removal. ADF effectively preserves structure and reduces noise.
Note that the effect of nonuniform lighting on images can cause
greater variations in certain evaluation metrics. In both the
simulation and real experimental validation, switching to the
superior algorithm (NLM for simulation and ADF for practical)
led to notable improvements in the commonly used PSNR metric
(11.33% in the simulation and 18.1% in practice) and as the most
significantly changed metric, MSE decreased to 78.38% in the
simulation and 88.20% in practice. The experimental validation
showed better results than the simulations, owing to the uneven
lighting conditions also being eliminated by the filtering algorithms.

These metrics are sensitive to structural and brightness
differences caused by lighting changes. The correction images
(Figure 14) and corresponding subjective results are given below.

The subjective results indicate that while NLM produces a
smoother effect, it also tends to sacrifice more information. This
is evident in complex matrix arrangements with repetitive objects.
For instance, in Figure 14I, the blood tube at the bottom left remains
nearly invisible, demonstrating that under uneven light source
distribution (Figure 14), the evaluation metrics influenced by the
light source tend to favor algorithms such as ADF. ADF preserves
more objects, despite potentially containing more noise and/or
artifacts (Figure 14J).

However, the effectiveness of a filter is highly dependent on its
parameter settings. The differences in results may be due to the
parameter settings of the simulation, which may have been

FIGURE 11
Physical results: Results from (A–C) correspond to blood–air–water, air–blood–water, and air–water–blood, respectively. Simulation layout
conditions are marked at the top right-hand corners of the images.

FIGURE 12
Physical result matrix arrangement. The simulation layout is given
at the top right-hand corner of the image.

TABLE 3 Objective evaluation results in comparing two artifact-removal algorithms on a uniform light source simulation with a simple and matrix object
arrangement base.

Arrangement Algorithm PSNR (%) SSIM (%) MSE (%) NAE (%)

Uniform light source anisotropy simulation Simple object arrangement NLM correction lift ratio 11.33 1.05 −78.38 −53.63

ADF correction lift ratio 3.60 0.51 −38.56 −21.66

Matrix object arrangement NLM correction lift ratio 4.79 2.11 −44.33 −25.40

ADF correction lift ratio 4.58 2.04 −42.90 −24.48

Note: Bold black indicates that, according to the selected evaluation index, the algorithm is superior to the other algorithm under the same conditions.
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FIGURE 13
Original and corrected contrast images using two de-artifacting algorithms under uniform light source simulation: (A–E) are results from the first to
second rows belonging to the blood–air–water (S4) arrangement, and (F–J) are three different inclusions in the matrix (S5) arrangement. (A,F) are ideal
arrangements, (B,G) are ideal reconstruction results, (C,H) are reconstruction results, (D,I) are ADF correction results, (E,J) are NLM correction results.
Units: millimeters (1 mm).

TABLE 4 Objective comparative evaluation results for the two de-artifacting algorithms in real experiments with simple and matrix object arrangement
bases.

Arrangement Algorithm PSNR (%) SSIM (%) MSE (%) NAE (%)

Real experiment de-artifacts Simple object arrangement NLM correction lift ratio 15.12 6.14 −83.21 −59.03

ADF correction lift ratio 18.10 6.53 −88.20 −65.69

Matrix object arrangement NLM correction lift ratio 0.91 0.28 −11.02 −5.57

ADF correction lift ratio 3.18 0.86 −33.55 −18.56

Note: Bold black indicates that, according to the selected evaluation index, the algorithm is superior to the other algorithm under the same conditions.

FIGURE 14
Real experiment: Original and corrected contrast images using two de-artifacting algorithms: (A–E) results from the first to second rows belonging
to the blood–air–water (S4) arrangement, and (F–J) are three different inclusions in the matrix (S5) arrangement. (A,F) are ideal arrangements, (B,G) are
ideal reconstruction results, (C,H) are reconstruction results, (D,I) are ADF correction results (E,J) are NLM correction results. Units: millimeters (1 mm).
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suboptimal for the physical test data. To ensure that the changes in
the results of physical verification were not due to the filter
parameter design, and to further investigate the effect of uneven
light source distribution on artifact removal, we opted for a
representative Gaussian light source with a waist radius ranging
from 1 to 20 mm, incremented in 1 mm steps. This approach was to
simulate the effect of light source distribution on the artifact removal
algorithm in cavity structures PAI.

