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Treating brain diseases presents significant challenges due to neuronal
degeneration, inflammation, and the intricate nature of the brain. Stimuli-
responsive hydrogels, designed to closely resemble the brain’s extracellular
matrix, have emerged as promising candidates for controlled drug delivery
and tissue engineering. These hydrogels have the unique ability to
encapsulate therapeutic agents and release them in a controlled manner
when triggered by environmental stimuli. This property makes them
particularly suitable for delivering drugs precisely to targeted areas of the
brain, while minimizing collateral damage to healthy tissue. Their preclinical
success in treating various brain diseases in animal studies underscores their
translational potential for human brain disease treatment. However, a deeper
understanding of their long-term behavior, biodistribution, and biocompatibility
within the brain remains crucial. Furthermore, exploring novel hydrogel systems
and therapeutic combinations is paramount for advancing towards more
effective treatments. This review summarizes the latest advancements in this
field over the past 5 years, specifically highlighting preclinical progress with novel
stimuli-responsive hydrogels for treating brain diseases.
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1 Introduction

Brain diseases are one of the primary neurological disorders with high incidence,
including traumatic brain injury (TBI), Alzheimer’s disease, Parkinson’s disease, dementia,
epilepsy, schizophrenia, stroke, depression, and glioblastoma (GBM) (Feigin et al., 2020).
While their etiologies vary, they primarily involve progressive neuronal degeneration and
inflammation. In most cases, the treatments to brain disease are limited to symptom
reduction and palliative care. Curative therapies that can reverse the illness are lacking.
Main challenges for brain disease treatment lie in the lack of structural support allowing
repopulation of brain tissue from cell loss and the barriers for efficient drug delivery and
release caused by blood-brain barriers (BBB) or other biological environment in brain
tissues (Terstappen et al., 2021).

Stimuli-responsive hydrogels, characterized by their three-dimensional cross-linked
polymer structure, possess unique properties that render them suitable for addressing
various challenges in brain disease treatment. These hydrogels dynamically adapt their
characteristics, including mechanical properties, swelling capacity, hydrophilicity, and
permeability to bioactive molecules, in response to environmental stimuli such as
temperature, pH, and biological agents (Mantha et al., 2019). Their water-absorbing
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and swelling characteristics mimic the natural extracellular matrix
(ECM), fostering an optimal environment for cellular growth and
tissue engineering (Ma and Huang, 2020). Furthermore, they excel
in encapsulating a range of therapeutic agents, including
neuroprotective agents, chemotherapeutic drugs and even cells,
and releasing them in a controlled manner, positioning them as
exceptional candidates for drug delivery systems (Ghosh et al.,
2024). Stimuli-responsive hydrogels have demonstrated
encouraging potential in treating brain diseases over the past few
decades (Peressotti et al., 2021; Grimaudo et al., 2022). However,
further understanding of cell-biomaterial interaction and
developing safer, more effective hydrogel systems are crucial for
their translation into human therapy.

This review covers the last 5 years of fundamental research on
stimuli-responsive hydrogels, discussing their characteristics,
design, and preclinical applications in drug delivery and tissue
engineering for brain disease treatment. It also highlights
challenges and opportunities for future research in this field.

2 Characteristics of stimuli-
responsive hydrogels

2.1 General characteristics of hydrogels

Based on polymer source, hydrogels are classified as natural,
synthetic, or semi-synthetic. Natural hydrogels have
biocompatibility and biodegradability but limited stability and
mechanical strength (Alawami and Tannous, 2021; Janas-Naze
and Zhang, 2022). Synthetic hydrogels provide mechanical
strength but lack biological activity (Zhang and Huang, 2020).
Semi-synthetic hydrogels combine the best of both, improving
bioactivity and tunable properties (Dienes et al., 2021).

Hydrogel fabrication involves polymerization and crosslinking
to create networks with varying mechanical and swelling properties
(Grimaudo et al., 2022; Mashabela et al., 2022). Hydrogels can be
administered intravenously, intracerebrally, intratumorally, or
intranasally to treat brain diseases (Mashabela et al., 2022).
Intravenous injection faces BBB penetration challenges, while
intracerebral/intratumoral delivery demands hydrogels with high
biocompatibility and safety. Intranasal administration offers direct
access to the brain, bypassing the BBB, but is limited by nasal cavity
size, mucociliary clearance, enzymatic degradation, and potential
drug-induced irritation/neurotoxicity (Cassano et al., 2021).

2.2 Classification of stimuli-responsive
of hydrogels

Stimuli-responsive hydrogels are categorized as physical,
chemical, or biological-responsive, depending on their triggering
factors. Here we summarize the characteristics of various stimuli-
responsive hydrogels suitable for brain disease treatment.

2.2.1 Physical-responsive hydrogels
Physical-responsive hydrogels can be classified into thermo-,

photo-, electro-, magnetic-, ultrasound-responsive types, each
sensitive to temperature, light, electrical stimulation, magnetism

and ultrasound respectively. Among these, thermo-, photo-, and
electro-responsive hydrogels are the most widely used due to their
practicality and effectiveness.

