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Introduction: Walking ability is essential for maintaining functional
independence, but it can be impaired by conditions like hemiplegia resulting
from a stroke event. In post-stroke populations, accurately assessing gait
anomalies is crucial for rehabilitation to promote functional recovery, and to
prevent falls or injuries.

Methods: The aim of this study is to evaluate gait-related parameters using a
solution based on a single RGB-D camera, specifically Microsoft Azure Kinect DK
(MAK), on a short walkway in both healthy (n= 27) and post-stroke individuals with
hemiplegia (n= 20). The spatio-temporal and center of mass (CoM) parameters
estimated by this approach were compared with those obtained from a gold
standard motion capture (MoCap) system for instrumented 3D gait analysis.

Results: The overall findings demonstrated high levels of accuracy (> 93%), and
strong correlations (r > 0.9) between the parameters estimated by the two
systems for both healthy and hemiplegic gait. In particular, some spatio-
temporal parameters showed excellent agreement in both groups, while CoM
displacements exhibited slightly lower correlation values in healthy individuals.

Discussion: The results of the study suggest that a solution based on a single
optical sensor could serve as an effective intermediate tool for gait analysis, not
only in clinical settings or controlled environments but also in those contexts
where gold standard systems are not feasible.
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1 Introduction

Level walking is a major component of daily physical activity,
playing a key role in ensuring full functional independence and
contributing significantly to overall health (Cimolin and Galli,
2014). Gait abilities depend on the coordination between the
central nervous and the musculoskeletal systems, which can be
disrupted by pathological states, such as Parkinson’s disease and
hemiplegia (Moon et al., 2016; Snijders et al., 2011). Hemiplegia is a
condition characterized by the deficit of voluntary motor function
on one side of the body, and it represents one of the most common
impairments in stroke survivors that significantly impacts a variety
of motor skills. Specifically, it manifests as muscular weakness or
hemi-paralysis, affecting both arm function and locomotor abilities
(Chen et al., 2005; Gowland et al., 1992). With respect to gait,
hemiplegic patterns are characterized by asymmetry and foot
dragging due to the weakness of the affected side, together with
aberrant torso tilting and rotation (Beyaert et al., 2015; Moon et al.,
2016; Saccani et al., 2022; Wonsetler and Bowden, 2017).

Rehabilitation plays a key role in the overall functional recovery
of post-stroke individuals. Several studies have shown that the
intensity, frequency, and specific stimuli of the rehabilitation
protocol can contribute to the improvement and recovery of
motor and cognitive functions, as well as ecological tasks that
mimic everyday behaviors and actions (Dobkin, 2005; Rosbergen
et al., 2016). However, a quantitative analysis and evaluation of
patient performance could also support the evidence for the clinical
effectiveness of rehabilitation and physical training treatments
through objective measures. Concerning walking, which is a
pillar in many rehabilitation protocols, accurate and objective
monitoring of improvement or decline in walking patterns is
essential from the perspective of designing and evaluating
dedicated rehabilitation protocols that are tailored to each
patient’s condition (Langhorne et al., 2011), thus promoting
improvement in locomotion skills and perceived safety in daily
activities.

Three-dimensional (3D) marker-based optoelectronic motion
capture systems (MoCap) represent the gold standard for assessing
either normal or pathological gait. MoCap systems accurately
provide objective information about joint motion
(i.e., kinematics), time-distance variables (i.e., spatio-temporal
parameters), and joint moments and powers (i.e., kinetics) if
used together with force plates. Data retrieved from MoCap
allow for a comprehensive and quantitative assessment of gait
patterns allowing for functional performance analysis and the
identification of atypical features, as well as for determining the
level of functional impairment associated to a pathological
condition. However, despite their acknowledged accuracy and
consistency, some factors limit the applicability of MoCap
systems in daily clinical practice, including high costs, the need
for specifically designed laboratory environments with trained
technical staff, as well as the need of wearing minimal clothing
which can be an issue for people with dysfunction in dressing
(Bugané et al., 2012; Colyer et al., 2018; van den Noort et al., 2013).

In recent years, new emerging technologies based either on
wearable sensors (e.g., inertial measurement units (IMUs) and
accelerometers) and optical sensors (e.g., RGB, Depth, and RGB-
Depth cameras) have been proposed as cost-effective and handy

alternative tools to MoCap for the analysis and evaluation of several
motor skills. In particular, optical sensors supported by body-
tracking capabilities such as the Microsoft Kinect® have shown
promise for motion capture and analysis across various tasks,
conditions, and purposes (Clark et al., 2019; González-Ortega
et al., 2014; Milosevic et al., 2020; Mousavi Hondori and
Khademi, 2014; Muro-de-la-Herran et al., 2014). Originally
designed for entertainment purposes, the Microsoft Kinect® has
evolved into a pioneering vision-based motion capture system
whose applications now extend to medical, clinical, and
rehabilitation fields (Asaeda et al., 2018; Cerfoglio et al., 2022;
Pedraza-Hueso et al., 2015). Thanks to its innovative technology
exploiting the integration of colour and depth sensors, the device
operates by automatically estimating the real-time position of the
major joints through some anatomical landmarks provided by a 3D
skeletal model (Albert et al., 2020; Wang et al., 2015). Solutions
based on this kind of device do not require a dedicated laboratory
and complex setup like traditional MoCap systems. In addition, they
allow for non-intrusive motion tracking, as they require neither
preliminary subject preparation (i.e., the applications of markers on
the body based on biomechanical models), which can often be
troublesome for patients with functional limitations, nor
dedicated handheld controllers (Liao et al., 2018). Thanks to
their versatility, these approaches have also opened new
perspectives for motion analysis and monitoring especially in
unsupervised and remote settings, including private home
environments by enabling continuous motoring of motor skills in
real-life scenarios (Anton et al., 2018; Da Gama et al., 2015; Ferraris
et al., 2024; Stone and Skubic, 2015). Despite the strengths
mentioned, there is a need to verify the accuracy and robustness
of these solutions in tracking human body movements. For this
purpose, validation procedures and comparisons with gold standard
MoCap systems are essential.