3.2.3 Artifact-removal: Gaussian light source with
different waist radii

To address the concerns regarding whether the observed
differences between simulation and physical experiments stem
from the sensitivity of the objective evaluation metrics to light
source variations or from the selection of filter parameters, we
visualized the effect of light source parameters on the objective
evaluation metrics for both algorithms. This analysis, shown in
Figures 15A, C, demonstrates that both algorithms produced
improvements in almost all metrics compared with the original
image, with each metric undergoing regular changes as the light
source varied. By normalizing these metrics, we observed a
correlation between the objective evaluation metrics and light
source parameter changes. Therefore, the differences between the
simulation and the physical experiments were not mainly due to
overly sensitive objective evaluation indicators or incorrect filter
parameter selection.

Furthermore, multiplicative noise primarily affects the
uniformity and consistency of PAI as it is directly
proportional to the signal intensity of the image itself. This
type of noise presents a particular challenge in PAI because
the intensity of the generated signal is directly influenced by
the uneven distribution of the light source and variations in its
absorption. To mitigate the effect of the light source on these
metrics, we focused on the evaluation metrics’ improvement rates
for comparing the improvements made by ADF and NLM, as
shown in the right-hand columns of Figures 15B, D:

First, in Figure 15, the trends of MSE and MAE are opposite to
those of most other metrics. Because these two are negatively
correlated with image quality, flipping their trend lines aligns
them with the graph of the change in the light source waist
radius-quality evaluation metric.

Second, Figures 15A, C show that higher metric values at lower
waist radii (3–6 mm) do not necessarily translate to satisfactory
improvements. However, under conditions of highly focused
(3–5 mm) waist radii in the horizontal arrangement and 6–8 mm
in the matrix arrangement or more uniform light sources
(12–20 mm) waist radii in the horizontal arrangement and
14–20 mm in the matrix arrangement, the improvement effects
are better.

Notably, frequent crossover points in the performance curves of
both algorithms at waist radii below 8 mm suggest unreliable data,
likely due to excessive focus on the light source, causing decreased
attention to the blood tubes (the actual objects of measurement) and
excessive attention to visible light paths (incorrectly evaluated
objects), rendering this data segment unreliable. However, at
waist radii above 10 mm, the improvement situations of both
metrics were more uniform and informative for selecting an
artifact-removal algorithm.

The ratio of ADF to NLM improvement rates against changes in
the light source was plotted, as shown in Figure 16.

According to Figure 16, the intersection points of the
improvement rate ratios between ADF and NLM occurred at
waist radii of approximately 17 and 12.6 mm. For images with a
horizontal arrangement (Figure 16A), when the waist radius is above
10 mm and below 17 mm (for matrix arrangement, below 12.6 mm),
all positive indicators of improvement are negative, and vice versa,
indicating that NLM outperforms ADF. Beyond 17 mm, the positive
indicators (PSNR and SSIM) are positive, and the negative
indicators (MSE and NAE) are negative, indicating that ADF
outperforms NLM. This aligns with the simulation and physical
verification results for uniform light sources, leading to the
conclusion that in our experiments, the distributions of Gaussian

FIGURE 15
Trends of variousmetrics with changes in the light source parameter: (A,C) trends of normalizedmetrics changing with the light source variations for
the horizontal andmatrix arrangements, respectively. (B,D) improvement-rate trends for the two algorithms with light source variations for the horizontal
(S4) and matrix arrangements (S5).
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light sources, particularly those with waist radii larger than 10 mm,
are a primary factor in choosing artifact-removal algorithms for PAI.
Analogous considerations apply to other types of light sources based
on the Gaussian sources’ distribution scenarios.

3.3 Challenges and future perspectives

In these simulation and validation experiments, the tubes were
completely cylindrical and arranged horizontally. This setup
primarily focused on horizontal layouts because they effectively
demonstrate the basic principles of photoacoustic signal generation
and artifact propagation and facilitate the control and analysis of
interactions among different media (blood, air, water). The shape
and angle distribution of actual cavity organs, such as the nasal
cavity or the ear canal, will cause different and more
challenging artifacts.