Thermo-responsive hydrogels shrink or expand with
temperature changes, featuring hydrophobic (such as methyl,
ethyl, and propyl) and hydrophilic groups (like amide and
carboxyl) (Tang et al., 2021). Poloxamers (e.g., P407 and P188),
also called Pluronics®, are commonly used for intranasal drug
delivery due to their mucoadhesive and sol-gel transition
properties (Ahmed et al., 2019; Abdeltawab et al., 2020).
Hydrogels made from these poloxamers effectively deliver drugs
like tetrandrine and rotigotine to the brain, but they lack mechanical
strength and viscosity in physiological conditions (Wang et al., 2020;
Zhang et al., 2020). To overcome this, they are often combined with
other polymers like Carbopol, chitosan, and cellulose derivatives
(Luo et al., 2023). Other agents, such as gellan and xanthan gums, are
also used for brain drug delivery but may be costly (Rajput
et al., 2018).

Photo-responsive hydrogels have photoreceptive moieties that
can capture and convert light signal to chemical signals via
photoreactions like isomerization, cleavage, and dimerization,
thereby changing hydrogel’s physical and chemical properties (Li
et al., 2019). However, the primary use of ultraviolet-reactive groups
in these systems restricts their biomedical applications.

Electro-responsive hydrogels, containing conducting materials,
reversibly absorb and expel water upon electrical stimulation. Their
hydration, flexibility, biocompatibility, and electrochemical
properties make them suitable for brain implantation, enhancing
neural signal transmission and ion transport (Khan et al., 2022).
Integrating electroconductive materials into hydrogels reduces
inflammation and material loss risks after brain implantation
(Guo and Ma, 2018).

Magnetic-responsive hydrogels use magnetic particles,
including γ-Fe2O3, Fe3O4 and CoFe2O4, to deliver drugs to
specific sites in response to magnetic field (Zhang et al., 2023a).
Currently, these hydrogels are limited to in vitro use due to toxicity
and reproducibility concerns.

Ultrasound-responsive hydrogels, with imaging-compatible
polymers or contrast agents, enhance ultrasound diagnostic
accuracy. These hydrogels respond to ultrasound through three
mechanisms: crosslinking disruption, hyperthermia, and acoustic
streaming (Zhou et al., 2022). However, their use is currently limited
to in vitro neural tissue engineering for structural guidance (Cheng
et al., 2020).

Ion strength-responsive hydrogels alter in response to solution
ion changes, resulting in protonation or deprotonation. Controlling
ionic strength can regulate hydrogel reversibility for drug release.
Deacylated gellan gum has been effectively utilized in the
preparation process of this hydrogel (Chen et al., 2020).

2.2.2 Chemical-responsive hydrogels
Chemical-responsive hydrogels are classified into pH-, ROS-,

hypoxia-responsive types, each sensitive to pH, reactive oxygen
species (ROS), and hypoxia respectively.

pH-responsive hydrogels are composed of polymers with
hydrophobic moieties that can swell in water depending on
pH (Tulain et al., 2018). Recently, hydrogels based on Schiff base
chemistry have received attention due to their quick formation via
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TABLE 1 Summary of preclinical in vivo study evaluating the therapeutic efficacy of stimuli-responsive hydrogels in brain disease treatment.

Class of
hydrogels

Main composition/
biomaterial

Crosslinker Stimuli/
encapsulates

Disease In vivo
models

Route of
administration

Outcome References

Thermo-
responsive

Poloxamer P407/P188, PEG 8000 — Temperature/genipin, HP-
β-CD

Depression Male ICR mice,
male SD rats

Intranasally Elevated levels of 5-HT and
norepinephrine within the
hippocampus and striatum;
enhanced antidepressant-like
effects

Qi et al. (2021)

Thermo-
responsive

Alginate, poloxamer P407/P188 Sodium chloride Temperature/Icariin Depression Male ICR mice,
male SD rats

Intranasally Fast-acting antidepressant
effect; effective repair of
neuronal damage in the
hippocampus

Xu et al. (2020)

Thermo-
responsive

Carboxymethyl chitosan — Temperature/PAOPA-loaded
oxidized starch NPs

Schizophrenia Male SD rats Intranasally Alleviation of negative
symptoms like behavioral
abnormalities associated with
schizophrenia

Majcher et al. (2021)

Thermo-
responsive

Poloxamers P407/P188 — Temperature/Tetrandrine
and HP-β-CD

Microwave-
induced brain
injury

Male Wistar
rats

Intranasally Improved spatial memory and
spontaneous exploratory
behavior

Zhang et al. (2020)

Thermo-
responsive

Pluronic F127, PLGA–PEG-PLGA — Temperature/Salinomycin Glioblastoma Female BALB/c
nude mice

Intratumorally Superior drug release profile;
reduced tumor growth

Norouzi et al. (2021)

Thermo-
responsive

CS-HEC-HA, GP — Temperature/hUC-MSCs Traumatic brain
injury

Male SD rats Intracerebrally Enhanced survival and
retention of MSCs; increased
neuron survival; improved
learning and memory abilities

Yao et al. (2019)