Regarding Kinect-based solutions, several studies have
investigated the accuracy on gait analysis data in both healthy
individuals and pathological conditions using Microsoft Xbox
Kinect or Microsoft Kinect v2, the older device models
(Buongiorno et al., 2019; Mortensen et al., 2015; Palacios-
Navarro et al., 2015; Vilas-Boas et al., 2019). With respect to
healthy individuals, various studies highlighted the reliability in
estimating gait-related metrics, showing good concurrent validity
with the traditional MoCap systems (Clark et al., 2013; Dubois and
Bresciani, 2018; Eltoukhy et al., 2017; Pfister et al., 2014; Rocha et al.,
2015). In particular, spatio-temporal parameters estimated from
these Kinect models have been reported to strongly correlate with
the ones computed by MoCap systems, although a lack of accuracy
has been shown in estimating short temporal phases, such as foot off
and step time (Xu et al., 2015). Similar findings have also been
observed in clinical populations, such as post-stroke individuals. For
instance, Ferraris et al. (2021) reported strong consistency, accuracy,
and correlation with the gold standard for gait spatio-temporal gait
parameters, thus suggesting the reliability of the Kinect v2 model in
detecting and evaluating gait impairments. Moreover, good
agreement levels have also been reported for parameters related
to the body’s center of mass (CoM), which could be relevant in
identifying specific gait alterations associated with increased risk of
fall, such as lateral body sway (Johansson et al., 2019; Yanohara
et al., 2014).
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Regarding Microsoft Azure Kinect DK (MAK), the latest device
model, several studies have verified and validated it versus the
previous models (Kurillo et al., 2022; Ma et al., 2020; Tölgyessy
et al., 2021), demonstrating its superior performance in terms of on-
board sensors and body tracking capabilities (Albert et al., 2020;
Yeung et al., 2021) as well as its suitability for motion analysis in
different tasks, such as gait, posture, and sit to stand (Amprimo et al.,
2022; Antico et al., 2021; Guess et al., 2022; Thomas et al., 2022) even
compared to gold reference systems.

Focusing on gait analysis, a few studies in the literature
(Bertram et al., 2023; Guess et al., 2022; Ripic et al., 2022)
have investigated the accuracy of Microsoft Azure Kinect DK
on healthy subjects compared with a gold standard MoCap
system, proposing a single-camera solution. In the study by
Guess et al. (2022), some spatio-temporal parameters of
overground walking (stride length, stride time, step length,
and step width) were simultaneously collected by MAK and
MoCap systems on twenty young healthy participants. The
study demonstrated high values of correlation coefficients
between the two systems for all spatio-temporal parameters
investigated. Bertram et al. (2023) looked at other kinematic
parameters (gait speed, step length, cadence, step time, and arm
mobility features) in addition to assessing other motor tasks
(balance, getting up and sitting down, walking in place). The
MAK showed high to excellent relative and absolute agreement
for spatial and temporal measurements, although the gait results
were affected by some interference with the gold standard
systems, probably caused by the excessive proximity of the
infrared emitters of the optoelectronic system. In contrast,
Ripic et al. (2022) focused the analysis on gait kinetics,
demonstrating high correlations between MAK and gold
standard measurements, and superior accuracy of MAK
compared to previous models. These results suggest that a
single MAK sensor can provide clinically relevant
measurement of spatio-temporal parameters during gait.
Despite these encouraging results, however, further
investigation is necessary by extending the analysis to other
gait parameters and locomotion features, which are
traditionally considered clinically relevant to highlight gait
disorders in pathological conditions (Perry and Burnfield, 2010).

With this in mind, the present study aims to extend the
comparison between a single MAK-sensor solution and a gold
standard (i.e., an optoelectronic system) in terms of traditional
spatio-temporal gait parameters by considering both healthy and
post-stroke hemiplegic individuals. In addition, for a more
comprehensive analysis of the post-stroke condition, the
comparison also includes some metrics related to body CoM
displacements during walking. Indeed, this is an interesting and
typical feature of walking disorders in post-stroke survivors with
hemiplegia caused by the greater difficulty in adequately
counterbalancing the muscle work of the affected and unaffected
limbs (do Carmo et al., 2015; Iida and Yamamuro, 1987; Tesio and
Rota, 2019). In summary, the study aims to cover the following gaps
in performance analysis: 1) investigate MAK on post-stroke
hemiplegic individuals, since no other comparison studies are
available; 2) investigate MAK on additional spatio-temporal
parameters from previous studies to provide a more in-depth gait
analysis; 3) investigate MAK in estimating CoM displacements

during walking, which are particularly relevant in hemiplegic
individuals.

The subsequent sections of this paper are organized as follows.
Section 2 presents the materials and methods, covering the study
design, participant recruitment, experimental setup, data processing
for both MAK and MoCap, and statistical analysis. Section 3
presents the results, providing a comprehensive comparison of
the two systems and highlighting their agreement in estimating
both spatio-temporal and center of mass parameters, along with
statistical measures and metrics. In Section 4, we discuss the
findings, study limitations, and their implications for clinical
practice. Finally, Section 5 summarizes the main contributions of
this work and suggests directions for future research.