As for the Grüneisen parameter, it was not explicitly included in
our model, which primarily focuses on simulating photoacoustic
wave propagation using acoustic properties obtained through
physical experiments. This approach did not specifically consider
thermal expansion effects but assumed that the initial sound
pressure is proportional to light absorption and the Grüneisen
parameter. Consequently, the Grüneisen parameter was set to a
unit value of 1, implying that it was not explicitly included in our
model configuration. Grüneisen parameter along with additional
thermodynamic parameters could be used to further refine the
proposed model and enhance the accuracy and applicability of
the simulations. By integrating more thermodynamic parameters
and refining the physical model, aiming to optimize the
photoacoustic simulation framework and explore its potential in
biomedical imaging applications.

For image reconstruction, the DAS algorithm was our primary
tool to evaluate the effects of artifacts caused by water and air tubes
within photoacoustic imaging. Although the DAS algorithm is
widely used due to its simplicity and computational efficiency, it

lacks optimization for artifact removal to further enhance the quality
of image reconstruction and reduce artifacts, other image
reconstruction algorithms can be considered while exploring de-
artifacting techniques, such as model-driven iterative reconstruction
methods and back-projection algorithms. Model-driven iterative
reconstruction methods can effectively utilize prior knowledge to
optimize the reconstruction process, while back-projection
algorithms can improve computational efficiency, potentially
offering enhanced flexibility and precision for PAI.

Under conditions of uneven light source distribution, significant
shadows were observed when the light source was focused on the air
tubes. This currently unavoidable issue can be temporarily mitigated
by opting for a more divergent light source to reduce the effect of
focused illumination on air.

In practical applications, the optical absorption characteristics
and photoacoustic conversion efficiencies of biological tissues may
vary due to tissue heterogeneity. To simplify the complexity of the
problem and focus on the fundamental relationship between
optical absorption and initial sound pressure, this study
assumed a uniform medium. While using agarose phantoms has
been beneficial for understanding the basic principles and artifact
generation in PAI, this approach does not fully capture the
heterogeneity of cavity structure tissues, such as the gray and
white matter in the brain, and the varying densities of lymph
nodes, fluids, and vascular structures in the lungs. Future work will
be dedicated to further considering medium heterogeneity,
exploring its effect on the generation and propagation of
photoacoustic signals, and improving the model to simulate and
explain these effects more accurately.

In the complex arrangement conditions typical of PAI, methods
such as NLM can be advantageous. NLM is particularly effective for
enhancing similar tissue areas, such as continuous vascular
structures, while concurrently reducing noise. This characteristic
suggests potential benefits for NLM when PAI is applied to complex
scenarios, particularly once the problems posed by uneven light
source distribution are addressed.

FIGURE 16
Ratio of ADF to NLM improvement rates against changes in light source: (A) Horizontal arrangement (S4); (B) Matrix arrangement (S5).
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In current image processing research, ADF and NLM algorithms
possess unique advantages and limitations. ADF primarily focuses
on enhancing the prominent local gradients at edges within images,
whereas NLM is aimed at smoothing globally repetitive textures. In
practice, these strategies may conflict; for instance, edge
enhancement by ADF can interfere with the global smoothing by
NLM, resulting in inappropriate blurring near edges, thus negating
the advantages of each method.

Particularly, NLM performs poorly under uneven light
distribution but excels when the lighting is uniform, ADF is just
the opposite. To address this challenge, a potential solution involves
integrating a light source distribution detection feature. This feature
would assess the light distribution based on specific reference
thresholds and combine NLM and ADF appropriately. This
approach not only optimizes the application of algorithms to
ensure effective image processing under various lighting
conditions but also helps resolve the parameter-setting
contradictions between ADF and NLM.

Further, future research should develop new integration
strategies, potentially in the form of a framework that
dynamically selects between ADF and NLM at appropriate
processing stages. For example, ADF could be used for edge
protection during preprocessing, followed by global smoothing
with NLM in the post-processing stage, or a hybrid model could
be developed that dynamically selects between ADF and NLM under
specific conditions to optimize image quality. This would fully
leverage the strengths of both methods and avoid the issues that
arise when they are used independently.

