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Diabetes mellitus (DM) is a prevalent disorder with an urgent need for continuous,
precise, and on-site biomarker monitoring devices. The continuous monitoring
of DM biomarkers from different biological matrices will become routine in the
future, thanks to the promising biosensor design. Lately, employing different
nanomaterials in biosensor receptor parts has had a great impact on smart DM
monitoring. Among them, gold nanostructures (AuNSs) have arisen as highly
potential materials in fabricating precise DM biosensors due to their unique
properties. The present study provides an update on the applications of
AuNSs in biosensors for detecting glucose as well as other DM biomarkers,
such as glycated hemoglobin (HbA1c), glycated albumin (GA), insulin, insulin
antibodies, uric acid, lactate, and glutamic acid decarboxylase antibodies (GADA),
with a focus on the most important factors in biosensor performance such as
sensitivity, selectivity, response time, and stability. Specified values of limit of
detection (LOD), linear concentrations, reproducibility%, recovery%, and assay
time were used to compare studies. In conclusion, AuNSs, owing to the wide
electrochemical potential window and low electrical resistivity, are valuable tools
in biosensor design, alongside other biological reagents and/or nanomaterials.
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Highlights

1. AuNSs presented outstanding properties such as chemical stability, high electrical
conductivity, a large specific surface area, low cost of synthesis, and ease of
functionalization.

2. The utilization of AuNSs in biosensors is an excellent opportunity to detect all diabetes
biomarkers, such as glucose, HbA1c, GA insulin, IAA, and GADA.

3. AuNSs can improve the efficiency, sensitivity, specificity, and stability of the diabetes
biosensors.

4. AuNS properties can increase the efficiency, sensitivity, and specificity of the biosensor
through intrinsic specific molecule recognition capacity, different signal transduction
amplification methods, fast electron transfer, and the ability to stabilize GOx
structures and/or antibodies over proper immobilization on electrodes, serving as
fluorescent and colorimetric materials.

OPEN ACCESS

EDITED BY

Aylin Marz,
Norfolk State University, United States

REVIEWED BY

Mahdieh Darroudi,
The University of Texas at Dallas, United States
Congnyu Che,
Sanofi Genzyme, United States

*CORRESPONDENCE

Soheila Kashanian,
kashanians@gmail.com

Helgi Schiöth,
helgi.schioth@neuro.uu.se

RECEIVED 09 June 2024
ACCEPTED 08 August 2024
PUBLISHED 17 September 2024

CITATION

Jamshidnejad-Tosaramandani T, Kashanian S,
Omidfar K and Schiöth H (2024) Recent
advances in gold nanostructure-based
biosensors in detecting diabetes biomarkers.
Front. Bioeng. Biotechnol. 12:1446355.
doi: 10.3389/fbioe.2024.1446355

COPYRIGHT

© 2024 Jamshidnejad-Tosaramandani,
Kashanian, Omidfar and Schiöth. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Review
PUBLISHED 17 September 2024
DOI 10.3389/fbioe.2024.1446355

https://www.frontiersin.org/articles/10.3389/fbioe.2024.1446355/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1446355/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1446355/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2024.1446355&domain=pdf&date_stamp=2024-09-17
mailto:kashanians@gmail.com
mailto:kashanians@gmail.com
mailto:helgi.schioth@neuro.uu.se
mailto:helgi.schioth@neuro.uu.se
https://doi.org/10.3389/fbioe.2024.1446355
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2024.1446355


5. Further consideration is required to translate AuNS-based
technologies into routine and functional biosensors, as the
properties of AuNSs are dependent on their size, shape, and
spatial arrangement.

1 Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder
recognized by persistently elevated blood glucose levels,
commonly due to defects in insulin secretion, function, or
absorption mechanisms (Association, 2014). It is the ninth
leading cause of death globally, as reported by the World Health
Organization (WHO) (Khan et al., 2020). The number of people
with DM is predicted to increase by 700 million by the year
2045 worldwide because of the modern lifestyle (Saeedi et al.,
2019). DM can lead to other long-term adverse health effects,
including the escalated risk of cardiovascular disease (Damaskos
et al., 2020), hypokalemia (Frier, 2014), nephropathy (Reutens and
Atkins, 2011), retinopathy (Shah et al., 2021), blindness (Stratton
et al., 2001), foot damage (Vas et al., 2018), falls (Macgilchrist et al.,
2010), amputation (Khalil et al., 2023), cerebral edema (Durr et al.,
1992), dementia (Pasquier et al., 2006), skin conditions (Wollina
et al., 2020), and disability (Yoon and Kim, 2019) which profoundly
affect patients’ quality of life (Jitendra et al., 2024). Although DMhas
no certain cure, continuous follow-up of the body’s glucose levels for
appropriate management can minimize the disease complications
and reduce its severity (Alam et al., 2021).

