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Background and Objective: Exoskeleton robot control should ideally be based
on human voluntary movement intention. The readiness potential (RP)
component of the motion-related cortical potential is observed before
movement in the electroencephalogram and can be used for intention
prediction. However, its single-trial features are weak and highly variable, and
existing methods cannot achieve high cross-temporal and cross-subject
accuracies in practical online applications. Therefore, this work aimed to
combine a deep convolutional neural network (CNN) framework with a
transfer learning (TL) strategy to predict the lower limb voluntary movement
intention, thereby improving the accuracy while enhancing the model
generalization capability; this would also provide sufficient processing time for
the response of the exoskeleton robotic system and help realize robot control
based on the intention of the human body.

Methods: The signal characteristics of the RP for lower limb movement were
analyzed, and a parameter TL strategy based on CNNwas proposed to predict the
intention of voluntary lower limbmovements. We recruited 10 subjects for offline
and online experiments. Multivariate empirical-mode decompositionwas used to
remove the artifacts, and the moment of onset of voluntary movement was
labeled using lower limb electromyography signals during network training.

Results: The RP features can be observed from multiple data overlays before the
onset of voluntary lower limb movements, and these features have long latency
periods. The offline experimental results showed that the average movement
intention prediction accuracy was 95.23% ± 1.25% for the right leg and 91.21% ±
1.48% for the left leg, which showed good cross-temporal and cross-subject
generalization while greatly reducing the training time. Online movement
intention prediction can predict results about 483.9 ± 11.9 ms before
movement onset with an average accuracy of 82.75%.

Conclusion: The proposedmethod has a higher prediction accuracy with a lower
training time, has good generalization performance for cross-temporal and
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cross-subject aspects, and is well-prioritized in terms of the temporal responses;
these features are expected to lay the foundation for further investigations on
exoskeleton robot control.
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1 Introduction

Lower limb exoskeleton robots are walking-assist tools that
provide movement assistance and functional enhancements for
elderly people, lower limb dyskinesia patients, and heavy manual
workers to enable them to adapt to hard or high-intensity work
(Hussain et al., 2021; Liu and Ouyang, 2023; Plaza et al., 2023).
Although lower limb exoskeleton robots have been a popular
topic of research in recent years, they are not used in production
and the daily lives of people owing to the fact that some of the key
technologies are still immature (Hybart and Ferris, 2023). One of
these important technologies is human–robot interactive
perception, which is the direct communication channel
between humans and exoskeleton robots. These robots can
better serve the users only by acquiring their active movement
intentions.

At present, the movement intentions of exoskeleton robots are
primarily detected from human–robot interaction information
through various mechanical sensors. However, such interaction
signals cannot be acquired until movements occur, and there is
additional time involved in processing the acquired signals to elicit
responses from the data processing and mechanical systems; thus,
there is a considerable time lag in decoding movement intentions
based on these signals. In contrast, autonomously generated
bioelectrical signals from the human body, such as
electroencephalography (EEG), electromyography (EMG),
electrooculography (EOG), and electrocardiography (ECG)
signals that are generated by chemical signaling between the cells,
may exhibit some features before the onset of motion, thereby
providing lead time for data processing and mechanical
responses of the robot in decoding intentions (Zhang et al.,
2021). There is information transmission during intention
generation, and the corresponding movements are executed
through the nervous system; the brain processes such
information and generates movement intentions in the cortical
motor areas. At this point, large numbers of postsynaptic
membrane potentials overlap in the vicinities of their generation
sites according to a spatial sum law, resulting in the observed EEG
signal. It is important to note that movements have not yet been
executed in these moments. Next, the intention information is
transmitted through multiple levels of nerves to the
neuromuscular junctions (motor end plates) to control the
contraction and relaxation of muscle fibers while completing the
movement; this stage generates EMG signals. Obviously, the EEG
signals are a direct manifestation of brain activity and have a greater
time-response advantage. Nevertheless, EEG signals are relatively
weak and susceptible to interference, which places higher demands
on the decoding methods used (Mucarquer et al., 2020; Ghosh
et al., 2023).

The brain–computer interface (BCI) helps to build a new
communication pathway without the participation of peripheral
nerves or muscles, thereby allowing the user to send commands
directly to a computer or another external device (Li et al., 2018;
Dong et al., 2024). This technology decodes human commands
based on the time- and/or frequency-domain features of EEG
signals. During body movements, electroencephalographic
movement-related cortical potentials (MRCPs) are generated in
the bilateral supplementary motor areas, bilateral
presupplementary motor areas, bilateral cingulate motor areas,
and contralateral M1, which contain rich motor information and
have strict time- and phase-locked characteristics (Alder et al.,
2020). The feature readiness potential (RP) is a slow negative
electrophysiological event-related potential (ERP) in the EEG
time domain that was first identified in 1964 and is considered
to be a part of the MRCP (Shakeel et al., 2015; Benedetto et al., 2022;
Vöckel et al., 2023). The properties of the RP that appears before an
evoked or a voluntary movement play important roles in movement
intention prediction. Many scholars have investigated RP detection.
Researchers from the University of Houston investigated the
detection of movement intention from the RPs of stroke
survivors during upper limb robotic rehabilitation and achieved
an ultimate detection accuracy of 67.1 + 14.6% (Bhagat et al., 2016).
Jeong et al. (2017) recognized voluntary walking intention based on
RPs from healthy people to control a lower limb exoskeleton robot;
these experiments were performed under normal and exoskeleton
walking, and the average classification accuracy was 80.7% (Jeong
et al., 2017). Wang et al. (2020) analyzed the premovement EEG
features in the time and frequency domains, and the MRCP features
were extracted and decoded for voluntary finger premovements
using discriminative canonical pattern matching (DCPM) with an
offline average accuracy of 80.96%. Jochumsen and Niazi (2020)
detected six different movement tasks from single-trial MRCPs, and
the offline classification accuracies associated with movement
intention detection in these tasks were in the range of 80%–90%.
The common logic in these studies is that the preprocessed signals
are first subjected to feature extraction, following which machine-
learning methods are applied for pattern recognition. Although
there are several studies on optimizing the preprocessing and
feature extraction methods, the detection accuracies of movement
intention have generally been between 60% and 90% (Garipelli et al.,
2013; Jochumsen et al., 2015; Shakeel et al., 2015; Jochumsen et al.,
2017). By analyzing these studies, it is easily found that the
accuracies of RP-based detection/prediction results for evoked
movement intentions are higher than those for voluntary
movement intentions. Further, although offline experiments have
achieved good results, online methods are not ideal because the
accuracies of the pattern recognition results depend greatly on the
effectiveness of feature extraction. In the online testing experiments,

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Dong et al. 10.3389/fbioe.2024.1448903

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1448903


the insignificant responses from single-trial RPs render feature
extraction ineffective, which in turn lower the detection
accuracies. Hence, effective extraction and recognition methods
for single-trial RP features are needed urgently.