Thermo-
responsive

Chitosan, poloxamer P408 — Temperature/Curcumin-
loaded mesoporous silica NPs

Alzheimer’s
disease

Female Swiss
albino mice

Intranasally High permeation across nasal
mucosa; reverting the
cognitive deficit

Ribeiro et al. (2022)

Thermo-
responsive

Pluronic F127, SCMC — Temperature/
Oxcarbazepine-loaded
chitosan NPs

Epilepsy Male SD rats Intranasally Increased anti-inflammation;
decreased seizure score and
prolonged survival

Abou-Taleb and
El-Ganainy, (2023)

Enzyme-
responsive

Para-sulfobenzoic acid — MMP-9/peptide SFNV Traumatic brain
injury

Female C57BL/
6J mice

Intracerebrally Providing ECM like
environment with sulfate
functionalities; supporting the
survival of neurons

Adak et al. (2020)

Enzyme-
responsive

Hyaluronic acid, chitosan, heparin
sulfate

Adipic acid dihydrazide MMP/SDF-1α- and bFGF-
loaded polyelectrolyte
complex NPs

Ischemic stroke Male SD rats Intracerebrally Enhanced neurogenesis and
angiogenesis; facilitated
recovery of neurological
behavior

Jian et al. (2018)

(Continued on following page)
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TABLE 1 (Continued) Summary of preclinical in vivo study evaluating the therapeutic efficacy of stimuli-responsive hydrogels in brain disease treatment.

Class of
hydrogels

Main composition/
biomaterial

Crosslinker Stimuli/
encapsulates

Disease In vivo
models

Route of
administration

Outcome References

Enzyme-
responsive

Triglycerol monostearate — MMP/TMZ, O6-benzylamine Glioma Male BALB/c
nude mice

Intratumorally Enhanced effectiveness of
TMZ in suppressing glioma
growth; decreased recurrence
rate of TMZ-resistant glioma
following surgical intervention

Zhao et al. (2020)

Enzyme-
responsive

PEG-b-PTyr-b-PAsp — Proteinase K/volasertib,
ANG-CPP

Glioblastoma Female BALB/c
nude mice

Intravenously Reduced toxicity; prolonged
circulation time; better anti-
tumor activity

Fan et al. (2021)

Enzyme-
responsive

PEG-bis-AA UV light Hyaluronidase and esterase/
HA-DXM

Traumatic brain
injury

Male SD rats Intracerebrally Sustained release of
dexamethasone; higher
neuronal cell survival;
improved motor functional
recovery

Jeong et al. (2021)

Photo-
responsive

GelMA-imid Blue light Blue light/PDA@SDF-1α
NPs, hASMCs

Traumatic brain
injury

Male SD rats Intracerebrally Promoting the migration of
hAMSCs to injury site;
promoting the differentiation
of hAMSCs into nerve cells

Zheng et al. (2021)

Electro-
responsive

Chitosan, aniline pentamer,
carboxylated Pluronic F127

Pluronic Electricity/VEGF Hippocampus
ischemia

Adult male
Wistar rats

Intracerebrally Decreased infarction volume;
improved hippocampal
dependent learning and
memory performance

Nourbakhsh et al.
(2020)

ROS-responsive HA-PBA; PVA — ROS/Desferoxamine
mesylate

Traumatic brain
injury

Male SD rats Intracerebrally Reducing iron overload;
diminishing ROS level;
promoting neuronal recovery
after trauma

Qiu et al. (2024)

Hypoxia-
responsive

Poly(phosphorylcholine) Azobenzene Hypoxia/doxorubicin
hydrochloride

Glioblastoma Nude female
BALB/c mice

Intravenously Prolonged blood circulation
and favorable immune
compatibility; effective
penetration through the BBB;
favorable tumor inhibition
effect

Peng et al. (2021)

Dual-responsive GelMA, PPS60 Blue Light ROS, MMP/procyanidins Traumatic brain
injury

Male ICR mice Intracerebrally Inhibiting the oxidative stress
response by depleting ROS

Huang et al. (2022)

Dual-responsive HA-PBA, PVA — Glucose, ROS/NSC-EVs Stroke Type 2 diabetes
mellitus mice

Intracerebrally Excellent angiogenic effect;
improved neurobehavioral
recovery

Jiang et al. (2022)

Dual-responsive Deacetylated gellan gum, poloxamer
P407, sodium alginate

– Temperature, ion/
timosaponin BII, HP-β-CD,
chlorobutanol

Alzheimer’s
disease

C57BL/6J mice Intranasally Decreased levels of
proinflammatory mediators;
enhanced memory and
language functions; reduced
cognitive decline

Chen et al. (2020)

(Continued on following page)
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TABLE 1 (Continued) Summary of preclinical in vivo study evaluating the therapeutic efficacy of stimuli-responsive hydrogels in brain disease treatment.