The current standard of DM monitoring is through the invasive
blood pricking technique for the detection of glucose (Kirk and
Stegner, 2010). Typically, this method is reliable; however, the

repetitive pricking in the long term is inconvenient for patients
and can simply cause irritation and infections (Reddy et al., 2022).
The current limitations of existing continuous monitoring
biosensors are issues related to reliability, accessibility,
complexity, cost, and time (Pullano et al., 2022). In contrast, the
non-invasive, real-time, and continuous monitoring of glucose from
different biological matrices (i.e., blood, urine, saliva, breath,
interstitial fluids, tears, and sweat) has the potential to become
routine in the near future (Laha et al., 2022). Furthermore, detecting
other DM biomarkers such as insulin, insulin antibodies, HbA1c,
GA, and acetone from different biological matrices using novel
biosensor technology has remained an active subject of research
(Reddy et al., 2022). This offers advantages such as low cost, the
ability to detect low concentrations of biomarkers, and time and
labor efficiency (Ahmadi et al., 2020; Laha et al., 2022; Wang et al.,
2022; Jadhav et al., 2023; Mandali et al., 2023; Psoma and Kanthou,
2023). Different types of advanced point-of-care (POC) platforms
make the monitoring of the DM biomarkers more precise,
straightforward, safe, and less uncomfortable for patients
(Teymourian et al., 2020; Liu Y. et al., 2022; Khor et al., 2022; Li
and Chen, 2023; Safarkhani et al., 2023; Hu et al., 2024) (Figure 1).

Recently, advances in nanomaterials have prompted the
designing of promising receptors for the development of cost-
effective, on-site, and smart biosensors for DM monitoring
(Shoaib et al., 2023). For instance, the surface area of the
biosensors can be increased via nanomaterials, which results in
generating greater current, more rapid reactions, and improved
catalytic activity (Cho et al., 2020). Signal-to-noise ratio
improvement is possible due to the amplifying properties of
nanomaterials (Kumar et al., 2019). In addition, when designing
multifunctional bioreceptors, different nanomaterials and/or

FIGURE 1
The principles of detecting diabetes mellitus biomarkers from different matrices in the human body using various bioreceptors and gold
nanostructures.

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Jamshidnejad-Tosaramandani et al. 10.3389/fbioe.2024.1446355

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1446355


biomolecules can be used in the biosensor simultaneously
(Theyagarajan and Kim, 2023), or a susceptible biological
substance can be replaced by mimicking materials entirely
(Mohammadpour-Haratbar et al., 2022). These sensors are
intended for the rapid detection of DM biomarkers with high
selectivity, sensitivity, accuracy, and low detection limits (El-Safty
and Shenashen, 2020; Welch et al., 2021). Last but not least, the
upgrading of other biosensor properties such as stability, scalability,
miniaturization, wearability, and connectivity to smart devices is
possible now thanks to nanotechnology advances (Altintas, 2017;
Golsanamlou et al., 2023; Mansour et al., 2024). Different kinds of
nanomaterials applied in the construction of DM biosensors,
including silver, nickel, carbon-based, and quantum dots, bring
their own advantages based on their applications and properties
(Malik et al., 2023). Depending on the specific requirements of the
biosensors, such as desired sensitivity, stability, cost, and time, gold
nanostructures (AuNSs) show great potential in this regard (Dahan
et al., 2023).

Accordingly, in recent years, progress has been made in AuNS
applications in the construction of biosensors (Naresh and Lee,
2021). More specifically, the AuNSs have emerged as potent tools in
the fabrication of highly sensitive DM biosensors (Siciliano et al.,
2023). Utilizing gold alongside other nanomaterials or biomolecules,
such as enzymes and antibodies, to modify electrodes and fabricate
AuNS-based biosensors can lead to improved sensitivity and lower
LOD compared to different types of biosensors (Xu et al., 2023). The
well-known properties of gold, such as the relatively simple synthesis
methods of AuNSs, the ability to serve as an effective nanomaterial
for biomolecule immobilization, and integration with other
nanomaterials to fabricate effective biosensors with an increased
load of biomolecules per unit mass of particles, make it a promising
choice for biosensor applications (Oliveira et al., 2023; Patil et al.,
2023; Zdarta et al., 2023). Additionally, the potential of AuNSs in
electron transfer between the electrode surface and the biomolecules
highlights the remarkable applications of AuNSs in DM biosensor
construction (Deepa et al., 2023).