With the advancements in artificial intelligence technologies,
deep learning has been shown to have considerable advantages in
BCI decoding because it can automatically learn the deep features of
EEG signals as well as extract and classify them, thus simplifying the
processing greatly (Roy et al., 2019; Hossain et al., 2023). Some of the
typical deep-learning models include convolutional neural networks
(CNNs), deep brief networks (DBNs), and deep stacked networks
(DSNs). EEG signals have spatiotemporal characteristics, because of
which CNNs can remain invariant to the scaling and translation of
two-dimensional data; this has specific advantages in EEG data
processing and classification. Li et al. (2022) proposed a three-
dimensional CNN-based model to decode the ERPs dynamically,
which was shown to be more robust than other networks. Huang
et al. (2021) used the short-time Fourier transform (STFT)
technique to convert preprocessed EEG signals to time–frequency
images; then, they proposed a multiscale CNN-based EEG signal
classification method to recognize hand movement motor imagery
(MI) with an average accuracy of 73.9%, which is higher than those
of traditional methods involving artificial neural networks (ANNs),
support vector machine (SVM), and stacked autoencoders (SAEs)
(Huang et al., 2021). Yang et al. (2022) proposed a two-branch CNN
that simultaneously learns the temporal and frequency features of
EEG data to decode MI-EEG, and the model achieved an average
classification accuracy of 81.3%. These studies show that CNNs can
better extract the features of multichannel EEG signals than
traditional ANNs, thereby improving the classification
performances to a certain extent. However, these CNN models
are still not able to achieve good accuracies when handling
voluntary-movement-intention-related tasks. Model
improvements based on the CNN are therefore necessary.

Several scholars have investigated improved CNNs. Zhang et al.
(2019) presented a graph-based hierarchical attention model
(G-HAM) by combining attention mechanism with CNN to
classify left/right fist opening and closing intentions; they
obtained an offline evaluation accuracy of 76.36% with better
performance over several state-of-the-art and baseline
approaches. Zhang et al. (2020) combined a three-dimensional
CNN with a long short-term memory (LSTM) network to
recognize five actions with better offline accuracy than traditional
feature extraction followed by pattern recognition. Li et al. (2020)
introduced a recurrent CNN for MI intention recognition by
learning decomposed spatiotemporal representations and
achieved an offline decoding performance of 92.31% by using
34 channels and a CNN combined with a gated recurrent unit
(GRU) network structure. Yue et al. (2021) proposed an
EEG2image-based denoised convnets (EID) scheme to enhance
the feature representations of intention recognition tasks that
achieved high accuracy but required a lot of time. These studies
show that complex network results improve the model
performances but require significant training and computation
times. Although these results are satisfactory for offline analyses,
they cannot be used for online real-time movement intention
detection. In addition to the large amounts of time consumed to
obtain features with more depth, the EEG signals themselves exhibit

large cross-temporal and cross-subject variabilities, which is an issue
that has been overlooked in some previous studies. In the present
study, movement intention detection/prediction was performed
with the aim of controlling an exoskeleton robot that is directly
worn on the human body and requires high human fitness.
Therefore, the problem of cross-temporal and cross-subject
variabilities cannot be ignored, and a method that improves the
generalization ability of a deep-learning network is needed.

The transfer learning (TL) method enables knowledge transfer
from different but related tasks by utilizing existing knowledge
learned from accomplished tasks to help with new tasks (Kai
et al., 2020; Li and Xu, 2024). The essence here is to find
similarities between the original and new tasks to perform
discriminative and stationary information transfer across
domains, which is a good method of improving network
generalization (Samek et al., 2013). The common TL approaches
include instance transfer, feature representation transfer, and
parameter transfer. Instance transfer approaches reweight some
of the source domain data as supplements for the target domain;
feature representation TL aims to encode the shared information
across subjects/sessions into feature representations; parameter
transfer aims is to find shared parameter information to realize
knowledge transfer. Parameter transfer methods are some of the
commonly used approaches as their structures can be transferred
and adapted based on deep-learning networks. Two-dimensional
CNN can acquire the deep features of multichannel EEG signals
through temporal and spatial convolutions. Using CNN as the
pretraining network in combination with TL can solve the above
problems associated with practical application and enhance the
model generalization ability; this not only improves the network
performance but also reduces the pretraining time of the model in
the target domain.

This paper presents a novel CNN combined with TL for lower
limb voluntary movement intention prediction based on EEG
signals. First, we analyzed the characteristics of the EEG RP
features. Then, based on the disadvantages of the features and
the needs of BCI practical applications, we introduced a
parameter TL strategy based on classical CNNs to predict the
intentions of voluntary lower limb movements. We recruited
10 subjects for offline and online experiments to validate the
proposed model in terms of the cross-temporal and cross-subject
performances, and the onset moment of voluntary movement was
precisely labeled using lower limb EMG signals. The remainder of
this paper is organized as follows. Section 2 describes the methods of
the study. Section 3 presents the experiments. Section 4 describes the
results of the experiments. Section 5 presents the discussion of the
study. Section 6 summarizes the conclusions of the study.

2 Materials and methods

2.1 EEG RP of lower limb movement

The brain generates MRCPs during physical movements, which
provides EEG evidence of motor cortical involvement in movement
and conscious preparation for the anticipated movements. The
MRCP is a low-frequency signal that is readily masked by higher
frequency activities and usually has an amplitude of between 5 and
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30 μV. As shown in Figure 1, the MRCP can be categorized into
three main components as RP, motor potential (MP), and
movement-monitoring potential (MMP), which reflect the
movement planning/preparation, execution, and control
performances, respectively. Among these, the RP is the earliest
feature in the MRCP and is essentially an ERP that strictly
follows the limb movement in time; its duration varies slightly
depending on the form of the movement and individual differences.
Based on the waveform, the RP can be categorized into early RP and
late RP. The early RP begins about 1.5–2.0 s before motion and is a
negative potential with slowly increasing amplitude. The late RP
begins about 0.5–1.0 s before movement and manifests as a sharp
increase in the negative potential (Shibasaki and Hallett, 2006;
Matsuura et al., 2022). The early RP is not easily detected as it
occurs early, and intense changes occur in the late RP to MMP
phases that can be used to characterize the generation of
movement intention.