This study investigated diffusion methods and filtering
algorithms. However, deep learning methods could be
investigated but could face a notable challenge: their dependence
on large training datasets. Deep learning models, especially CNNs,
require extensive data to effectively learn the necessary weights and
features. This issue can be addressed using computational models
such as k-Wave and synthetic phantoms or even deep reinforcement
learning, which allow for the creation of a feedback loop that refines
the dataset with high-quality, outcome-focused vast examples.
Nevertheless, generating a comprehensive dataset that includes all
potential image features likely to be encountered in real-world
scenarios remains a significant challenge and an area ripe for
further research.

4 Conclusion

4.1 Mechanism of artifact generation

Artifacts in acoustic imaging can primarily be attributed to
variations in sound velocity and differences in acoustic
impedance within a medium. Variations in sound velocity affect
the resolution of the reconstructed image, whereas mismatched
acoustic impedances cause signal reflections, forming artifacts. In
anisotropic image reconstructions, particularly around blood
vessels, semicircular arc-shaped artifacts caused by air ducts are
noticeable. By contrast, such semicircular arc-shaped artifacts are
absent in image reconstructions using isotropic acoustic models.
This may be due to the more uniform propagation of sound waves in
isotropic models, which reduce the strong reflections caused by

impedance mismatches, not having these semicircular arc-shaped
artifacts. This observation suggests the significant effect of acoustic
impedance mismatches on artifact formation, especially in complex
biological tissues. Minimizing this impedance mismatch is therefore
crucial for improving acoustic imaging quality.

4.2 Shapes of artifacts

Larger distances between the blood and air tubes cause the
artifacts surrounding the blood tube to have larger diameters.
Meanwhile, the presence of the water tube does not produce a
greater number of artifacts compared to the gas tube because blood
and water have similar acoustic properties, although the water tube
is more absorptive than gas tube. The use of a half-ring array of
ultrasound sensors further contributes to the semicircular shape of
these artifacts.

4.3 Interaction between the imaging of
blood vessels

In the simulation with a matrix arrangement, the imaging of the
vessel changes from a point in the original simple object
arrangement to an arc. This may be owing to the mutual
influence when imaging multiple vessels, as the semicircular arc
imaging of the vessel does not appear in the pure artifact image.
Otherwise expressed, the mutual influence during the imaging of
multiple vessels without the effect of air ducts can also change the
imaging of the vessel from a “point” to an arc.

4.4 Performance of filtering algorithm

Regarding the performance of filtering algorithms, NLM
outperforms ADF in simulations with a uniform light source.
Conversely, in physical verifications with non-uniform light sources,
NLM underperforms compared to ADF. The intersection points of the
ratio between the improvement rates of the evaluation metrics for ADF
and NLM mostly occur at waist radii of 17 and 13 mm (for both the
simple and matrix arrangements). While the metrics we selected are
sensitive to changes in the light source parameter, eachmetric exhibited
a consistent pattern of changes. In addition, when the waist radius of the
Gaussian light source exceeds 10 mm, the evaluation metrics for the
optimization rates of the algorithms tend to stabilize, providing clearer
guidance for choosing the appropriate artifact-removal algorithm. In
environments with uniform light fields, NLM leverages uniform
environmental areas for more effective filtering.

4.5 Future considerations for artifact
removal using objective evaluation metrics

To evaluate the differences between the two algorithms,
appropriate experimental assessment metrics must be selected.
Nevertheless, the discrepancies between objective evaluations and
subjective perceptions pose challenges. While the five chosen
objective image quality assessment indicators typically correlate
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with subjective evaluations for Gaussian radii above 10 mm, an
anomaly occurs for Gaussian light source waist radii below 10 mm,
characterized by peaks in parameters but valleys in improvement
rates, complicating the explanation. When grid searches for light
source-filter parameters are conducted in future image training
processing or enhancement algorithms, ensuring a sufficiently
large light-source waist radius is critical to avoid such anomalies
and ensure accurate and effective artifact removal.
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