2 Materials and methods

2.1 Participants

Two cohorts of subjects were enrolled on a voluntary basis. The
first group included post-stroke individuals recruited among the
patients admitted to San Giuseppe Hospital (IRCCS Istituto
Auxologico Italiano, Piancavallo, Italy), whilst the second group
included healthy individuals recruited among the hospital’s staff.
Inclusion criteria for the post-stroke group were the following:
age ≥18 years, presence of unilateral hemiplegia, ability to
understand vocal cues, and ability to walk 10 m without
assistance. Individuals with bilateral impairment were excluded.
Conversely, inclusion criteria for the healthy group were the
following: age ≥18 years, no history of injuries in the past year,
and absence of musculoskeletal and neurological disorders affecting
gait. The study was approved by the internal Ethical Committee and
was conducted in accordance with the ethical standards of the
Institute and the Declaration of World Medical Association
(2013)) with its latest amendments. All participants signed an
informed consent before participating in the study, with the
option to withdraw from the experimental tests at any time.

2.2 Study design and instrumentation

The study took place from November 2021 and May 2023 in a
hospital setting (Movement Analysis Laboratory of San Giuseppe
Hospital), under the supervision of clinical and technical staff who
managed data collection according to the experimental protocol,
which involved simultaneous collection of gait trials with a marker-
based optoelectronic system (MoCap) (VICON, Oxford Metrics
Ltd., Oxford, United Kingdom; sampling rate: 100 Hz), and the
commercial Microsoft Azure Kinect DK (MAK) RGB-Depth camera
(Microsoft Inc., Redmond, WA, United States).

2.2.1 Instrumented 3D gait analysis with the
MoCap system

All participants underwent traditional 3D instrumental gait
analysis (IGA). The laboratory space is equipped with a 6-camera
MoCap system (VICON, Oxford Metrics Ltd., Oxford,
United Kingdom; sampling rate: 100 Hz), two force platforms
(Kistler, Winterthur, CH), and a 10 m walkway. Initially,
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participants’ anthropometric data were collected, including height,
weight, pelvis thickness, distance between the anterior superior iliac
spines, leg length, and width of knees and ankles. Then, a set of
27 spherical retro-reflective markers (Ø = 10–15 mm) was manually
placed on specific anatomical landmarks of the participants’ bodies,
following a modified version of the Plug-In Gait model (Davis III
et al., 1991; Kadaba et al., 1990), as shown in Figure 1. The MoCap
system was calibrated before each daily use according to the
manufacturer’s specifications, resulting in a calibrated volume of
5 m in length (along the x-axis of laboratory reference system), 2 m
in height (along the y-axis of the laboratory reference system), and
2 m in width (along the z-axis of the laboratory reference system).

2.2.2 Motion tracking with Microsoft Azure
Kinect DK

The MAK device (Microsoft Inc., Redmond, WA, United States;
size: 103 × 39 × 126 mm, weight: 400 g) integrates a 1-MP time-of-
flight (TOF) depth sensor (up to 1,024 × 1,024 px) and a 12-MP
colour sensor (up to 4,096 × 3,072 px). The TOF technology features
a global shutter with analog binning to ensure pixel synchronization
during acquisition and limited noise in low-resolution operative
modes (Kurillo et al., 2022). The device also incorporates a circular
array of seven high-quality microphones for speech and far-field
sound acquisition, and an inertial sensor (with accelerometer and
gyroscope), sampled at 1.6 kHz, to manage the orientation and
stability of the device. The MAK device also provides
implementation of a markerless motion tracking system to
capture and evaluate human body performance through the
availability of depth information and a neural network-based

deep learning (DL) approach: the body tracking algorithm allows
32 virtual joints of a 3D skeletal model to be estimated, which maps
human body movements in real time (Liu et al., 2022).

To ensure real-time motion capture and body-tracking, the
MAK device has been connected via a USB-3.0 port to a high-
performance mini-pc (ZOTAC©, Zotac, Fo Tan, New Territories,
Hong Kong, China; processor: 2.4 GHz quad-core 9th generation,
graphics card: NVIDIA GeForce RTX 2060 6 GB, RAM: 16 GB).
Among the native operative modes, the MAK device was configured
to optimize performance and ensure as accurate tracking of gait as
possible. The colour stream was set to 1920 × 1080 px resolution,
while the depth streammode was set to unbanned NFOV (near field
of view) to fit spatial requirements. The frame rate was set to 30 fps
for both streams to fit the real-time requirement. Concerning the
Software Development Kits (SDKs), version 1.4.1 was used to collect
data from the device and version 1.1.0 to handle the body tracking
features. In addition, an ad hoc wrapper was implemented to
integrate both SDKs within the Unity® development environment
(Unity Technologies, San Francisco, CA, United States), thus
creating a user-friendly solution whose graphical user interface
(GUI) simplifies system management and data acquisition for
operators and provides text and audio cues for patients as they
walk to the device.

2.2.3 Experimental setup
The experimental setup was the same as that proposed in our

previous validation studies (Cimolin et al., 2022; Ferraris et al., 2021)
to allow a fair comparison between the gait parameters estimated by
the two systems (Figure 2). The MAK device was placed on a tripod

FIGURE 1
Markers’ placement for the MoCap system.
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at the end of the laboratory walkway to ensure its stability and easy
correction of angular orientation along the reference axes. Since a
loss of accuracy can be observed in non-frontal configurations, such
as rear and side views (Gianaria and Grangetto, 2019; Müller et al.,
2017), the experimental setup was chosen to capture gait while
walking in front of the device to maximize depth maps and the body
tracking accuracy along the central cone of vision (Albert et al., 2020;
Kurillo et al., 2022; Wang et al., 2015). In this setting, body tracking
functions are automatically activated when the person enters the
MAK’s field of view, about 5 m away, with maximum accuracy and
robustness (Ferraris et al., 2021).

