Skip to main content

ORIGINAL RESEARCH article

Front. Bioeng. Biotechnol.
Sec. Bioprocess Engineering
Volume 12 - 2024 | doi: 10.3389/fbioe.2024.1448927

Separation and purification of nylon 54 salts from fermentation broth by an integrated process involving microfiltration, ultrafiltration, and ion exchange

Provisionally accepted
Xiaojie Zhao Xiaojie Zhao Qixu Hu Qixu Hu Yue Yang Yue Yang Jiao Feng Jiao Feng Xin Wang Xin Wang Ganlu Li Ganlu Li Hui Li Hui Li *Kequan Chen Kequan Chen *
  • Nanjing Tech University, Nanjing, China

The final, formatted version of the article will be published soon.

    Nylon 54 is a novel, biodegradable polyamide with excellent thermal resistance and water absorption properties. It can be polymerized using bio-based cadaverine and succinic acid as monomers. Traditional separation methods isolate individual monomers from the fermentation broth through acidification or alkalization, resulting in significant amounts of waste salts; however, synchronous separation of dibasic acids and diamines has not been reported. This study investigated an integrated process for the separation and extraction of nylon 54 salts from a co-fermentation broth without acidification or alkalization. We meticulously optimized the operational parameters of the integrated process to achieve maximum separation efficiency. Following microfiltration, ultrafiltration, and decolorization, the bacterial eliminating rate was ≥99.83%, and the protein concentration was ≤40 mg/L. The absorbance of the decolorized solution was ≤0.021 at 430 nm, and the recovery rate of nylon 54 salt reached 97%. Then, the pretreated solution was passed through sequential chromatographic columns, which effectively removed organic acid by-products (such as acetic acid and lactic acid), SO4 2-, and NH4 + from the fermentation broth, resulting in a cadaverine yield of 98.01% and a succinic acid yield of 89.35%. Finally, by concentrating and crystallizing the eluent, the simulated fermentation broth yielded nylon 54 salt with a purity of 99.16% and a recovery rate of 58%, and the real fermentation broth yielded nylon 54 salt with a purity of 98.10% and a recovery rate of 56.21%. This integrated process offers a sustainable and environmentally friendly pathway for the complete biosynthesis of nylon 54 salt and has the potential to be extended to the preparation of other nylon salts.FIGURE 1 An integrated process for separating cadaverine and succinic acid from a cofermentation broth.

    Keywords: Fermentation broth separation, Membrane separation, Ion exchange resin, Crystallization, Nylon 54 salt

    Received: 14 Jun 2024; Accepted: 22 Jul 2024.

    Copyright: © 2024 Zhao, Hu, Yang, Feng, Wang, Li, Li and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence:
    Hui Li, Nanjing Tech University, Nanjing, China
    Kequan Chen, Nanjing Tech University, Nanjing, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.