The MRCP response area mainly corresponds to a large area of
the cerebral motor cortex and can be detected over the central
electrodes near the midline; however, it is very susceptible to
unintentional interference or even erroneous competition among
the activated brain regions to the extent that it is difficult to detect in
a single instance. Additionally, the timing and amplitudes of the
potentials vary with the type of movement, speed of the task, level of
uncertainty about the type of movement, preparatory state, and
presence of neurological conditions. Some filtering algorithms have
been developed for detecting the RP, but only significant RP features
can be recognized after superimposed averaging of multiple sets of
data; this cannot be used online, so extracting RP features from
single-trial data to realize presensing of human movement intention
is an important technical difficulty. The ability of the algorithm to
extract weak deep features is thus critical.

Furthermore, EEG has some critical disadvantages like low signal-
to-noise ratio, non-stationarity, and high individual variability,
especially in terms of voluntary EEG signals; these can be affected
by noise, environmental disturbances, individual mental states, brain
thinking activities, and even EEG cap-wearing errors, making them
non-negligible cross-domain problems when using BCI to predict
movement intentions. Before predicting any movement intention, a
large amount of EEG data is collected from the user to learn the
correspondence with the labels to build a subject-dependent network
with good performance. However, even the trained network will have
degraded performance with the same user the next time it is used.

Moreover, individual variabilities can cause the trained network to lack
generalization. Both cross-temporal and cross-subject problems can
thus cause the performance of the BCI system to be reduced greatly.
This necessitates that the algorithm have the ability of decoding weak
features as well as good generalization for practical application of
the system.

Multilayer CNNs are an effective solution for extracting weak
deep features. Compared with traditional machine learning, CNNs
use multilayer structures to improve the abstraction performances of
the models and achieve good recognition performances, so they have
been widely used for image classification in recent years. However,
their restricted generalization performances prevent application to
BCI systems. Retraining each time with new data to enhance the
performance consumes a significant amount of resources and is
undesirable. Therefore, we combined the excellent CNN framework
with TL to reduce the number of computations while achieving high
accuracy and good generalization.

2.2 Lower limb movement intention
prediction

The problem of movement intention prediction is essentially a
pattern recognition problem. The classification performances of
deep-learning networks depend on their architectures and
complexities. With continuous research, the architectures of some
mature CNNs, such as VGGNet, SPPNet, HighwayNet, and R-CNN,
have shown advantages for solving different problems with respect
to performance (Yujian, 2018).

TheVGGNet uses multiple non-linear layers to increase the depth
of the network given a small sensory field for the effective region sizes
of the input and output layers, thereby enabling it to learn more
complex features at lower costs (Quan et al., 2019). This deep-learning
approach can be used to find common information between similar
classes in non-smooth and non-linear EEG signals, so we use the
VGGNet framework for movement intention prediction. The VGG-
based CNNmodel can be regarded as a deepened version of the earlier
classical AlexNet model, where the depth of the network is increased
by replacing large convolutional kernels with smaller ones to reduce
the number of parameters and improve the non-linear mapping
ability of the network (Girshick, 2015; Krizhevsky et al., 2017). A
typical VGG-based CNN model could have 16 layers, including
13 convolutional and 3 fully connected layers, as shown in
Figure 2; here, all layers use 3 × 3 convolution kernels, with
rectified linear unit (ReLU) activation, maximal pooling, and
identical padding.

Using only the VGG network is ineffective because of the problem
of insufficient labeling data and time-consuming deep CNN training
for cross-temporal or cross-subject movement intention detection
based on EEG signals. To address this problem, we used TL to
improve the training efficiency of the CNN model with a limited
amount of labeled data and limited classifier performance. In the
computational process of a deep neural network, the low-level layers
are mainly used to learn general-purpose features, and the high-level
layers are mainly used to learn specific features related to a particular
topic or context (Kai et al., 2020). Therefore, freezing the low-level
layers while fine-tuning the high-level layers is a good approach for
realizing parameter transfer of a deep-learning model, as shown in

FIGURE 1
Components of the movement-related cortical
potential (MRCP).
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Figure 3. The proposed framework consists of a pretrained CNN
model and a target CNN model. In this study, we use the above
VGGNet framework as the pretrained model.

The target CNN model has the same structure as the pretrained
network, except that the original softmax output layer is replaced so
that the number of types of output movement tasks is the same. The
hyperparameters, parameters, and structure of the pretrained model
are transferred to the target model, which is then fine-tuned based
on the new data. This improves the model performance without the
need to retrain the entire network from scratch. The loss function for
fine-tuning the target CNN is softmax cross entropy, defined as
Equation 1.

H x, p( ) � −∑
i

xi log pi( ) (1)

where p is the output probability such that x is 1 when the
predicted output is the same as the true label and 0 otherwise.

Pretrained weights obtained from training on the original
dataset are used as the initial weights instead of random
initialization. This helps to utilize the useful features that are
already learned by the network while avoiding the limitations of
small samples and overfitting. The parameter TL strategy can thus
reduce the calibration time required for new tasks and render the
CNN suitable for EEG decoding.

FIGURE 2
VGG-based convolutional neural network framework.

FIGURE 3
Parameter-transfer-based VGG model.
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3 Experiment

3.1 Subjects

Ten healthy volunteers (eight males and two females, age: 23–29,
mean age: 25 years, referred as S1–S10) without any limb dysfunctions

and known cognitive deficits participated in the experiments. None of
them had prior experience with the proposed experimental procedures.
Before commencement of the experiments, all subjects were introduced
to the relevant tasks. This study was approved by the relevant Ethics
Committee, and all experiments were conducted in accordance with the
principles of the declaration of Helsinki.

FIGURE 4
(A) Readiness potential (RP) detection and lower limb exoskeleton robot control experimental platform. (B) EEG and EMG signal measurement
points. (C)Overview of the time series of one experimental session. (D) Schematic illustration of the online experimental system. (E) Photograph depicting
the online experimental scene.
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3.2 Experimental platform

The experimental platform was built as shown in Figure 4A and
included a synchronized EEG/EMG signal acquisition module, a
host computer, and a lower limb exoskeleton robot. A research-
grade data recording system (NeuroScan-Grael) was used to capture
the brain and muscle activities simultaneously in this study; the
system comprises an electrode cap with 32 EEG channels and
8 bipolar channels. A PC with an Intel i5-5600 CPU was used to
process the signals. The NeuroScan-Grael system transmits the
acquired EEG/EMG data via Wi-Fi to the PC. The
algorithmically calculated results are then sent from the PC to
the robot controller via Bluetooth, which in turn drives the
exoskeleton robot according to the subject’s movement intention.