Since the experimental protocol involves the use of both MAK
and MoCap system, a common virtual gait analysis pathway
(VGAP) was defined in the central area of the laboratory
walkway and around the force platforms to ensure whole-body
motion capture and analysis with the two systems. The VGAP is
about 3 m long, starts at 4.5 m and ends at 1.5 m from the MAK to
ensure the whole-body framing even near the device. Previous work
has shown that this short length is still sufficient to detect at least one
full stride per leg (Eltoukhy et al., 2017) necessary to estimate gait
parameters. According to the experimental protocol and IGA
requirements, participants were asked to walk barefoot along the
walkway at their natural pace. Up to three successful trials were
collected to guarantee the reproducibility of the results in terms of
gait parameters.

2.3 Data analysis and processing

Raw optical data collected by MoCap were processed using
dedicated software for data tracking and analysis, namely, Nexus
(Version 1.8, VICON, Oxford Metrics Ltd., Oxford,
United Kingdom) and Polygon (Version 2.4, VICON, Oxford

Metrics Ltd., Oxford, United Kingdom). Regarding MAK, the
3D trajectories of joints collected during gait and locally stored
as JSON files were processed through an ad hoc and custom-
written MATLAB® (Mathworks Inc., Natick, MA,
United States) script.

2.3.1 Gait spatio-temporal parameters
ConcerningMoCap data, themain gait events (i.e., right/left heel

strike and toe off) were manually defined. In particular, gait events
and cycles were identified starting from the steps performed nearby
laboratory’s force plates, also corresponding to the VGAP area
defined for the analysis with MAK according to the proposed
experimental setup. Spatio-temporal gait parameters were then
automatically computed by the previously mentioned software.
Other quantities estimated during IGA (e.g., joint kinematics and
kinetics) were not considered for data analysis, although available.

Concerning the MAK data, the 3D joint trajectories of the
skeletal model were first resampled to 50 Hz using a cubic
interpolation to overcome minimal jitter in the acquisition
frequency and timestamps, and to enhance the overall spatial
resolution. Next, a third-order Butterworth low-pass (5 Hz) filter
was applied to remove noise in the high-frequency band. After the
data pre-processing phase, a step segmentation procedure was
applied on the ankle trajectories: the procedure works on ankles
because they show greater accuracy than feet (Gama et al., 2019; Tsai
et al., 2023). Specifically, the step segmentation algorithm detects
whether each ankle joint is stationary (i.e., stance phase) or in
motion (swing phase) when the difference between the depth values
(joint z-component) of two consecutive samples is less than or
greater than a pre-defined threshold (2 cm) (Ferraris et al., 2021).
From the result of the step segmentation procedure (Figure 3), it is
possible to estimate all primary and derived spatio-temporal
parameters related to the steps within the VGAP area.

FIGURE 2
Visual representation of the experimental set up. The schema includes the position of MAK (black), the MoCap cameras (red), and the virtual gait
analysis path inside the walkway (light blue) with integrated force plates (dark blue) to ensure total body motion capture and analysis.
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The following primary and derived spatio-temporal gait
parameters (Table 1) were considered for further analysis and
comparison between the two systems. As shown in Table 1, it is
important to emphasize that spatio-temporal parameters are
calculated with different algorithms for the two systems
because different sources of information are available. All the

spatio-temporal parameters were computed separately for the
right and left legs and then they were pooled together.

2.3.2 CoM parameters
Gait-related CoM parameters were computed fromMoCap data

using an ad hoc routine in SmartAnalyzer (BTS Bioengineering SPA,

FIGURE 3
Example of the step segmentation procedure from the ankle trajectories of MAK (green and blue dashed lines for right and left ankles, respectively).
The squared lines (bottom) represent the trajectories segmentation: 0 value refers to the stance (stationary) condition, 1 value refers to the swing (in
motion) condition. Above, the estimated steps and strides are shown, with their initial and final instants. The corresponding spatial information, for both
instants, is estimated from the joint z components (i.e., depth values).

TABLE 1 List of spatio-temporal gait parameters included in the study with the meaning (i.e., computation method) for each system.

Parameter [unit] MoCap meaning MAK meaning

Step length [m] Longitudinal distance from one-foot strike to the next one Distance (difference in depth values) between the final and initial instants of
one-foot step

Step time [s] Time between two consecutive heel strikes Time between the final and initial instants of one-foot step

Stride length [m] Distance between two successive placements of the same foot Distance (difference in depth values) between the final and initial instants of
one-foot stride

Stride time [s] Time elapsed between the first contact of two consecutive footsteps of
the same foot

Time between the final and initial instants of one-foot stride

Double support [s] Time in which both feet are in contact with the ground Time inside a gait cycle where both ankles are in stationary condition

Foot off [%] Duration of the stance phase, as % of the gait cycle Duration of a one-foot stance phase (stationary condition), as % of gait cycle

Walking speed [m/s] Ratio between stride length and stride time Ratio between one-foot stride length and time

Cadence [steps/min] Number of steps in a time unit (ratio between 120 and stride time) Number of steps in a time unit (ratio between 120 and stride time)
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Milano, Italia). CoM estimation was defined with respect to
laboratory reference system relying on the trajectories specific
markers applied on the body. In particular, CoM was computed
as the midpoint of the vector connecting the midpoints of the
markers on the right and left anterior superior iliac spines, and
right and left posterior superior iliac spines, respectively. Regarding
MAK, the position of CoM was defined as the midpoint between the
3D hip joints, according to the MAK skeletal model. Figure 4 shows
the position of CoM for the two systems.

To analyze body displacements during gait, the CoM
trajectory was retrieved and its maximum excursions along the
three principal directions across a complete gait cycle was
computed for both systems. In particular, the following
parameters were calculated:

• Medio-lateral (ML) displacement: excursion along the medio-
lateral direction of gait (perpendicular to the walking
direction), corresponding to the z-axis of the MoCap
reference system and the x-axis of the MAK. It evaluates
the maximum lateral body sway inside the gait cycles.

• Vertical (V) displacement: excursion along the vertical
direction of gait (perpendicular to the walking direction),
corresponding to the y-axis of the MoCap reference system
and the y-axis of the MAK. It evaluates the maximum vertical
body sway inside the gait cycles.