Some minor drawbacks need to be taken into consideration
while designing a DM biosensor based on AuNSs, such as the
tendency of the AuNSs to aggregate as well as the detachment or
degradation of the surface attachments due to the potential non-
specific interactions with biomolecules, oxidation, leaching, and/or
corrosion (Demir et al., 2024). These might happen over changes in
sample matrix conditions, such as pH, temperature, light, and
chemical interactions, which can lead to a loss of AuNS
properties and cause potential toxicity (Ngernpimai et al., 2024a).
Addressing these challenges requires careful design and
optimization of AuNSs, including using stabilizing agents,
optimizing surface chemistry, and implementing strategies to
minimize environmental conditions (Ngernpimai et al., 2024b).
Additionally, a comprehensive study of the impact of relevant
conditions is essential to ensure the long-term stability, reliability,
and biocompatibility of AuNS-based DM biosensors.

In this regard, Yi et al. reviewed the advances in gold
nanomaterial-implemented wearable sensors in general
healthcare-related applications with a focus on the gold
nanomaterial fabrication method, the working mechanism, and
the performance of electrochemical sensors, humidity/gas sensors,
strain/pressure sensors, and colorimetric sensors (Yi and Xianyu,

2022). More recently, Patra et al. reviewed previous studies on the
applications of Au nanocomposites in enzymatic and non-
enzymatic glucose sensing mechanisms (Patra et al., 2024).
Several methods of immobilizing glucose oxidase (GOx) on gold
nanoparticles (AuNPs) for electrochemical glucose biosensors were
described by Lipińska et al. (2021). However, an objective review of
AuNS applications in biosensors for all forms of DM biomarker
monitoring is needed. Here, we provide an update on the
applications of AuNSs in DM monitoring biosensors with a focus
on the key factors in real-life biosensor performance. These factors
are conductivity potential, linearity, sensitivity, response time, and
selectivity when analyzing the DM biomarkers in different biofluid
samples. The types of AuNS-based biosensors reviewed here, on the
basis of the transduction method, are electrochemical, optical,
chemiluminescence, and calorimetric detection in the second and
third generation of glucose biosensors. Fourth-generation sensors
are not addressed. Other diabetes biomarkers, such as HbA1c, GA,
insulin, insulin antibodies, uric acid, lactate, and GADA, are
discussed in detail.

2 Gold nanostructure (AuNS)
applications in glucose detection

Along with the development of several glucose detection
techniques and biosensors, novel practical AuNSs continue to
emerge in the non-invasive skin biosensing platforms (Pour
et al., 2023). In this regard, Dervisevic et al. proposed a glucose-
sensing skin patch applying a high-density silicon micropillar array
(MPA) for electrochemically monitoring glucose levels in human
sweat (Dervisevic et al., 2021). In their study, the working electrode
was modified by depositing a Prussian blue (PB) layer and gold
nanoparticle clusters embedded in chitosan (Ch-AuNP) to increase
the active surface area, followed by the immobilization of GOx
(Dervisevic et al., 2021). The role of the jointed MPAs was physical
protection of the immobilized GOx (Dervisevic et al., 2021), which
made it possible to detect the glucose from perspiration effectively
(Dervisevic et al., 2021). Another wearable biosensing platform was
designed by combining a three-dimensional hierarchical porous Au
hydrogel-enzyme electrode with soft-MEMS technologies, using
GOx with good durability over 15 days and a suitable selectivity
(Li et al., 2021). Interestingly, the same study showed that with the
assistance of a wireless or a methylene blue Bluetooth module, this
wearable sensing platform achieved real-time and non-invasive
glucose monitoring on human skin as well (Li et al., 2021).
Similarly, continuous lactic acid monitoring was accomplished
using lactate oxidase immobilized on the same sensing platform,
further verifying the universality of the designed sensing platform
(Li et al., 2021). Frajpour et al. developed two high-performance
glucose biosensors based on the immobilization of GOx on PB-
modified TiO2 nanotube arrays functionalized by Au and AgO NPs,
which exhibited satisfactory sensitivity toward glucose (Farajpour
et al., 2020). They used AuNPs because of their excellent
conductivity, simplicity of fabrication, and cost efficiency
(Farajpour et al., 2020). Another PB-based sensing platform was
established via the cross-linking enzyme aggregates method
(GOxEA@PB/Au/CC) (Yan et al., 2021). The coral-like gold
micro/nanostructures were formed onto carbon cloth, followed
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TABLE 1 Glucose biosensors based on Au-nanostructures.