Class of
hydrogels

Main composition/
biomaterial

Crosslinker Stimuli/
encapsulates

Disease In vivo
models

Route of
administration

Outcome References

Triple-
responsive

Poloxamer P188/P407 — Temperature, pH, ROS/Olz/
RDPA NPs

Depression Male Wistar
rats

Intranasally Efficient delivery of NPs to the
brain; combined ROS
depletion and inhibition of 5-
HT dysfunction; alleviation of
depression-like behaviors

Liu et al. (2023)

Dual-responsive Poly (propylene sulfide)120 Triglycerol
monostearate

ROS, MMP/curcumin Traumatic brain
injury

Male ICR mice Intracerebrally ROS depletion; reduced
inflammation and brain
edema; improved neural
regeneration and behavior
recovery

Qian et al. (2021)

Dual-responsive Gelatin, carboxylic acid-terminated
oligosulfamethazine

— Temperature, pH/paclitaxel Glioblastoma BALB/c mice Intratumorally Sustained release of paclitaxel;
inhibition of tumor growth

Kang et al. (2021)

Dual-responsive Chitosan-g-
poly(N-isopropylacrylamide)

Aldehyde-terminated
difunctional
polyurethane

Temperature, pH/
SLP2 shRNA, (GO-CET)/
CPT11

Glioblastoma Female BALB/c
nude mice

Intratumorally 60% tumor size reduction Lu et al. (2020)

5-HT: 5-hydroxytryptamine; ANG-CPP: angiopep-2-docked chimeric polypeptide polymersome; BBB: blood-brain barrier; bFGF: basic fibroblast growth factor; CS-HEC-HA: chitosan, hydroxyethyl cellulose and hyaluronic acid; ECM: extracellular matrix; GelMA:

gelatin methacrylate; GelMA-imid: imidazole groups-modified gelatin methacrylate; (GO-CET)/CPT11: cetuximab-conjugated graphene oxide; GP: β-glycerophosphate; HA-PBA: phenylboronic acid grafted hyaluronic acid; hAMSCs: human amniotic mesenchymal

stromal cells; HP-β-CD: hydroxypropyl-β-cyclodextrin; HA-DXM: dexamethasone-conjugated hyaluronic acid; hUC-MSCs: human umbilical cord mesenchymal stem cells; MMP: matrix metalloproteinase; NPs: nanoparticles; NSC-EVs: neural stem cell-derived

extracellular vesicles; Olz/RDPA: olanzapine/hexa-arginine-conjugated dextran coupled phenylboronic acid pinacol ester; PDA: polydopamine; PEG: polyethylene glycol; PEG-b-PTyr-b-PAsp: poly(ethylene glycol)-b-poly(L-tyrosine)-b-poly(Laspartic acid); PEG-bis-

AA: poly (ethylene) glycol-bis-(acryloyloxy acetate); PLGA–PEG-PLGA: poly (dl-lactide-co-glycolide-b–ethylene glycol-b-dl-lactide-co-glycolide); PPS60: poly(propylene sulfide)60; PVA: polyvinyl alcohol; SCMC: sodium carboxymethyl cellulose; ROS: reactive

oxygen species; SD: Sprague-Dawley; SDF-1α: stromal-cell-derived factor-1α; shRNA: short hairpin RNA; SLP2: stomatin-like protein 2; TMZ: temozolomide; UV: ultraviolet; VEGF: vascular endothelial growth factor.
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aldehyde-amine bonds and reversible pH-responsive properties
(Zhang et al., 2023b).

ROS-responsive hydrogels interact with ROS using oxygen-
sensitive groups, which alter the hydrogel network (Gao and
Xiong, 2021). Boronic acid crosslinking is used to create various
ROS-responsive hydrogels from polymers like sodium alginate,
hyaluronic acid, cellulose, chitosan, gelatin, etc.

Hypoxia-responsive hydrogels can be synthesized through
incorporation of hypoxia-sensitive moieties. These moieties,
including 2-nitro imidazole, azobenzene derivatives, and nitro
benzyl derivatives, enable the hydrogels to specifically release
drugs within hypoxic environment (Peng et al., 2021).

2.2.3 Biological-responsive hydrogels
Biological-responsive hydrogels are classified into enzyme- and

glucose-responsive types, each sensitive to enzymes or glucose.
Enzyme-responsive hydrogels incorporate biomolecules that

can be cleaved by specific enzymes such as matrix
metalloproteinases (MMPs), proteinase K, hyaluronidase and
esterase, resulting in altered swelling properties of the gel
(Sobczak, 2022). Hyaluronic acid hydrogels can be degraded by
hyaluronidase and esterase, while in some cases, by adding MMP-
cleavable (PLGL, GCDSGGRMSMPVSDGG) or inactive peptides
(GCRDFGAIGQDGDRGG), hydrogels can be made responsive to
MMPs (Jian et al., 2018; Adak et al., 2020).

Glucose-responsive hydrogels change their sol-gel behavior
based on glucose levels, of which common types include
concanavalin A, glucose oxidase, and phenylboronic acid (PBA)
hydrogels (Morariu, 2023).

2.2.4 Multiple-stimuli-responsive hydrogels
To broaden the capabilities and uses of hydrogels, there’s been a

surge of interest in creating dual or evenmultiple-stimuli-responsive
hydrogels. A straightforward method for creating these hydrogels is
by incorporating multiple stimuli-responsive materials into existing
composite hydrogel systems. Dual ROS/enzyme-, ROS/glucose-,
pH/thermo-, ion strength/thermo-, and even triple ROS/pH/
thermo-responsive hydrogels have been utilized in brain disease
treatment (Table 1).