• Antero-posterior (AP) displacement: excursion of the CoM
along the antero-posterior direction of gait, corresponding to
the x-axis of the MoCap reference system and the z-axis of the
MAK. It evaluates the progression of the body, along the
walking direction, inside the gait cycles. It should be noted that
such parameter does not indicate an actual sway of the CoM
but its displacement along the direction of gait and it is usually
not relevant for assessing the risk fall risk. However, since this
is a validation study, it was included to compare the two
systems in estimating such measure.

As shown in Figure 4, it is important to emphasize that CoM
parameters are calculated differently for the two systems
because involved markers (for MoCap) and joints (for MAK)
differ in number and anatomical positions. All CoM parameters
were computed for each gait cycle and then they were
pooled together.

2.4 Statistical analysis

Statistical analysis was performed using MATLAB (version
R2023a, The MathWorks Inc., Natick, MA, United States), and it
was based on three consistent IGA trials of each participant. Data
was checked for normality via the Kolmogorov-Smirnov test. For
each parameter, paired t-test was performed to assess the presence of
statistically significant differences (p < 0.05) between the
measurements performed with the two systems. The mean
accuracy for each parameter, expressed as a percentage, was then
assessed according to the following formula (Equation 1):

Accuracy � 100% −MAPE � 100%

− mean
Measured value MAK( ) − Actual value MoCap( )

Actual value MoCap( )

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣⎛⎝ ⎞⎠⎛⎝ ⎞⎠ *100%

(1)
where MAPE represents the Mean Absolute Percentage Error
computed on all measured values.

Pearson’s correlation coefficient (r) was calculated to describe
the agreement between the measurements retrieved from the
MoCap and MAK systems. The limits of agreement (LoA)
between them was also evaluated through Bland-Altman (BA)
analysis, a graphical method to compare two measurements
which is also useful to assess if a method overestimates high
values and underestimates low values (Giavarina, 2015). In
addition, the root mean square error (RMSE) was computed for
each parameter according to the following equation (Equation 2):

FIGURE 4
Reference points used to compute the position of the CoM with MoCap (left) and MAK (right).

TABLE 2 Mean anthropometric and clinical features of participants. Values
are expressed as mean and standard deviation (SD), except for the number
of participants, which is divided into males (M) and females (F) for each
group.

All Stroke Healthy

Participants (M/F) 47 (23/24) 20 (11/9) 27 (12/15)

Age (years) 52.86 (10.98) 63.84 (11.95) 41.87 (10.01)

Body mass (kg) 74.88 (11.17) 83.08 (11.58) 66.67 (10.76)

Height (cm) 170.31 (8.04) 169.61 (9.08) 171 (7.00)

BMI (kg/m2) 25.91 (3.69) 28.96 (4.12) 22.86 (3.26)
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RMSE �

�����������∑n
i�1

ŷi − yi( )2
n

√√
�

����∑n
i�1

e2i
n

√
(2)

where ŷ1 . . . ŷn are the values computed from the MoCap, y1 . . . yn
are the values computed from the MAK (thus e1 . . . en are the
errors), and n is the number of observations (i.e., number of
gait trials).

Data analysis was performed by pooling together the data
collected from both experimental groups (stroke and healthy
subjects), and then performed separately in order to highlight
any differences in performance and accuracy when measuring
healthy and pathological gait, respectively.

3 Results

A total of 47 individuals were enrolled in the study and included
in the two groups according to the inclusion criteria given in the

previous section. Participants’ characteristics are resumed
in Table 2.

3.1 Gait spatio-temporal parameters

Kolmogorov-Smirnov test confirmed the normality of data, thus
allowing for their representation in terms of mean and standard
deviation. Spatio-temporal gait parameters calculated with both
systems are resumed in Table 3, together with the results of the
agreement analysis between MoCap and MAK. The computed
parameters appear to be coherent between the two systems, as
supported by the corresponding accuracy and RMSE values, and by
the absence of statistically significant inter-system differences revealed
by the paired t-test (p > 0.05). These considerations are further
supported by the corresponding values of Pearson’s correlation
coefficient (r), indicating an overall statistically significant strong
correlation (p < 0.05, r > 0.7) between MoCap and MAK. Notably,
the same considerations could be extended to the pooled data of healthy

TABLE 3 Mean and standard deviation values, p-values associated with the performed paired t-test, accuracy, Pearson’s correlation coefficients, and RMSE
values for the spatio-temporal gait parameters estimated with the two systems, divided by group.