Biosensor technology Glucose bioreceptor Matrix/treatments Linear
concentration

range

LOD Assay
time

Reproducibility
(RSDa)

Recovery (%) Ref

Electrochemical Au−Si-MPA/PB/Ch-AuNP-
GOxb

0.1 M PBS and artificial sweat/
untreated

50 μM–1.4 mM 26 ± 5 μM 30 min ~5.3% NRc Dervisevic et al.
(2021)

Electrochemical GOx/Au hydrogel 0.1 M PBS and sweat at pH 7.4 &
4.4/untreated

0–5 mM 17.80 μM Real-time 0.30%–0.70% NR Li et al. (2021)

Cyclic voltammetry (CV) and
chronoamperometry

GOx/PB/Au modified-TiO2 NTs
d PBSe, pH 7.4/untreated 0.1–0.4 mM 4.91 μM NR NR NR Farajpour et al.

(2020)

Chronocoulometric and CV GOx@PB/Au/CCf Serum/diluted 10 times with
PBS, pH 6.0

0.05–3.15 mM 10 μM NR 3.3%–4.3% 98%–104% Yan et al. (2021)

SERSg Au@Ag NPs Blood/centrifuged and 10 mM of
the HEPES solution were added

10−1–10−6 M 10–6 M 5 min NR NR Pan et al. (2021)

SERS Gold nanoparticles (AuNPs) and
two-dimensional MXene
Ti3C2TX nanosheets

Tear/untreated 1–50 µM 0.39 µM 10 s 11.7% NR Cui et al. (2022)

Amperometric GOx/AuNPs/Pty/PB/SPCEh Plasma/40-fold dilution with
PBS, pH 6.0

1.0 μM–1.0 mM 1.0 μM 1.5 min 1.9%–4.3% 82.5 ± 3.5 to
100.3 ± 0.4

Khumngern et al.
(2021)

Amperometric Nf-GOx/PB/AuNPs/GRi Serum/10-fold dilution with PBS
0.05 M, pH 7.4

0.025–1 mM 0.0088 mM NR 0.69%–0.84% (n = 3) 101–102 Sakalauskiene
et al. (2023)

EBFCj CNTs/AuNPs/GOxk Urine/untreated, pH 5.3, 5.9, 7.1,
and 8

0.2–5 mM NR Real-time 3.7% NR Zhang et al. (2021)

NFCl potentiostat GOx-AuNPs-PEDOT:PSS/PB-
G/SPCEm

Serum/100-diluted with 0.10 M
PBS, pH 7.00

0.5–500 μM 0.15 μM Real-time No significant difference
0.68% (n = 6)

96 ± 2 to 104 ± 3 Promsuwan et al.
(2023)

Fluorescence BSA-AuNCs@-GOxn Serum and urine/100 and
10 times diluted with water,

respectively

25–225 mM 0.03 mM Real-time NR 94–101 Abraham et al.
(2024)

Electrochemical PbS CQDs/AuNSs/GOxo PBS at pH 7.4 0.1 μM–10 mM 1.432 nM NR NR NR Zhao et al. (2023)

(Continued on following page)
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by a PB electrochemical deposition to construct an electrochemical
biosensor to detect both H2O2 and glucose (Yan et al., 2021)
(see Table 1).

In addition to electrochemical wearable glucose biosensors,
research has been focusing on developing technologies to enable
surface-enhanced Raman scattering (SERS) biosensors (Pan et al.,
2021). For instance, Pan et al. reported a two-step seed-mediated
synthesis of gold core@silver shell nanoparticles (Au@Ag NPs) for
detecting diabetes over the etching effect of H2O2 generated from
glucose oxidation (Pan et al., 2021). They used Au@Ag NPs as SERS
substrates and 4-mercaptobenzoic acid (4-MBA) as the Raman tag
to detect glucose concentration (Pan et al., 2021). The role of Au@Ag
NPs was to improve the electromagnetic field of SERS owing to their
strong plasmonic properties (Pan et al., 2021). Another flexible SERS
substrate composed of AuNPs and two-dimensional MXene
Ti3C2TX nanosheets has been designed to detect tear glucose
(Cui et al., 2022). In the same way, when AuNPs were present,
the combination of electromagnetic and chemical enhancement of
AuNPs and MXene greatly enhanced the SERS signal (Cui et al.,
2022). The GMXeP SERS substrates were used to detect glucose
conveniently from diabetic tears with the significant correlation
between tear and blood glucose, suggesting that the designed system
was suitable for non-invasive and sensitive detection of blood
glucose (Cui et al., 2022) (see Table 1).