3.3 Data recording and movement
perception

In this study, the RPs were detected from the EEG signals, and the
onset moment of voluntary movement was determined from the
EMG signals. TheNeuroScan-Grael systemwas used for simultaneous
acquisition of the EEG and EMG signals at a sampling rate of
1,024 Hz. As shown in Figure 4B, the measurement points of the
EEG signals as per the international 10/20 system were Cz, C1, C2,
FCz, FC1, FC2, CP1, and CP2, with channels AFz and CPz being used
as the references. For each subject, before the experiments, it was
necessary to clean the hair, accurately position the EEG cap, and check
that the impedance between the electrodes and the scalp was less than
5 kΩ. The lower limb movements were detected by surface EMG
signals, and the sampling points were selected from two channels of
the tibialis anterior.

3.4 Experimental paradigm

We designed both offline and online experiments in this study.
The offline experiments were used to train the proposed network
and verify the correctness of the algorithm, while the online
experiments were used to validate the effectiveness of the
proposed method. Each subject had to complete both the offline
and online experiments on several separate days, and the
experiments were carried out in a quiet and ordinary room
without much electronic equipment.

During the offline experiments, the subjects were asked to avoid
unnecessary movements in a standing position. All subjects were
asked to perform a voluntary movement task that differentiated
between left and right leg movements. Each task consisted of five
sessions, and the subjects repeated the same voluntary movement
tasks for 10 trials during each session. In each trial, the subjects were
asked to remain still for at least 5 s and then start walking at will.
There were breaks of more than 10 s between each of the voluntary
movement trials, and a few minutes of intermission was allowed
between every two sessions to minimize the effects of fatigue on the
EEG and EMG signals. Figure 4C shows a time series of one session
for the offline experiments. To validate the cross-temporal
performance of the proposed model, the same experiment was
repeated a month later.

The subjects performed the same movement tasks during the
online experiment as in the offline experiment but were required to
drive the exoskeleton robot based on the decoded movement
intentions. Reciprocal exoskeleton robot motions and lower limb
movements served as the control targets. Once the control
command is detected, it is sent to the exoskeleton robot and a
computer for time recording, and the movement onset trigger based
on the EMG is also sent to the computer. The prediction system
would then not work until the next testing began; this was to ensure
that the specific motions of the exoskeleton robot were completed,
and all the response times were recorded by the computer. In the
online experiments, the prediction system was improved to reflect
the prediction performances of lower limb voluntary movement
intentions, and another computer (PC2) was added to record all
response signals in the system. The computer was mainly connected
to the signal processing computer (PC1) through the serial port. The
signal processing computer (PC1) sent the prediction results of
lower limb voluntary movement intentions based on the EEG and
onset of lower limb voluntary movements based on the EMG to the
recording computer (PC2). At the same time, PC2 also read the
angle values of the absolute encoder in the knee joint of the
exoskeleton robot through a USB interface. The framework of
the online experimental system is shown in Figure 4D. The
subject did not wear the lower limb exoskeleton robot to
distinguish the response times between the signals, and the robot
performed independent accompanying actions. This experiment
reflects the prediction performance of lower limb voluntary
movement intention through the comparison of these three
response signals. The schematic for the online experiment is
shown in Figure 4E.

3.5 Experimental data processing

3.5.1 Onset trigger detection of movement based
on EMG

For the intention detection/prediction of lower limb
voluntary movements, the real movement onset needs to be
labeled. Based on previous analyses, it is clear that the EEG
and EMG signals are homologous expressions of the same lower
limb movements. EMG signals are action potentials generated by
the muscle fibers that can directly respond to muscle activity
information. Therefore, we used lower limb EMG signals to
detect the movement onset trigger points.

The process of onset trigger detection is shown in Figure 5A.
According to the EMG signal characteristics, the data were bandpass
filtered in the range of 20–200 Hz with a 4th-order Butterworth
digital filter, and the power line frequency was filtered using a notch
filter. Thereafter, the EMG signals were Hilbert transformed to
obtain the absolute values, as shown in Equation 2.

H n( ) � x n( )*h n( )| |

h n( ) � 1 − −1( )n
nπ

�
0 n � 2, 4, 6,/( )
2
nπ

n � 1, 3, 5,/( )

⎧⎪⎪⎨⎪⎪⎩
(2)

where x(n) (n = 1, 2, . . . , N) is the EMG signal, h(n) is the
discrete Hilbert transform function, andN is the length of the signal.
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Then, as shown in Equation 3, set the smoothing windowW(n)
and calculate the convolution value of the transformed signal H(n),
and E(n) is obtained after mean-removing and normalization.

ET n( ) � H n( )*W m( )

ET n( ) � ET n( ) −∑N
n�1

ET n( )/N
E n( ) � 1 − −1( )

Emax
T n( ) − Emin

T n( ) × ET n( ) − Emin
T n( )( ) − 1

(3)

where ET(n) is a temporary variable, W(m) is the smoothing
window function,m is the length of the smoothing window function
(m ≈ 0.05*Fs, where Fs is the signal frequency), N is the length of the
signal, and ET

max(n) and ET
min(n) are the maximum and minimum

values of ET(n), respectively.
Next, the initial threshold thi was calculated from the signals,

and the sliding comparisonmethod was used to judge the state of the
signal E(n). As shown in Equation 4, the binary movement state
function S(n) of the EMG signal was obtained, and thwas constantly
updated according to the data in the sliding window.

thi � α ·∑N
n�1

E n( )/N

S n( ) �
1 E n( )≥ th

0 E n( )< th

⎧⎨⎩

th �
∑i+l
n�i

E n( )
l

+ β ·
∑N
n�1

E n( )
N

−
∑i+l
n�i

E n( )
l

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4)

where n∈[n, n + l], l is the length of the sliding window (l ≈ 0.05 p
Fs), and α and β are both threshold factors (0<α ≤ 10, 0<β ≤ 1). Here,
“1” denotes the EMG in the active state and “0” represents the EMG
in the resting state. The pseudocode of this step is shown
in Figure 5B.