Group Parameter MoCap MAK p-value Accuracy r RMSE

All Double support (s) 0.38 (0.32) 0.41 (0.32) 0.621 81.69% 0.98* 0.07

Foot off (%) 63.24 (5.65) 64.52 (6.52) 0.185 96.66% 0.89* 3.23

Step length (m) 0.55 (0.18) 0.55 (0.18) 0.812 95.05% 0.98* 0.03

Stride length (m) 1.10 (0.37) 1.08 (0.35) 0.648 95.55% 0.98* 0.07

Stride time (s) 1.30 (0.42) 1.31 (0.38) 0.876 96.19% 0.99* 0.08

Step time (s) 0.65 (0.21) 0.65 (0.20) 0.072 94.87% 0.98* 0.04

Walking Speed (m/s) 0.98 (0.49) 0.93 (0.44) 0.494 93.40% 0.98* 0.11

Cadence (steps/min) 100.12 (24.39) 98.08 (22.14) 0.589 96.40% 0.98* 5.38

Stroke Double support (s) 0.61 (0.36) 0.64 (0.34) 0.690 84.45% 0.97* 0.09

Foot off (%) 67.38 (5.98) 70.06 (5.75) 0.057 94.78% 0.80* 4.55

Step length (m) 0.38 (0.11) 0.39 (0.11) 0.668 94.94% 0.98* 0.02

Stride length (m) 0.76 (0.22) 0.75 (0.23) 0.977 96.57% 0.99* 0.03

Stride time (s) 1.62 (0.44) 1.60 (0.40) 0.841 97.56% 0.99* 0.08

Step time (s) 0.81 (0.21) 0.80 (0.20) 0.118 95.78% 0.98* 0.04

Walking Speed (m/s) 0.52 (0.24) 0.52 (0.24) 0.979 95.01% 0.99* 0.03

Cadence (steps/min) 79.07 (19.60) 79.50 (19.06) 0.926 97.47% 0.99* 2.28

Healthy Double support (s) 0.19 (0.03) 0.21 (0.06) 0.163 78.71% 0.56 0.05

Foot off (%) 59.71 (1.29) 59.87 (1.83) 0.651 98.34% 0.71* 1.27

Step length (m) 0.69 (0.07) 0.70 (0.08) 0.838 95.14% 0.85* 0.04

Stride length (m) 1.40 (0.15) 1.35 (0.15) 0.138 94.68% 0.84* 0.09

Stride time (s) 1.02 (0.07) 1.06 (0.07) 0.817 95.02% 0.71* 0.06

Step time (s) 0.51 (0.03) 0.53 (0.04) 0.102 94.10% 0.73* 0.04

Walking Speed (m/s) 1.38 (0.21) 1.28 (0.19) 0.799 92.02% 0.85* 0.15

Cadence (steps/min) 118.09 (8.39) 113.93 (7.10) 0.685 95.31% 0.74* 7.01

‘*’ = p-value <0.05 for Pearson’s correlation.
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and stroke individuals, as well as when considering the subgroup
analysis, thus suggesting no differences in performance and accuracy
ofMAKwhen dealing either with healthy or pathological gait. The only
exception is the double support parameter in healthy group that shows
lower and non-significant correlation (p > 0.05, r < 0.6): this may
depend on the greater difficulty in deriving this very subtle temporal
parameter from MAK information (both joint ankles in stationary
conditions) in subjects characterized by greater joint mobility and
speed. The bar charts in Figure 5 display the accuracy for each
parameter within each group, enhancing visual assessment and
facilitating performance comparison across groups.

Figure 6 reports the Bland-Altman plots for the estimated spatio-
temporal parameters when considering the pooled data. The horizontal
lines indicate the mean difference and the limits of agreement (LoA),
defined as the mean difference ±1.96*standard deviation. The differences
between the two paired values are displayed as y-values, whilst their
average values are reported as x-values. In the current analysis no evident
bias could be observed and 95% of the differences falls inside the LoA,
indicating a globally good association betweenMoCap andMAK, which
are also coherent with the results reported in Table 3.

3.2 CoM parameters

Gait-related CoM parameters computed for both systems are
resumed in Table 4, together with the results of the statistical t-test
(shown in the MAK column) and of the agreement analysis. Except for
ML excursion in healthy individuals, an overall statistically strong

correlation (p < 0.05, r > 0.7) can be observed for all parameters,
either considering the pooled data or the subgroups. Figure 7 presents
the accuracy of gait-related CoM parameters across different groups,
similarly to Figure 5.

Figure 8 reports the Bland-Altman plots for the estimated CoM
parameters when considering the pooled data. Also in this case, a
globally good association between the two systems can be observed
since 95% of the differences falls inside the LoA, and there is no evident
bias. However, CoM data presents a higher dispersion with respect to
gait spatio-temporal parameters, which is particularly evident not only
for ML displacement in healthy subjects, but also for V displacement in
both healthy and stroke groups. In particular, the V displacement
appears underestimated for healthy subjects, and slightly overestimated
for stroke individuals. This confirms the results shown in Table 4. In
general, the slightly lower performance in accuracy and a couple of
significant differences between the two systems could depend on the
different estimation methods for the CoM positions. The CoM position
estimated forMoCap is definitely more accurate, as it is computed from
markers placed on the ventral and dorsal sides of the body. The CoM
position for MAK is estimated from a pair of frontal points. The two
CoMsmay be therefore solicited differently during walking, resulting in
different overall excursions in the three directions.

4 Discussion

Optoelectronic MoCap systems are acknowledged as the gold
standard to quantitatively evaluate human gait, offering a

FIGURE 5
Accuracy for each spatio-temporal parameter within each group.
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comprehensive and accurate description of an individual’s
movement, and enabling the identification of pathological
patterns. Despite their high accuracy and reliability, MoCap
systems are not suitable for large-scale screening due to their
high cost, complexity, and reliance on dedicated laboratory
settings (Horak et al., 2015). Over the past two decades, various

alternative technologies, such as wearable devices and 2D/3D optical
sensors, have emerged as complementary tools to MoCap systems.
Among these, low-cost RGB-Depth cameras with body tracking
algorithms have shown particular promise for the non-invasive
assessment of gait, posture, and balance in both healthy and
pathological conditions. However, prior to their effective

FIGURE 6
Bland-Altman plots of the average values of the spatio-temporal gait parameters retrieved fromMoCap and MAK plotted against the differences for
both systems. Purple squares and yellow circles denote the stroke and the healthy groups, respectively. Blue points denote correspondence between a
value for both groups.
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integration into everyday clinical practice for instrumental motor
assessment, these technologies need to be validated against gold
standard systems. In this study, the concurrent validity and accuracy
of the latest model of theMicrosoft Kinect, the Azure Kinect (MAK),
were assessed against a MoCap system in estimating gait-related
spatio-temporal and CoMparameters in healthy individuals and in a
group of post-stroke patients with hemiplegia.