3 Design principle of stimuli-responsive
hydrogels for brain disease treatment

Given the intricate composition of brain tissue, the restoration of
functional connectivity between axons, neural circuits, and non-
neuronal cells poses a significant challenge for stimuli-responsive
hydrogels in treating brain diseases (Halim et al., 2021). These
hydrogels must exhibit excellent biocompatibility and
biodegradability to minimize immune activation during treatment
(Lee et al., 2021; Zamproni et al., 2021). Additionally, the mechanical
properties of the hydrogels must closely mimic the softness of brain
tissue, typically ranging from 0.1 to 0.3 kPa, to favor neural growth,
migration, and neurite extension (Xia et al., 2017; Yang et al., 2017).
Substrate topography also plays a pivotal role, providing nano- or
micro-structured environments that can guide cell growth and
regulate neural cell differentiation (Seo et al., 2018; Wang et al.,
2019). Moreover, porosity is a critical factor that influences nutrient

diffusion, waste removal, and cell seeding, penetration, and growth
within the hydrogel matrix (Bružauskaitė et al., 2016; Shi et al.,
2022). Typically, pore sizes in the range of 95–150 µm are considered
optimal for neural tissue culture (Shi et al., 2022). To support cell
attachment and enhance cellular interactions, immobilization of
substances such as poly-L-lysin, fibronectin, gelatin, laminin,
collagen, and peptides (RGD, IKVAV, GRGDS, mi-GDPGYIGSR,
and mi-GQASSIKVA) is often required (Balion et al., 2020; Long
et al., 2020; El-Husseiny et al., 2022). Last, conductive materials
show promise in electrical stimulation treatment and recording, but
their safety and biocompatibility must be rigorously examined due
to concerns regarding cytotoxicity and chronic inflammation (Khan
et al., 2022).

Therapeutic agents, including small compounds, peptides,
proteins, nucleic acids, cells, and extracellular vesicles, are the key
component of stimuli-responsive hydrogels, playing a pivotal role in
brain disease treatment by reducing ROS damage and inflammation,
promoting neural regeneration, and inducing tumor cell death
(Ghosh et al., 2024). To achieve precise and controlled targeted
delivery of therapeutic agents, these hydrogels capitalize on the
patient’s physiological and pathological environments. Thermo-,
ion strength-, and pH-responsive hydrogels exploit temperature
variations, ion particles, and pH levels in nasal cavities or brain
tissues to form in situ gels. Elevated ROS levels and enzyme
expression in diseased brain tissues enable ROS- or enzyme-
responsive hydrogels to release therapeutic agents with precision.
In diabetics, high glucose triggers glucose-responsive hydrogels to
release therapeutic agents. These hydrogels revolutionize brain
disease treatment, providing controlled and targeted drug delivery.

Recently, hydrogels with self-assembly, self-healing,
nanocomposite hybrid, and nano-size properties show promise
for brain disease treatment (Jooken et al., 2023). Peptide-based
self-assembling hydrogels exhibit high water content, tunable
properties, and injectability, of which self-assembly process is
governed by precise hydrophobic/hydrophilic interactions and
hydrogen bond formation (Oliveira et al., 2022). Self-healing
hydrogels overcome strength limitations, with reversible polymer
chains enabling spontaneous repair and enhanced durability, in
which chitosan and alginate are commonly used in their production
(Zhu et al., 2023). Nanocomposite hydrogels hold superior physical,
electrical, and biological properties, particularly for neural
regeneration (Wang et al., 2022). Nano-sized hydrogels, or
nanogels, are 20–200 nm in size, offering superior targeting and
tissue access (Hajebi et al., 2019; Peng et al., 2021).

4 Preclinical progress in utilizing
stimuli-responsive hydrogels for brain
disease treatment

Brain diseases typically exhibit pathological features such as
neural loss or death, vascular dysfunction, inflammation, oxidative
stress, and increased expression of MMPs in affected tissues (El-
Husseiny et al., 2022; Ghosh et al., 2024). These environmental cues
can be exploited by hydrogels that respond to various stimuli,
enabling targeted therapeutic delivery. Additionally, therapeutic
agents like neuroprotective drugs, peptides, antioxidants, and
growth factors can be released by hydrogels to alleviate these

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Xie and Xie 10.3389/fbioe.2024.1450267

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1450267


pathological conditions. Exceptionally, hypoxia within GBM tissues
can be targeted by hypoxia-responsive hydrogels loaded with
antitumor drugs, ranging from small compounds to nucleic acids.
Notably, nanocomposite hybrid hydrogels and nanogels
demonstrate remarkable performance in drug delivery, effectively
traversing BBB. Recent preclinical in vivo studies evaluating the
therapeutic efficacy of stimuli-responsive hydrogels in brain disease
treatment are listed in Table 1.