Finally, the binary state function S(n) was filtered to eliminate the
pseudoactivity detection caused by noise in the active and resting
states. This filtering method consists of two steps. The first step
involves setting all sequences with a spacing of less than TA between
two adjacent “1” values to “1” to avoid the occasional resting state due
to excessive contraction during muscle activity. The second step
involved setting all sequences with spacings less than TN between
two adjacent “0” values to “0” to eliminate the influences of noise and
other spike signals that occur occasionally during muscle rest under
normal inactivity. TA is the duration of the resting state in normal
muscle activity, and TN is the duration of the peak pseudoactivity
exceeding the threshold in the resting state. Here, TA should be as
small as possible without affecting the detection of intervals in the
EMG signal to avoid advanced detection errors; TN should be as large
as possible without affecting the duration of normal muscle activity to
filter out the noise from the pseudoactivities. Their values were
adjusted based on the EMG signals, such that TA was about
500 and TN was about 1,500 in this work.

After obtaining S(n), we can detect the movement onset trigger
from the EMG signal, which can be marked on the EEG signals. By
taking the onset triggers of the lower limb voluntary movements as
the data centers, the corresponding data points are defined as the
onset times. As shown in Figure 5C, the upper graph is the signal
before onset trigger detection, the middle graph is the direct solution
to obtain S(n), and the lower graph is the result after filtering.

FIGURE 5
(A) Onset trigger detection process; (B) pseudocode for movement state determination; (C) movement onset trigger detection.
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3.5.2 Multivariate empirical-mode decomposition
(MEMD)-based signal artifact removal method for
EEG signals

When processing EEG signals, it is necessary to ensure that the
data have high signal-to-noise ratios. The amplitudes of the EEG
signals are in the microvolt range, which can be easily contaminated
by noise artifacts. Filtering these artifacts is therefore crucial for
retaining the valuable information contained in the signals. The
MEMD approach based on traditional empirical-mode
decomposition (EMD) adopts the Hammersley sequence
sampling method to map the target signal onto the hypersphere
of the multidimensional space to reduce the problem of mode
aliasing between different empirical-mode components; it has the
property of being a frequency-independent decomposition, which is
suitable for removing the motion artifacts mixed in with the EEG
signals. In this study, we established a set of n-dimensional vector
sequences as shown in Equation 5.

v t( ){ }Ti�1 � v1 t( ), v2 t( ),/, vn t( ){ } (5)

where v(t) is the n-th element target signal and T is the length of
the signal sequence.

Then, the Hammersley sequence sampling method was applied
to create direction vectors in the n-dimensional space on the (n-1)-
dimensional sphere. Then, as shown in Equation 6, calculate the
mapping Pθk of the input signal v(t) along each direction vector Xθk.

Xθk � xk
1, x

k
2,/, xk

n[ ]
θk � θk1, θ

k
2,/, θkn{ } (6)

where Xθk is the set of direction vectors corresponding to angle
θk on the (n-1)-dimensional sphere.

We next determine the instantaneous moments Pi
θk(t)

corresponding to the extremum of the mapped signal Pθk(t) for
all direction vectors, where i denotes the position of the extremum
point and i∈[1, T]. Then, the extreme points [ti

θk, v (ti
θk)] are

interpolated using the multivariate spline interpolation function
to obtain Kmultivariate envelopes. For the K direction vectors in the
sphere space, the n-element mean m(t) is given as Equation 7.

m t( ) � 1
K
∑K
k�1

eθk t( ) (7)

The intrinsic-mode function h(t) is extracted as h(t) = v(t)-m(t),
and if h(t) satisfies the multivariate intrinsic-mode function (IMF)
judgment criteria, the v(t)-h(t) result is treated as the input signal.
The above steps are repeated to extract new multivariate IMF
components h(t); otherwise, h(t) is treated as the input signal.
After a series of decompositions, the original n-element signal is
decomposed into a series of IMF components, and the residual term
r(t) is obtained as a sum. As shown in Equation 8.

v t( ) � ∑q
i�1
hi t( ) + rn t( )

hi t( ) � hi,1 t( ), hi,2 t( ),/, hi,n t( ){ }
rn t( ) � rn,1 t( ), rn,2 t( ),/, rn,n t( ){ }{

(8)

where q is the number of IMFs, and hi(t) and rn(t) correspond to
i sets of IMF components and n residuals of the n-element signal,
respectively.

Therefore, the flowchart of the algorithm is shown in Figure 6.
The EEG signal in each channel is decomposed into multiple IMF
components, and each IMF component signal is Fourier
transformed to determine its dominant frequency. According to
existing studies, the motion artifacts are mainly in the low frequency
range of 0–2 Hz (Song and Wang, 2017); to maximize the retention
of the signal itself, this study discards IMF components whose
principal frequencies are lower than 0.5 Hz, and the remaining
components and residual terms are reconstructed to remove the
motion artifacts in the EEG signals.

3.5.3 Data segmentation, training, and testing
After detecting the movement onset triggers based on the EMG

signals, the EEG data before and after the onset moment were
extracted and aligned for further analyses. The classifiers were
trained using the EEG data in the range of −1.0 s to 1.0 s of the
actions, which was labeled as the movement intention stage; data in
the range of −3.0 s to −1.0 s was labeled as the resting stage. This time
window was chosen based on neurological background suggesting
that the significant MRCP (late RP to early MMP) originates
0.5–1.0 s before the movement starts and can extend until 1.0 s
after the event. This window was only used as the active intention
state for offline validation. During the online experiment, the
prediction window was set from −1.0 s to the movement onset
time; if any intention was predicted after movement onset, it was
marked as a false positive result.

The initial 70% of the collected data were used to train the
network, while the remaining 30% were used for testing. The input
size of the network is set to number of channels × number of
datapoints × 1, and the output is categorized under two classes. In all
cases, bandpass filtering and baseline calibration were used for fair
CNN input-to-output comparisons. In the cross-temporal test, the
newly collected data were used as inputs to the trained network
based on past data. In the cross-subject test, each subject was tested
using a network trained on data from the other subjects. All data
training and testing procedures were performed using
MATLAB R2019a.