The overall results indicate a high correlation and agreement
between the parameters estimated by both systems across the study

groups. Despite similar accuracy levels, spatio-temporal parameters
derived from hemiplegic patients showed a stronger correlation
between MoCap and MAK compared to those obtained from
healthy individuals. Specifically, within the stroke group, most
parameters showed a robust positive and significant correlation
(r > 0.9, p < 0.05), with only the correlation of the foot-off
parameter falling below 0.9. Similarly, within the healthy group,
most parameters showed strong positive correlations (r > 0.7, p <
0.05), albeit with slightly lower values on average compared to those

TABLE 4 Mean and standard deviation values, p-values associated with the performed paired t-test, accuracy, Pearson’s correlation coefficients, and RMSE
values for gait-related CoM parameters estimated with the two systems, divided by group.

Group Parameter MoCap MAK p-value Accuracy r RMSE

All AP (mm) 1,095.05 (365.96) 1,103.28 (337.26) 0.886 92.29% 0.97* 90.71

ML (mm) 64.70 (31.20) 57.92 (21.12) 0.119 78.46% 0.88* 17.32

V (mm) 37.41 (14.09) 36.35 (12.06) 0.619 78.47% 0.79* 8.68

Stroke AP (mm) 746.84 (221.38) 797.62 (232.47) 0.360 88.82% 0.93* 98.14

ML (mm) 91.41 (27.19) 72.89 (22.63) 0.003 78.18% 0.86* 23.18

V (mm) 28.35 (13.03) 33.22 (13.58) 0.136 74.14% 0.89* 7.86

Healthy AP (mm) 1,385.22 (139.47) 1,358.01 (144.06) 0.387 95.18% 0.84* 84.2

ML (mm) 42.43 (8.83) 45.45 (6.98) 0.090 78.71% 0.28 10.09

V (mm) 44.96 (9.85) 38.96 (9.90) 0.007 82.09% 0.74* 9.32

‘*’ = p-value <0.05 for Pearson’s correlation.

FIGURE 7
Accuracy for each CoM parameter within each group.
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in the stroke group. The only exception was the double support
parameter, which showed a moderate rather than strong correlation.
These findings are consistent with previous studies, which also
reported higher correlation between MoCap and MAK compared
to earlier device models (Kurillo et al., 2022; Tölgyessy et al., 2021).
However, direct comparisons with prior studies are limited due to
variations in subject demographics, experimental setups, and the
algorithms used for step segmentation and parameters estimation.
Moreover, no previous studies have used MAK to estimate spatio-
temporal gait parameters in pathological conditions such as
hemiplegia. Regarding hemiplegic gait patterns, the agreement
between spatio-temporal parameters estimated by both systems
was higher than those reported in the literature on subjects with
similar demographics but using previous Kinect models (Cimolin
et al., 2022; Ferraris et al., 2021).

In contrast, more studies are available in the literature focusing
on healthy individuals. In (Guess et al., 2022), the authors evaluated
the agreement between MAK and MoCap for a limited subset of
parameters, including stride length, stride time, and step length.
They reported stronger correlations (r = 0.89–0.98) than those
observed in our healthy group but lower than those in our stroke
group. Conversely, in (Xu et al., 2015) using a previous version of the

Kinect device, the authors reported generally lower correlations with
MoCap for short temporal phases of gait cycles (e.g., foot-off, double
support, and swing time), particularly at higher speeds. However, it
is important to note that they employed a treadmill-based
experimental setup to control gait speeds, which may have
influenced the estimation of other gait parameters. Our findings
for the healthy group are consistent with this study, as the lowest
correlations were observed for sub-phases of the gait cycle (e.g., foot-
off and double support), although with higher values than those
reported in (Xu et al., 2015). In contrast, we observed slightly lower
correlations for step time and stride time parameters, which may be
attributed to the higher average walking speed of our healthy group
(1.38 m/s vs. 1.07 m/s). Similarly, in a study on polyneuropathy
patients (Vilas-Boas et al., 2019), the lowest correlations (r < 0.9)
were associated with parameters related to sub-phases of the gait
cycle (e.g., double support duration, single stance duration, and
swing duration), further supporting the previously described trend.
Compared to (Vilas-Boas et al., 2019) our results for the pathological
group (stroke) showed lower correlations (r < 0.9) only for the foot-
off parameter, while the others, including double support duration,
exhibited higher correlations (r > 0.95). The reasons for this
outcome are likely related to the inherent limitations of

FIGURE 8
Bland-Altman plots of the average values of the CoM parameters retrieved from MoCap and MAK plotted against the differences for both systems.
Purple squares and yellow circles denote the stroke and the healthy groups, respectively.
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accurately estimating ground detachment events using the
markerless skeletal model provided by an optical sensor
compared to the more complex biomechanical models used in
MoCap systems. This limitation may become more pronounced
when estimating short-duration temporal parameters, particularly
those associated with the gait cycle sub-phases, and is further
exacerbated at higher walking speeds. This may also explain the
better results obtained for the pathological groups, whose average
walking speed is significantly lower than in healthy individuals.
However, addressing the potential issue related to higher walking
speeds in dedicated future studies could help improve the
understanding of the MAK device’s performance and establish
optimal requirements, settings, and applications for different
operating conditions.