4.1 Bain injury

4.1.1 Traumatic brain injury
Encapsulatingmesenchymal stromal cells (MSCs) or growth factors

into hydrogels can enhance anti-inflammatory effects and promote
neural regeneration. Yao et al. developed an injectable thermo-
responsive hydrogel using chitosan, hydroxyethyl cellulose,
hyaluronic acid, and beta-glycerophosphate (Yao et al., 2019). This
hydrogel mimics brain tissue’s rheological behavior, liquefying at <25°C
and solidifying at body temperature. When loaded with human
umbilical cord-derived MSCs (hUC-MSCs) and injected into TBI rat
brains, it enhanced MSC survival and retention, resulting in elevated
brain-derived neurotrophic factor, neuron survival, and improved
learning and memory, outperforming that of MSC-alone treatment.
Separately, Zheng et al. created a blue light crosslinked hydrogel with
imidazole-modified gelatin methacrylate and polydopamine/stromal-
cell derived factor-1 (PDA@SDF-1α) nanoparticles loaded with human
amnioticMSCs (hAMSCs). This hydrogel promoted hAMSCmigration
to injury sites and neuronal differentiation, repairing cryogenic brain
injury in rats (Zheng et al., 2021).

Utilizing enzymes in the injured brain tissues, Adak et al.
designed MMP9-responsive peptide-based hydrogels (SFNV) for
TBI treatment. These hydrogels released neuroprotective peptides
(NAVSIQ) by MMP9-mediated cleavage of PLGL tetrapeptide
linker, and promoted neurogenesis in hippocampal regions of
cryogenic injury mice (Adak et al., 2020). In another case, Jeong
et al. conjugated dexamethasone with hyaluronic acid in a poly
(ethylene) glycol-bis-(acryloyloxy acetate) hydrogel (PEG-bis-AA),
This formulation sustained dexamethasone release, reducing
inflammatory cytokines and enhancing motor recovery in TBI
rats 7 days post-injury (Jeong et al., 2021).

Iron overload worsens neurodegeneration by promoting ROS
production (Tang et al., 2020). Qiu et al. incorporated
desferoxamine mesylate, an iron chelator, into a boron ester-
bonded hydrogel composed of 3-aminophenylboronic acid-
grafted hyaluronic acid and polyvinyl alcohol (PVA). This
hydrogel self-healed and responded to ROS due to the boron
ester bond, alleviating iron overload and oxidative stress in
brain-injured rats, improving motor, learning, and memory
functions (Qiu et al., 2024). For better drug delivery and release,
Qian et al. created an injectable dual ROS/enzyme-responsive
hydrogel composed of poly (propylene sulfide)120 (PPS120) and
curcumin within a triglycerol monostearate (TM) hydrogel.
Injection into TBI mice brains caused MMPs to cleave the TM
coat, PPS120 to react with ROS, and curcumin to scavenge ROS.
This reduced reactive glia cells, inflammation, brain edema, and
improved BBB integrity, enhancing nerve regeneration and
behavioral recovery in TBI mice (Qian et al., 2021).

4.1.2 Stroke
Antioxidants and growth factors are embedded in hydrogels to

promote neurogenesis and angiogenesis. In a case, a chitosan
micellar hydrogel encapsulated hydrophilic minocycline and
hydrophobic edaravone drugs for stroke treatment. Injection in
rats promptly released the hydrophilic drug and sustains release of
the hydrophobic drug, leading to significant behavioral recovery
(~84%) due to sequential anti-inflammatory and neurogenesis
effects (Lin et al., 2023). Another study reported the functional
repair of the hippocampus post-ischemia using a pluronic-chitosan/
aniline-pentamer hydrogel loaded with vascular endothelial growth
factor (VEGF). This hydrogel mimics brain tissue conductivity
(10–4 S/cm), enabling sustained VEGF release upon intracerebral
administration. This approach significantly reduced infarct size
by >70% and improved hippocampal-dependent learning and
memory, outperforming VEGF delivery alone (Nourbakhsh et al.,
2020). A third study used polyelectrolyte complex nanoparticles
loaded with SDF-1α and basic fibroblast growth factor, modified
with MMP-cleavable peptides, and combined with hyaluronic acid
to form enzyme-responsive hydrogels. These hydrogels exhibited
superior neurological recovery compared to free growth factors or
bare hydrogels in an ischemic stroke model through intracerebral
administration, enhancing neurogenesis and angiogenesis (Jian
et al., 2018).

ROS and high blood glucose hamper stroke recovery. Jiang et al.
designed a dual glucose/ROS-responsive hydrogel loaded with
neural stem cell-derived extracellular vesicles (NSC-EVs) for
diabetic stroke treatment (Jiang et al., 2022). The hydrogel, made
from crosslinking PBA-modified hyaluronic acid with PVA,
prolonged EV retention and activity in the brain. NSC-EVs
released miRNAs vital for angiogenesis, reducing brain atrophy
and enhancing neurobehavioral recovery in diabetic stroke mice.

4.2 Neurodegenerative diseases

The use of intranasal administration has demonstrated
significantly improved drug delivery for the treatment of
Alzheimer’s disease. For instance, Curcumin-loaded mesoporous
silica nanoparticles in chitosan and P407 hydrogel improved
permeation of drugs and cognitive function in an Alzheimer’s
mouse model (Ribeiro et al., 2022). In another study, Chen et al.
developed dual pH/thermo-responsive hydrogels with
neuroprotective timosaponin BII for Alzheimer’s disease (Chen
et al., 2020). This hydrogel integrated ion-sensitive deacetylated
gellan gum, thermo-sensitive Poloxamer 407, and sodium alginate,
harnessing rapid sol-gel transition triggered by heat and Ca2+ in the
nasal cavity. Studies on mice showed improved memory, language,
reduced cognitive decline and neuroinflammation.