3.5.4 Methods of comparison
To verify the superior performance of the proposed method, the

results obtained with SVM and VGGNet were compared. SVM has
shown many advantages in solving small-sample, non-linear, and
high-dimensional pattern recognition problems which are the most
frequently used machine-learning methods in EEG decoding. The
core idea of the SVM method is to find a maximally spaced
hyperplane that separates the sample points of different classes
while maximizing the spacing between the two classes.
Specifically, SVM ensures that the data are linearly separable in a
high-dimensional feature space by mapping the samples to that
space. A kernel function is introduced to shift the computational
complexity from the high-dimensional feature space to the original
input space to find the hyperplane. The commonly used kernel
functions are linear, polynomial, and Gaussian kernels. In this study,
we used the SVM classifier with the radial basis function (RBF)
kernel as the reference to classify the same task. Moreover, the
VGGNet used for comparison has the same structure and
parameters as the proposed model, with the only difference being
the use of TL.
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4 Result

4.1 RP detection results

Using the above onset trigger detection method, the EMG-based
movement onset trigger was set as zero time to distinguish the
potential changes in the EEG signals. After preprocessing the
acquired signals, the low-frequency EEG signals of the
participants were extracted to observe their RP features. The EEG
signals of the subjects during voluntary lower limb movements at
FC1 are shown in Figure 7. The EEG signals of all subjects showed
RP features upon completion of the fall and recovery of the negative
potential before onset of voluntary movement, which illustrates the
ubiquity of the RP features. However, the response magnitudes
varied between the subjects, and we observed that the reactions of
S5 and S10 was weaker than those of the other subjects. This may be
because the RP is susceptible to various factors, such as preparatory
state, level of intention, praxis movements, perceived effort, and
individual differences in the brain structure (Shakeel et al., 2015;

Berchicci et al., 2020). Moreover, as with most studies, the single RPs
of the subjects were not significant, implying that direct feature
extraction will not be effective and that deep learning of the features
is required.

To further compare the variability of EEG signals from the
motor cortex of the brain between left and right leg movements
during voluntary lower limb movements in the subjects, the EEG
signals from the central motor areas FCz, FC1, FC2, Cz, C1, C2,
CP1, and CP2 were analyzed in detail. We also compared the
brain topographies for the resting, intention generation, and
movement execution states. The averaged RP is observed for
the lower limb voluntary movement from S1 shown in Figure 8.
Figure 8A is the result of right leg movements, and Figure 8B is
the result of left leg movements; the gray line indicates the single
RP, while the red line indicates the averaged RP. It can be seen
that the EEG signals from all channels of S1 showed RP features
during voluntary movement of the right leg, and most of the
channels also showed RP features during movement of the left
leg. Moreover, the RP responses of right leg movements were

FIGURE 6
Flowchart of the multivariate empirical-mode decomposition (MEMD) method.

FIGURE 7
RP results of voluntary right leg movements in the 10 subjects.
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significantly higher than those of left leg movements in terms of
the response amplitudes and response times. This may be because
all subjects were more accustomed to using their right legs in
daily life. In addition, the low-frequency potentials of channels
CP2 and Cz during left leg movements were unchanged, which
may be attributed to the weak RP features of the left leg
movement itself as well as proximity of this channel to the
reference electrode channel CPz, resulting in insignificant
changes in these channels. Observations from the brain
topography showed that there was a significant decrease in the
signal amplitude during the intention generation state, with a
somewhat larger change in intention for right leg movements
than for left leg movements that was accompanied by a weak but
insignificant contralateral RP response and no significant
changes in the resting and movement execution states. The

variability of the EEG signals for left and right leg movements
as well as variability between the different channels
during movements pose challenges for intention detection
and prediction, meaning that a data migration approach may
be needed to improve the efficiency when using neural networks.

The results indicate that the motor area is responsible for lower
limb voluntary movements; further, RP responses exist in the EEG
signals from the motor cortex during the lower limb voluntary
movements of the subjects, and these occur before the movements.
The long latencies of the RPs allow enough reserve time for feature
extraction, pattern recognition, and robot system response, all of
which contribute to robot control. The insignificant single RP and
individual differences in some subjects are the key points in
predicting lower limb voluntary movement intention. Specifically,
in the context of exoskeleton robot interaction and control, the

FIGURE 8
(A) Averaged RP from the right leg movements of S1; (B) averaged RP from the left leg movements of S1.
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experimental results provide a foundation for lower limb movement
intention prediction and compliant control of an exoskeleton robot.

4.2 Offline results of movement
intention detection

The signal length greatly influences the detection performance.
The comparison results for different data lengths are shown in
Figure 9. Figure 9A shows the accuracies for different time windows,
and Figure 9B presents the costs for time spent on the computational
process. The accuracy increases with increase in the time window
length, and this observation was consistent among the subjects. The
time cost of single detection was about 6 ms for varying lengths of
the time window. Although some single detection tasks required
longer times, a two-factor ANOVA showed that there was no
significant difference for different time window lengths (F =
0.6666, p = 0.4152). Therefore, the time window length of the
EEG data was set to 400 ms for both accuracy and real-time
performance.

Accuracy, recall, precision, and F1 score were used as the metrics
to evaluate the performance and were calculated as Equations 9–12.

Accurary � TP + TN( )
TP + FN + FP + TN( ) (9)

Recall � TP

TP + FN( ) (10)

Precision � TP

TP + FP( ) (11)

F1 − score � 2 · Recall · precision
Recall + precision

(12)

where TP is the true positive, FN is the false negative, FP is the
false positive, and TN is the true negative.

The test results of the proposed model for the 10 subjects are
shown in Table 1. It is seen that the average accuracy ± standard
deviation of the right and left leg voluntary movements using the
proposed model are 95.23% ± 1.25% and 91.21% ± 1.48%,
respectively. Moreover, the recall, precision, and F1 score metrics
of the model are balanced, with all three metrics exceeding 90% and

85% for the right and left leg voluntary movement intention
detection, respectively, implying that the proposed model
performed well.

To further validate the benefits of TL in the proposed model, we
asked the subjects to do the same walking experiment again after a
month’s interval and used the new data as the inputs to the already
trained network to obtain the detection accuracy, as shown in
Figure 10. The traditional SVM, CNN, and proposed
combination of CNN and TL methods are compared. Figure 10A
shows the right leg movement intention detection accuracy, and
Figure 10B shows the left leg movement intention detection
accuracy. In the figure, the results using the SVM approach are
shown in blue, results using only the CNN without TL are shown in
red, and results using the proposed method are shown in black; the
TL for the cross-temporal case is denoted by TLct here to distinguish
it from cross-subject TL. It is seen that the accuracy of cross-
temporal voluntary movement intention detection using SVM is
the lowest, with only 74.3% ± 4.70% for the detection of right leg
movements and 70.68% ± 7.48% for left leg movements. The
detection accuracy using CNN was substantially better, reaching
an average accuracy of 92.33% ± 16.5% for the detection of right leg
movements and 88.45% ± 1.57% for the detection of left leg
movements. These results indicate that features that are not
obvious in a single EEG can be learned better using deep-
learning methods. The accuracies of all the participants improved
when using CNN combined with TL, with the detection of right leg
movements eventually reaching an average accuracy of 94.77% ±
1.42% and that of left leg movements reaching an average accuracy
of 90.93% ± 1.29%. In addition, the training losses of all subjects
decreased after applying TL, indicating that TL can effectively
improve the performance of cross-temporal movement
intention detection.