In another study, for amperometric detection of glucose, GOx
was immobilized on AuNPs with the adsorption on a polytyramine
layer (AuNPs/Pty) (Khumngern et al., 2021). Then, GOx/AuNP/Pty
was coated on a PB-modified screen-printed carbon electrode
(SPCE) to produce the GOx/AuNP/Pty/PB/SPCE biosensor
(Khumngern et al., 2021). In the same study, the developed
amperometric glucose biosensor response was measured through
the reduction current of the PB mediator in a flow injection analysis
system, displaying a low value for the Michaelis constant
(Khumngern et al., 2021). The immobilization of GOx with high
affinity was accomplished via AuNPs thanks to the thiol- and
amino-functional groups of the enzyme (Khumngern et al.,
2021). The immobilization via AuNPs improved the enzyme
loading and sensor response without disturbing the enzymatic
activity (Khumngern et al., 2021). In the same way, a graphite
rod (GR) electrode was modified by AuNPs and PB with GOx to
develop an amperometric glucose biosensor in another study, using
Nafion (Nf) to produce an Nf-GOx/PB/AuNP/GR biosensor
(Sakalauskiene et al., 2023). The AuNPs increased the
electrochemically active surface area, improved the GOx
immobilization, and yielded a 1.86-fold improvement in
analytical signal strength (Sakalauskiene et al., 2023). This study
showed AuNSs could be interesting nanomaterials in the interface
construction of biosensors due to their low electrical resistivity,
relatively wide electrochemical potential window, improved
electrooxidation, and fast electron transfer that can enhance the
sensitivity and stability of biosensors (Sakalauskiene et al., 2023)
(see Table 1).

There has been a boom in developing novel analytic devices that
are miniature, user-friendly, rapid, and reliable by combining
biosensors with new technologies. Zhang et al. designed a biofuel
cell-type sensor device consisting of a glucose biofuel cell, a power
management system (PMS), and an indicator module to detect
glucose in urine (Zhang et al., 2021). The enzymatic biofuel cellsT
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(EBFCs) were manufactured on a flexible substrate by screen
printing technology (Zhang et al., 2021). The carbon nanotube
(CNT)/hybrids were immobilized on the anode to promote the
electron transfer between the active site of enzymes and the electrode
surface to improve the output performance of EBFCs (Zhang et al.,
2021). The PMS circuit enabled collecting the energy and drive of
the light-emitting diode (LED) indicator, whose flash frequency was
related to the urine glucose level (Zhang et al., 2021). The designed
device was self-powered and held potential application prospects in
wearable monitoring systems such as diapers (Zhang et al., 2021).
Promsuwan et al. introduced a glucose biosensor that included a
smartphone and a battery-less near-field communication (NFC)
potentiostat connected to an SPCEmodified with a PB-graphene ink
and functionalized with AuNP-embedded poly (3,4 ethylene
dioxythiophene): polysulfonic acid coated with GOx ((GOx)-
AuNP-PEDOT:PSS/PB-G) for glucose detection using an
amperometric method (Promsuwan et al., 2023). The PEDOT:
PSS was a conductive gel for the entrapment of the GOx-AuNPs
and the improvement of electron transfer to the PB-G mediator
(Promsuwan et al., 2023). The PB-G was used as a redox mediator to
electro-catalyze the reduction of H2O2, which was a byproduct of the
GOx reaction (Promsuwan et al., 2023) (Table 1).