In recent 5 years, there has been a lack of preclinical animal
studies for the treatment of Parkinson’s disease.

4.3 Psychiatric disorders

4.3.1 Major depressive disorder
Intranasal administration of thermo-responsive gels can

effectively deliver drugs to brain tissue. An antidepressant drug,
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genipin, was combined with hydroxypropyl-β-cyclodextrin (HP-β-
CD) and mixed with P407/P188/PEG8000 to create a thermo-
responsive hydrogel for intranasal delivery. This hydrogel
effectively and sustainably released genipin in mouse brains,
improving antidepressant effects (Qi et al., 2021). In another
case, icariin was encapsulated in alginate nanogels and integrated
into a P407/P188 hydrogel for sustained release after intranasal
administration, leading to rapid antidepressant effects in mice and
rat models (Xu et al., 2020). Depression is linked to oxidative stress,
making antioxidant therapy promising (Bhatt et al., 2020). Recently,
a combination of nanoparticles and hydrogels demonstrated
impressive drug delivery capabilities (Liu et al., 2023). In this
system, amphiphilic polymers (DEX-g-PBAP) made of
phenylboronic acid pinacol ester (PBAP) and dextran (DEX)
with ROS-sensitive borate ester bonds were used to load
antidepressant olanzapine (Olz) to form nanoparticles (Olz/DP
NPs). Olz/DP NPs were then modified with amino borane to get
Olz/DPA NPs, and further conjugated with hexa-arginine (R6) to
create Olz/RDPA NPs. Olz/RDPA NPs were then encapsulated in a
poloxamer (P407/P188) hydrogel. Upon intranasal administration
in a rat model, the NPs were released from the hydrogel and
transported to the brain via the nasal-brain pathway effectively.
High ROS levels in the brain triggered NP breakdown, releasing Olz.
Simultaneously, H2 released from amino borane scavenged •OH,
reversing oxidative stress in the brain and alleviating depressive-
like behaviors.

4.3.2 Schizophrenia
PAOPA, a D2 allosteric modulator, significantly reduced

schizophrenia-like symptoms in rats using hydrogels composed
of oxidized starch nanoparticles and carboxymethyl chitosan. Its
potency and bioavailability are emphasized by achieving relief with
half the intraperitoneal dosage through intranasal delivery (Majcher
et al., 2021).

4.3.3 Epilepsy
Chitosan nanoparticles were employed to enhance the delivery

of the antiepileptic drug Oxcarbazepine in Pluronic F127 (also
known as poloxamer P407) and sodium carboxymethyl cellulose
hydrogel (Abou-Taleb and El-Ganainy, 2023). This formulation
exhibited improved antiepileptic activity and anti-inflammatory
effects upon intranasal administration.

4.4 Brain tumors

Direct intratumoral injection of stimuli-responsive hydrogels
that leverage tumor microenvironment factors, such as low pH and
high enzyme expression, is an efficient strategy to overcome the BBB
impediment for drug delivery. Recently, injectable thermo-
responsive hydrogels encapsulating salinomycin using copolymers
Pluronic F127 and poly (dl-lactide-co-glycolide-b–ethylene glycol-
b-dl-lactide-co-glycolide) (PLGA–PEG-PLGA) improved drug
release and cytotoxicity, significantly reducing GBM tumor
growth, surpassing the effect of free salinomycin alone (4-fold)
(Norouzi et al., 2021). In another case, a dual pH/thermo-
responsive hydrogel, made from carboxylic acid-terminated
oligosulfamethazine and gelatin, transforms rapidly sol-to-gel in

response to body temperature and low pH. This hydrogel can
sustainably release paclitaxel intratumorally thanks to gelatin’s
MMP-cleavage site for antitumor effects in GBM mice (Kang
et al., 2021). In a third study, TM-based MMP9-responsive
hydrogels loaded with Temozolomide and O6-benzylamine
prevented recurrence in post-operative glioma models (Zhao
et al., 2020). Encapsulation of therapeutic nucleic acids is also a
promising method for treating GBM. Recently, an injectable drug/
gene delivery system using a thermosensitive chitosan-based
polymer solution to entrap stomatin-like protein 2 (SLP2)
shRNA and irinotecan (CPT-11)-loaded cetuximab (CET)-
conjugated graphene oxide (GO-CET/CPT11) has been created
(CPN@GO-CET/CPT11@shRNA). This formed a hydrogel depot
for localized, sustained delivery of therapeutics. Efficient
transfection of U87 cancer cells with SLP2 shRNA was achieved
using this hydrogel, demonstrated in vivo using tumor-bearing mice.
This hydrogel offers extended drug release and shRNA delivery
advantages, broadening GBM treatment modalities (Lu et al., 2020).