We also evaluated the proposed model for cross-subject
performance. Each subject was tested using a network trained on
data from the other subjects, and the results are shown in Figure 11.
As with the cross-temporal test, we compared three different
approaches. Figure 11A shows the right leg movement intention
detection accuracy, and Figure 11B shows the left leg movement
intention detection accuracy. In the figure, to distinguish the TL
approach for the cross-temporal case, TLcs was used to denote cross-

FIGURE 9
Performances with different time window lengths: (A) detection accuracies with different time windows; (B) time costs with different time windows.
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subject TL. The results show that for cross-subject voluntary
movement intention detection, the accuracy of detection of right
leg movements using the SVM method was 61.83 + 2.49% and that
of left leg movements was 59.20% ± 3.01%. The right leg movement
evaluation detection accuracy using the CNNmethod was 78.80% ±
3.58%, while that of the left leg movements was 78.20% ± 2.64%. The
results of these two methods are unsatisfactory, indicating that the
learned features are highly specific and weakly generalized for both
the machine-learning and deep-learning processes. Moreover, the
accuracy obtained when using the proposed CNN combined with
TL is much higher than those when using the SVM and CNN
methods. The average accuracy of right leg motion detection reached
89.43% ± 1.60%, and the average accuracy of left leg motion
detection reached 87.01% ± 1.19%. This implies that TL offers
considerable advantages across subjects.

The elapsed training time was also calculated when the target
domain data were used as inputs to the network. The average elapsed
training times and their standard deviations were 1,057 ± 185 s for
the CNN and 745 ± 164 s for the proposed methods. Thus, the
proposed method required about one-third less training time than
the CNN method; hence, TL greatly improved the efficiency of
training while ensuring high accuracy. In summary, the results show
that the proposed CNN combined with TL can enhance the network
performance, obtain high accuracy, show good generalization for
both cross-temporal and cross-subject aspects, and reduce the
training time without compromising on accuracy.

4.3 Online performance of movement
intention prediction

The responses of the EEG, EMG, and knee angle signals of the
exoskeleton robot were recorded in the online experiment, and
the response time of each signal is shown in Figure 12. The blue
line indicates the predicted result of lower limb voluntary
movement intention based on the EEG signal, the red line
indicates the onset of lower limb voluntary movement based
on the EMG signal, and the black line indicates the knee angle
signal of the lower limb exoskeleton robot. The response time
differences between the signals were calculated using the
movement onset as the reference. Δt1 indicates the time
difference between the predicted result and movement onset,
while Δt2 indicates the time difference between the knee angle of
the robot and movement onset. In this experiment, Δt2 was the
time required by the robot system for information processing and
response since the subjects were not wearing the exoskeleton
robot. The response time was determined by performing an
unloaded test on the exoskeleton robot. The results were
averaged over five repeated trials to minimize the effects of
random errors, and the results showed that Δt2 was
approximately 40 ms. The movement onset marked by the
EMG signal was noted as moment 0. The prediction time
should be ahead of the motion onset moment; therefore, in
the experiments, instances whose prediction times were less
than or equal to zero (Δt1≥0) were marked as wrong
predictions, and their prediction times were set to zero. The
prediction accuracies and prediction times were statistically
analyzed for all subjects.T
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The prediction accuracies of all the subjects are shown in
Figure 13. As seen, the average lower limb voluntary movement
intention prediction accuracy of the left leg was 82% ± 5.6%, and the
average prediction accuracy of the right leg was 83.5% ± 6.7%. The
highest accuracy rate was 90%, while the lowest was over 75%.
Although there were some variations between the subjects, a two-
tailed t-test showed no significant difference in the prediction
accuracies between the lower limb voluntary movements (t =
0.461, p = 0.66). The statistical results of the prediction time are
shown in Figure 14, where the Δt1 can be seen to vary
from −710 to −272.5 ms with a median value of −470 ms and
average prediction time of −483.9 ± 11.9 ms. This result indicates
that the proposed method can effectively predict the intention of
lower limb voluntary movement. Further, the prediction time
exceeds 40 ms for information processing by the exoskeleton
robot, which provides a good foundation for interactive control
of the exoskeleton robot. Although the results of a two-factor
ANOVA showed significant differences in the prediction times
between different subjects and lower limb voluntary movements
(F = 3.8959, p = 0.0092), all results were adequate for the exoskeleton
robot control response.

Based on the online experimental results, the proposed method
realized good prediction of lower limb voluntary movement
intention, and its prediction accuracy and prediction time were
satisfactory, which provide a good foundation for exoskeleton robot
control. To further highlight the advantages of the proposedmethod,
the statistical results of the prediction study of movement intentions
of the relevant lower limbs are shown in Table 2. These results
indicate that the prediction of limb movements using EMG or angle
signals has a short latency, which poses challenges to the robot’s
responses. Using the feature RPs of the EEG signals to predict limb
movement intentions required longer prediction times but tended to
be less accurate. Our approach was able to achieve high online
accuracy at longer prediction times. Overall, the method proposed in
this study shows excellent performances for both offline and online
experiments and is able to maintain highly accurate outputs before
movement execution, laying the foundation for further
investigations of the control responses of exoskeleton robots or
related peripherals.

5 Discussion

5.1 Movement intention prediction
performance

Based on the multiple-input and multiple-output model of brain
cognition, the EEG and EMG signals are homologous in their generation
but differ in their signaling and response times. Therefore, when using
the EEG RP features to predict lower limb voluntary movement
intentions, it is scientific to use the surface EMG signals that
characterize the activation of lower limb skeletal muscles as the basis
for judging the onset times of lower limb voluntary movements; this is
because the true moment of onset of human voluntary movement is the
only method of evaluating the predictive ability of intention.