The photoluminescence properties of Au in an enzymatic
fluorescent probe were developed for the selective detection of
glucose using bovine serum albumin stabilized gold nanoclusters
(BSA-AuNCs), modified with GOx (Abraham et al., 2024). The red
fluorescence exhibited by the probe was quenched by the production
of H2O2 on the addition of glucose via a static quenching
mechanism, providing UV-visible absorption and fluorescence-
lifetime-based glucose sensing (Abraham et al., 2024). In the
mentioned study, the fluorescent enzymatic sensing probe served
as an off-switch with the production of H2O2, resulting in the
selective and sensitive detection of glucose (Abraham et al.,
2024). In another work, Zhao et al. demonstrated a glucose
electrochemical biosensor through the synergetic labeling strategy
utilizing PbS colloidal quantum dots (CQDs) and Au nanospheres
(AuNSs) (Zhao et al., 2023). The PbS CQD/AuNS/GOx mixture was
immobilized on the carbon electrode surface via the one-step dip-
coating method (Zhao et al., 2023). Colorimetric glucose sensors
using enzyme-coronated AuNPs have been developed for high-
throughput assays (Jang et al., 2022). To increase the selectivity
and stability in detecting blood glucose, the biosensors were
functionalized with an erythrocyte membrane, which facilitates
the permeation of glucose, thanks to glucose-selective membrane
proteins (Jang et al., 2022). The performance of the biosensor is
represented in Table 1.

3 Au-nanostructure-based biosensors
for other diabetes biomarkers

Glycated hemoglobin (HbA1c) is an established DM biomarker,
according to the World Health Organization and the American
Diabetes Association. HbA1c can be used for the practical long-term
diagnosis of the disease in clinical practice as an alternative to
glucose (Sherwani et al., 2016). In this regard, an electrochemical
HbA1c biosensor with good efficiency was designed based on the
electrochemical immune principle. The reproducibility and

conductivity of the electrode are improved by depositing AuNPs
on the surface of the screen-printed electrode (SPE) (Zhao et al.,
2022). The experimental results showed a sensitivity of 0.0938 μA/
μg·mL−1 (Zhao et al., 2022). The sensor delivered satisfactory
repeatability, stability, and anti-interference performance (Zhao
et al., 2022). Additionally, Boonprasert et al. developed
multiwalled nanotubes incorporated with gold nanoparticles
(POC-HbA1cMWCNTs/AuNPs), used as a routine POC for the
detection of HbA1c (Boonprasert et al., 2023). They compared their
developed biosensor to the standard HPLC method and showed the
accuracy of the POC-HbA1cMWCNTs/AuNPs was 94.18%
(Boonprasert et al., 2023). Likewise, a sandwich paper-based
electrochemiluminescence (ECL) biosensor was developed using
the zirconium metal–organic framework/Fe3O4 (trimethyl
chitosan)/gold nanocluster (Zr-MOF/Fe3O4(TMC)/AuNCs) as a
tracing tag to label anti-HbA1c monoclonal antibodies and used
reduced graphene oxide (rGO) as an immobilization platform for
the sensing element (Ahmadi et al., 2021). The fabricated
immunosensor demonstrated a desirable assay performance for
HbA1c (Ahmadi et al., 2021). Furthermore, a thiol-modified
aptamer containing AuNPs bound to HbA1c with high affinity in
whole blood samples was synthesized by Devi et al. to produce a
stable aptasensor (Devi et al., 2023). The results showed that the
thiol groups enhanced the stability of aptamers adsorbed on the
surface of AuNPs effectively (Devi et al., 2023) (see Table 2).

However, HbA1c detection is not recommended for specific
conditions such as pregnancy, chronic kidney disease, and
hemoglobinopathies (Yazdanpanah et al., 2017). In such
situations, glycated albumin (GA) can be used as an alternative
DM biomarker without the interference of other health issues
(Mahobiya et al., 2023). Accordingly, Mahobiya et al. measured
the level of GA instead of HbA1c with microscreen-printed
electrodes (μSPE) coated with bi-metallic gold-platinum (AuPt)
nanomaterial with a synergistic effect (Mahobiya et al., 2023).
The developed sensing platform showed an improved response
compared to singular Pt nanoparticles (Mahobiya et al., 2023)
(see Table 2).

Precise insulin detection is crucial for managing DM through
regulated insulin dosage (Turner and Pickup, 1985). Common
laboratory analytical methods for insulin detection are usually
cost- and time-consuming and lack a real-time and continuous
monitoring potential (Psoma and Kanthou, 2023). Therefore,
research efforts are aiming toward insulin biosensors to offer a
more accurate estimation of insulin (Psoma and Kanthou, 2023).
Consequently, a simple sandwich-type electrochemical
immunosensor was fabricated using AuNP-adhered metal–organic
framework-derived copper–zinc hollow porous carbon nanocubes
(Au@Cu5Zn8/HPCNC) and AuNP-deposited nitrogen-doped holey
graphene (NHG) was used as a dual functional label and sensing
platform (Sakthivel et al., 2022). Similarly, Liu et al. designed an
electrochemical aptasensor to detect insulin using laser-scribed
graphene electrodes (LSGEs) (Liu J. et al., 2022). The aptasensor
was based on using Exonuclease I (Exo I) (Liu J. et al., 2022). The
results showed using the aptamer, AuNPs, MB, and Exo I, the signal
could be well-correlated to the concentrations of insulin (Liu J. et al.,
2022) (see Table 2).