Regarding the results on CoM displacements during gait, both
healthy and stroke groups showed strong agreement along the
vertical and antero-posterior directions (r > 0.74). However, the
two systems exhibited poor correlation in estimating CoM
displacement along the medio-lateral direction in the healthy
group (r = 0.28). This discrepancy may be due to the greater
stability of healthy individuals during walking, which results in
minimal lateral body oscillations compared to post-stroke
individuals. Hemiplegic gait patterns are typically characterized
by lateral body shifts to compensate for motor deficits due to
unilateral weakness and abnormal torso tilting (Aprile et al.,
2006; Takashima et al., 2016). In contrast, the small excursions
and low variability observed in the healthy group likely explain the
poor correlation, despite a measurement accuracy exceeding 78%
and a low residual error (approximately 1 cm). Conversely, in the
stroke group, the agreement between MAK and MoCap in
estimating medio-lateral (r = 0.86, p < 0.05) and vertical (r =
0.89, p < 0.05) CoM excursions is higher than that reported in
other studies using earlier Kinect models (Cimolin et al., 2022;
Ferraris et al., 2021). This supports the device’s ability to detect
effective motor pattern alterations associated with lateral
displacements. However, CoM parameters showed slightly lower
correlations and measurement accuracy compared to the spatio-
temporal parameters. It is also important to note, as shown in
Figure 3, that the positions of CoM for both systems are not
identical, resulting in different solicitations during gait that may
have affected the results. Nonetheless, the overall correlation and
measurement accuracy values remain high (>0.79 and >78%,
respectively).

In general, the findings of the present study suggest that the
MAK device has the potential to provide an accurate and reliable
estimation of gait-related parameters measured over path lengths
that are more suitable for non-laboratory settings, where MoCap
systems are not applicable, as they typically operate on larger,
dedicated spaces. However, the controlled laboratory
environment used in this study may differ from real-world
conditions, where factors such as obstacles, variable surfaces, and
lighting can affect overall performance. While the results are
promising in controlled settings, further investigation is needed
in unsupervised environments, such as private homes, to fully assess
the applicability of MAK sensors for remote monitoring of gait
patterns and rehabilitation purposes.

Furthermore, there are some limitations linked to both study
populations and technological aspects that should be considered. In

particular, the small number of participants for both groups limits to
some extent the strength and the generalizability of the statistical
results and general findings. However, it should be noted that large
experimental samples are difficult to be recruited and, also, that
traditional instrumented gait analysis requires subjects to wear
minimal clothing, usually only underwear: this can cause
embarrassment and be an issue for subjects with dysfunctions in
dressing (Cerfoglio et al., 2022). In terms of technological aspects,
the main critical issue could be linked to the need for better
adaptation of the algorithms used for step identification and
parameter estimation by the two systems. Although they provide
similar information, the anatomical landmarks used to track body
movements differ because the biomechanical models are different.
Specifically, the MoCap system relies on the 3D coordinates of skin-
mounted markers placed on specific repere points, while the MAK
body tracking algorithm depends on virtual joint estimation of the
skeletal model without any physical markers. Consequently, the
different positions of these reference points may introduce some
biases when estimating specific metrics, as each model relies on
different body geometry and joint dynamics. These differences could
be reflected in the final measurements of the parameters derived
from a standard complex model (i.e., MoCap) and a simpler
one (i.e., MAK).

Regarding the higher levels of agreement observed in the stroke
group compared to the healthy group, this finding does not seem to
have been reported in previous studies. The different results may be
attributed to the sensitivity of the step segmentation algorithm;
however, some bias may also arise from the limited sample size,
which may affect data variability and the overall strength of the
findings. One objective factor that might explain this result is the
walking speed, which is typically lower in pathological subjects than
in healthy individuals and that may lead to slightly less accurate
parameter measurements when it increases: this seems to be mainly
reflected in temporal parameters related to sub-phases of the gait
cycle, as also pointed out by several previous studies. However,
further investigation on wider reference samples is needed to
support and verify this hypothesis.

In addition, it should be noted that the present study focused
exclusively on spatio-temporal aspects of gait, while gait-related
joint angles were not assessed. According to the literature, despite
generally good agreement, accuracy, and correlation between the
spatio-temporal parameters estimated by the two systems, Kinect-
based estimation may exhibit limited accuracy and sensitivity
regarding kinematic parameters such as joint angles during
walking (Cerfoglio et al., 2022; Latorre et al., 2019). Given that
the available literature on Kinect-based kinematics is primarily
centered on the previous versions of the device, it would be
interesting to evaluate how the new generation of the device
performs in estimating these more complex metrics in both
healthy and pathological populations.

Despite the discussed limitations of the study, the proposed gait
analysis setup, based on a single Microsoft Azure Kinect DK device,
demonstrates good concurrent validity compared to the gold
standard system, in terms of correlation, accuracy, and residual
error on both healthy and pathological groups. Its potential
adoption in everyday practice could introduce new possibilities
for motion analysis in various contexts. Although the strengths
and weaknesses of these optical approaches require further
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investigation, these devices offer a non-invasive, cost-effective, and
user-friendly solution for motion analysis in environments where
MoCap systems are not feasible, such as outpatient settings and
private home environments. This opens new perspectives for remote
monitoring and rehabilitation strategies, especially in unsupervised
settings. These aspects are indeed crucial for more frequent
monitoring of motor performance, enabling prompt adjustments
and adaptations of home-based rehabilitation programs, reducing
the need for access to hospital facilities, and ultimately improving
patients’ quality of life.

5 Conclusion

The aim of this study was to assess the concurrent validity of spatio-
temporal and CoM gait-related parameters estimated through
Microsoft Azure Kinect DK compared to a gold standard system for
motion capture and analysis. The investigation focused on both normal
and pathological gait patterns, involving hemiplegic (post-stroke
survivors) and healthy subjects. Despite a few limitations linked to
sample size, differences in biomechanical models and parameter
computation algorithms, this device is able to provide an accurate
estimation of the parameters considered, which closely match those
retrieved from the gold standard for both healthy and hemiplegic
individuals. Although further advancements are necessary before its
full employment in clinical settings, the reported results demonstrate
the usefulness and reliability of the proposed approach for quantitative
gait assessment, especially in pathological populations. In addition to
increasing the sample size and improving the alignment of models and
algorithms, future analyses could incorporate Kinect-based assessment
of gait kinematics against the gold standard, offering a more
comprehensive description of an individual’s normal and
pathological gait and opening new perspectives for both clinical
practice and remote assessment.
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