The detection results of RPs show that they have long latencies and
can provide a good basis for prediction of lower limb voluntary
movement intentions. By observing the EEG RP features of the
10 subjects, it is noted that the single RPs produced during
voluntary lower limb movements of the human body are not
significant but the multitrial superposition effect is significant, which
is consistent with the findings of other studies in literature (Seneviratne
and Gilwon, 2020). Based on observation of the brain topography with
multichannel EEG data, we found that there was a contralateral RP
response to lower limb movements that was not obvious; however, this
trendwas consistent across all channels. This finding is consistent with a
reported study on EEG signals from different movement sites on the
human body, which compared the RP features of tongue, hand, leg, and
ankle movements; it was observed that the farther the body site was
from the brain, the higher was the contralateral RP response of the
movement toward the midline. Moreover, we observed that the RP
features generated by the right leg voluntary movements were
significantly more pronounced than those of the left leg movements,
whichmay be related to the fact that the dominant leg of all the subjects
was the right leg during the freemovements. However, the reason for its
neural connectivity needs to be investigated further.

The offline detection accuracy demonstrated the efficiency of the
proposed method. Many studies have shown that the recognition
accuracies of lower limb movements are lower than those of the
upper limbs and that the recognition accuracies of voluntary

FIGURE 10
Comparison of the cross-temporal detection accuracies of different methods for (A) right and (B) left leg movement intentions.
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movements are lower than those of evoked movements when decoding
motor intention based on EEG signals. The method proposed in this
study achieves more than 90% accuracy for lower limb voluntary
movement intention prediction and performs well in terms of the
recall, precision, and F1 score metrics while outperforming traditional
machine-learning and single deep-learning methods. Although the
insignificant characteristics of single-trial RPs and individual
differences in the EEG signals show differences in the detected
results between subjects, the experimental results exceed the
performances of existing studies and prove the validity of the
proposed method. Moreover, the proposed method shows excellent
cross-temporal and cross-subject performances, reducing the network
training time considerably while maintaining high accuracy; this is
expected to offer a foundation for the practical applications of BCI
intention prediction techniques.

Studies have shown that a single-trial detection accuracy of 70% or
more is required for all subjects to use the BCI system to control the
exoskeleton robot. In the online experiments, the lowest accuracy was
75% and average accuracy was 82.75%, which is in line with this
consensus. The movement intentions can be predicted up to
272.5–710 ms before motion onset with the proposed method.
This is a significant time lead that cannot be achieved with other
signals, such as EMG or angle signals, with equal prediction accuracy.

Moreover, the proposed method provides a higher accuracy than
other methods that offer the same lead on prediction time. This
prediction time lead offers enough reserve time for information
processing by the exoskeleton robot, which can help realize
interactive control to overcome the problem of response time lag
for the user. In summary, the RP-based prediction method for lower
limb voluntary movement intention proposed in this study has good
prediction accuracy and is well-prioritized in terms of the temporal
responses, thereby laying the foundation for further studies on
exoskeleton robot control.

5.2 Limitations of the study and further work

Themain limitation of this study is that the subjects did not wear
the exoskeleton robots to validate the online prediction
performance. When subjects wear the exoskeleton robot, more
noise will be present in the EEG signals, which may increase the
difficulty of RP detection and movement intention prediction via
EEG signals. The experiments did not involve an asynchronous
control method for real testing. Hence, future works will involve
combining the exoskeleton control with asynchronous BCI. There is
no doubt that the main motivation for this work was to provide a

FIGURE 11
Comparison of the cross-subject detection accuracies of different methods for (A) right and (B) left leg movement intentions.

FIGURE 12
Response times of the prediction system.

FIGURE 13
Prediction accuracies of the online experiment.
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novel RP-based BCI system for controlling an exoskeleton robot to
solve the real-time performance between human movement
intention and robot response. The results presented in this work
are based on the feasibility of RP-BCI usage in robot control. Future
studies will also involve more subjects using the RP-BCI system to
control a robot.

Another limitation of this study is the gender imbalance among the
subjects, even though no differences were found between the male and
female subjects in the experimental results. Thus, a large sample size and
balance between the numbers of male and female subjects are desired to
fully evaluate the robustness of the proposed method and system.
Furthermore, as stroke survivors are the potential targets of this study in
terms of people requiring appropriate robot control, we expected more
new challenges when predicting their active movement intentions
because of differences in their types and areas of brain injuries; this
gap should be further addressed in future studies. In future work,
another BCI paradigm will be added to build a hybrid BCI system for
application. The proposed voluntary movement detection scheme
without external stimulation is also expected to play an important
role in lower limb neurorehabilitation, which can help improve the

autonomy of patients in the process of rehabilitation; however, the EMG
signal specificity of some patients still needs further research.

6 Conclusion

Targeted control of exoskeleton robots requires early prediction
of human lower limb movement intentions to handle any
constraints caused by control delays. Based on the principles of
human intention generation and movement expression processes,
EEG signals were used to predict human lower limb voluntary
movement intention in this study. Based on the susceptible and
single-trial non-obvious properties of EEG RP features as well as
cross-domain problems of BCIs in practical applications, a VGG-
based CNN framework combined with TL-based prediction was
proposed for lower limb voluntary movement intention. Surface
EMG signals were used to mark the voluntary movement onset
moment, and the MEMD method was used to remove artifacts. The
proposed method quickly learns the pretrained model and transfers
the parameters to a new target domain, thus effectively solving the

TABLE 2 Comparison of studies related to the prediction of movement intentions.

Reference Target Feature Classifier Accuracy Prediction latency (ms)

Lew et al. (2012) Upper limb RP LDA 76% −167

Buerkle et al. (2021) Upper limb RP LSTM-RNN 84.98%–92.08% −513 to −54

Wöhrle et al. (2017) Upper limb RP + EMG SVM 75% −269

Feleke et al. (2021) Upper limb EMG RFNN Pearson cc = 0.85 ≥ −250

Tortora et al. (2019) Upper limb EMG Gaussian mixture model 94.3% −160 to −80

Faquan and Jun (2020) Lower limb Angle Multidimensional temporal
association

78.3% −92.24

Hasan et al. (2021) Lower limb RP SVM 9/12 (75%) −741

Our study Lower limb RP CNN-TL Offline: 93.22%
Online: 82.75%

−710 to −272.5

FIGURE 14
Prediction times of the online experiment: (A) performance of right leg movement; (B) performance of left leg movement.
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cross-temporal and cross-subject problems involved in applying BCI
intention prediction online. Offline and online experiments were
conducted to validate the good performance of the proposed
method. Overall, the proposed method required less training time
and produced high prediction accuracy and good generalization,
along with a larger prediction time lead for exoskeleton robot
responses. This is a significant criterion for interaction control of
lower limb exoskeleton robots.
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