The presence of antibodies against insulin can be part of
diagnosing people with type 1 diabetes (Katsarou et al., 2017). In
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TABLE 2 Biosensors for other diabetes biomarkers based on Au nanocomposites.

Sensor
technology

Detected
biomarkers

Bioreceptor Matrix/
treatments

Linear
concentration

range

LOD Assay
time

Reproducibility Recovery Ref.

Electrochemical HbA1ca AuNPs/SPEb PBS at pH 7.4/untreated 20–200 μg/mL 15.5 μg/mL NRc NR NR Zhao et al.
(2022)

Electrochemical HbA1c MWCNTs/AuNPs/SPCEd Blood/five times diluted
with PBS

0.186–2.044 g/dL 0.01 g/dL Real-time NR NR Boonprasert
et al. (2023)

Electrochemiluminescence HbA1c Zr-MOF/Fe3O4(TMC)/AuNCs and rGOe

on a SPE
Blood/five times diluted in
the red cell lysis buffer

2%–18% 0.072% NR ≤4% NR Ahmadi et al.
(2021)

Colorimetric HbA1c G@NPsf Blood/100 times diluted
with deionized water,

pH 7.4

0.1 μM–100 μM 0.1 μM 7 min <5.1% 94.0% and 95.4% Devi et al.
(2023)

Electrochemical GAg AuPt NPs/µSPEh Blood/untreated, pH 7 0.1 nM to 500 mM 0.1 nM NR 3.28 NR Mahobiya
et al. (2023)

Electrochemical
immunosensor

Insulin Au@Cu5Zn8/HPCNC/GCEi Human serum/diluted
with PBS, pH 7.4

DPVj: 0.000022–11 ng mL−1;
and amperometry

0.000022–222 ng mL−1a

0.341 for DPV and
0.453 fg mL−1 for
amperometry

NR 4.63% NR Sakthivel et al.
(2022)

Electrochemical aptasensor Insulin AuNPs-Apt/LSGEsk Blood/0.1 M Tris-HCl,
pH 7.4

0.1 p.m. to 1 μM 22.7 fM NR 1.80% 90.93% Liu et al.
(2022b)

Electrochemical Insulin antibodies Polyaniline and gold NPs Plasma/diluted with a
PBS, pH 7.4

0.001–1,000 ng mL-1 0.017 pg mL−1 and
0.034 pg mL−1 in DPV

and square wave
voltammetry

6 min 5.7% 99%–104% Farrokhnia
et al. (2022)

SERSl GADA and IAAm Silver–gold core-shell nanotags embedded
with Raman probes

Human serum/untreated 0.01–100 ng mL−a NR NR 6.87% and 7.96% NR Wang et al.
(2023)

Electrochemical Glucose and insulin SPCE-AuNPs-GluApt-MB and SPCE-
AuNPs-InsApt-MBn

Saliva/adding 0.5%
sodium dodecyl sulfate
(SDS) to the collected
sample followed by
heating up to 70°C for
10 min, pH 7.4

0.1–50 mM and 0.05–15 nM 0.08 mM and 0.85 nM Real-time 2.67% for glucose, 1.52%
for insulin

95.1–104.1 for
glucose, 92.0–98.8

Liu et al.
(2022c)

Electrochemical Glucose and lactate AuNNs-PEGDEo Sweat/untreated, pH 7.4 0–250 μM and 0–25 mM 7 μmol L−1a and
54 μmol L−1a