Nanocomposite hybrids and nanosized gels, as emerging
nanotechnologies, have demonstrated significant potential in
enhancing intravenous drug delivery for the treatment of GBM.
Plk1 upregulation in GBM can be suppressed by Plk1 inhibitor
Volasertib. Loaded into angiopep-2-decorated chimeric polypeptide
polymersome, Volasertib forms a nanogel with a size of
approximately 76 nm from poly(ethylene glycol)-b-
poly(L-tyrosine)-b-poly(Laspartic acid). This nanogel traversed
BBB and GBM membranes via lipoprotein receptor-related
protein 1 (LRP-1)-mediated transcytosis and endocytosis
respectively, rapid releasing of Volasertib by proteinase K,
suppressing GBM growth and enhancing survival in mice (Fan
et al., 2021). In another case, hypoxia-degradable zwitterionic
phosphorylcholine nanogel, HPMPC, penetrated the BBB by
mimicking cell membrane structure after intravenous
administration, releasing doxorubicin by azobenzene moiety
degradation in tumor tissues of GBM mouse models (Peng
et al., 2021).

5 Discussion

In this review, we examined the distinguishing features of a
range of stimuli-responsive hydrogels, particularly those that
respond to thermal, photonic, magnetic, electrical, and biological
cues. Our emphasis lies in highlighting how these hydrogels can
capitalize on the pathophysiological features of diseased brains by
developing responsive biomaterials. Additionally, we outlined their
varied applications and underlying therapeutic mechanisms,
including neurogenesis promotion, anti-inflammatory, anti-
apoptotic, anti-oxidative, and angiogenic effects, all contributing
to the enhancement of therapeutic outcomes (summarized in
Figure 1). These hydrogels offer numerous benefits, including
precise targeting, controlled release, mechanical support, and
biocompatibility, rendering them promising candidates for the
treatment of brain diseases in the future.

These advanced systems, despite their potential, exhibit several
limitations that necessitate careful consideration during their
application based on the specific pathophysiological
characteristics of the target disease. For instance, stimuli-
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responsive systems relying on alterations in pH, ROS, or enzymes
may exhibit suboptimal sensitivity to nuanced microenvironmental
changes, potentially resulting in underperformance. Additionally,
the in vivo microenvironment poses challenges, such as the
formation of a protein corona around nanoparticles, which can
significantly reduce or even eliminate the therapeutic efficacy of
these systems. Other inherent limitations include thermal
denaturation, UV-induced carcinogenesis, insufficient mechanical
strength, and material toxicity. Furthermore, the hydrogels’
propensity for high swelling can result in elevated local tissue
pressure, which may compromise their mechanical integrity and
exacerbate secondary brain injury. Therefore, a thorough
understanding of these limitations and careful evaluation of their
applicability in specific cases are essential for the optimal utilization
of these systems in therapeutic applications.

The integration of nanotechnology, artificial intelligence, and
three-dimensional printing into the development of hydrogels
presents a compelling opportunity for the creation of innovative
therapeutic strategies in brain diseases (Gao et al., 2023). Yet, a
rigorous preclinical evaluation encompassing safety, efficacy, and
stability is paramount before clinical translation. Key challenges
include elucidating hydrogel-neural microenvironment interactions,
minimizing immunogenicity, and optimizing targeted delivery.
While animal models offer insights, they may not fully
recapitulate human disease complexities. Therefore, bridging the
gap between in vitro/in vivo models and human diseases remains a
significant challenge (Shabani et al., 2023). Future research must
prioritize enhancing hydrogel biocompatibility, especially by
exploring natural materials that facilitate cellular recognition and
integration. Identifying the optimal therapeutic window in various

FIGURE 1
Schematic diagram of stimuli-responsive hydrogels for brain disease treatment in recent preclinical in vivo study. BBB: blood-brain barrier; bFGF:
basic fibroblast growth factor; hAMSCs: human amniotic mesenchymal stromal cells; hUC-MSCs: human umbilical cord mesenchymal stem cells; NSC-
EVs: neural stem cell-derived extracellular vesicles; ROS: reactive oxygen species; SDF-1α: stromal-cell-derived factor-1α; SLP2 shRNA: stomatin-like
protein 2 short hairpin RNA; VEGF: vascular endothelial growth factor.
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brain diseases, considering disease progression, is crucial for
maximizing therapeutic potential. Additionally, scalable
manufacturing, regulatory adherence, and economic viability are
essential for successful commercialization.

Collectively, future trends in stimuli-responsive hydrogel
development emphasize: multifunctional biomaterials integrating
therapy, imaging, tissue regeneration, stem cell support, immune
modulation, and antibacterial properties; exploration of novel
stimuli like inflammatory enzymes for enhanced targeting;
optimization of biomaterials for biosafety, efficacy, and cost-
effectiveness; addressing patient compliance, convenience, and
cost issues; and advancing our pathological understanding of
brain diseases to design effective therapies. Collaborations across
disciplines are key to translating hydrogel technologies to clinical
applications.

In conclusion, stimuli-responsive hydrogels hold significant
potential for revolutionizing the treatment of brain diseases. A
multidisciplinary approach that integrates expertise from various
fields is crucial for advancing this research and ultimately bringing
new therapeutic options to patients.
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