real-time 2.9%–4.3% and
3.2%–4.7%

92.8%–108% and
98.7%–106%

Yu et al. (2021)
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this regard, an electrochemical biosensor for rapid detection of
insulin antibodies was developed (Farrokhnia et al., 2022). The
fabrication process was based on the optimized sequential
electropolymerization of polyaniline and electrodeposition of
AuNPs on the surface of the functionalized gold electrode
(Farrokhnia et al., 2022). After immobilizing the insulin antigen
and blocking with BSA, the biosensor was successfully used to
determine different concentrations of insulin antibodies under
optimal conditions (Farrokhnia et al., 2022). In addition, an
SERS-based biosensor using polyvinylidene fluoride (PVDF)
membranes as a flexible support for the detection of GADA and
insulin autoantibodies (IAA) was developed (Wang et al., 2023). In
the same study, two kinds of silver–gold core-shell nanotags
embedded with Raman probes and attached with GADA or IAA
were synthesized to capture the targets (GADA and IAA) (Wang
et al., 2023). Results showed the probes sandwiched between silver
and gold layers guaranteed spectral stability and reliability (Wang
et al., 2023). Another electrochemical aptasensor on SPCE was
developed for real-time detection of insulin and glucose in saliva
(Liu S. et al., 2022). Two specific aptamers for insulin and glucose
were fabricated on AuNP SPCEs to form the sensing platform that
terminated with methylene blue redox probes (Liu S. et al., 2022)
(See Table 2).

In another combinational work, a gold nanopine needle
(AuNN)-programmed flexible sweat sensor was developed for
real-time monitoring of glucose and lactate levels in human
sweat (Yu et al., 2021). The AuNNs were grown on the flexible
gold substrate by electrochemical deposition for signal amplification
(Yu et al., 2021). The corresponding enzymes were immobilized on
the chip via a cross-linker poly (ethylene glycol) diglycidylether
(PEGDE) (Yu et al., 2021). Zhou et al. designed a luminescent
wearable sweat tape (LWST) biosensor that can be attached to a
smartphone (Zhou et al., 2021). It embedded multi-component
nanoprobes onto microwell-patterned paper substrates of
hollowed-out double-side tapes consisting of responsive
luminophores, enzyme-loaded gold nanoclusters (AuNCs), which
were wrapped by the switch and MnO2 nanosheets (Zhou et al.,
2021). The responsive luminophores were constructed using three
substitutable components: first, uricase, GOx, and alcohol
dehydrogenase enzymes for molecular target recognition of uric
acid, glucose, and alcohol, respectively (Zhou et al., 2021). Second,
glutathione-protected AuNCs (yellow, red, and green) for
luminescent signal output, and third, polycation PAH (poly
(allylamine hydrochloride)) for integration (Zhou et al., 2021).
MnO2 NSs as the switch could quench the emission of the
AuNCs but be degraded by the reductive product of the
incorporated enzymes (Zhou et al., 2021). The results showed the
targeting analysts could be detected through a “turn-on”
luminescence approach (Zhou et al., 2021) (see Table 2).

4 Challenges and drawbacks in the
commercialization of AuNS-based DM
biosensors

Commercializing AuNS-based DM biosensors involves
navigating several hurdles, including regulatory challenges,
manufacturing scalability, cost-effectiveness, and user adaptationT
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(Kumar and Mahajan, 2024). Accordingly, proving the safety and
biocompatibility of the biosensor requires comprehensive studies to
ensure that AuNS-based biosensors are safe (Lu et al., 2023).
Potential toxicity, long-term stability, and environmental impact
need thorough evaluation (Lu et al., 2023). In this context, obtaining
approval from regulatory authorities could be stringent and time-
consuming (Marimuthu et al., 2024). It usually involves extensive
preclinical and clinical testing, quality control, and documentation
(Marimuthu et al., 2024). Additionally, defining exclusive and
universal standardization protocols for testing and validating the
performance, safety, and quality control of heterogeneous AuNS-
based biosensors can complicate regulatory approval (Marimuthu
et al., 2024). Furthermore, manufacturing with consistent quality
and performance at a large scale is challenging (Kumalasari et al.,
2024). Variability in AuNS size, shape, and surface functionalization
can affect biosensor translation to large-scale production
(Chakraborty et al., 2024). Moreover, integration with smart
devices in a reproducible and scalable manner requires advanced
manufacturing techniques and robust quality control processes,
which can lead to high production costs (Ghobashy et al., 2024).
To address this challenge, collaborative efforts are needed between
researchers, manufacturers, and regulatory bodies to help streamline
the development and approval process (Ghobashy et al., 2024). This
includes advancements in integration, automation, chemical

synthesis, and process optimization to reduce costs (Zou et al.,
2024). In summary, while AuNS-based biosensors hold significant
promise for improving diabetes management, addressing these
hurdles is critical for successful commercialization. Through
collaborative efforts, innovative manufacturing, and cost-
reduction strategies, these challenges can be overcome (Kumar
and Mahajan, 2024).

5 Future perspective and emerging
trends in AuNS-based DM biosensors

Emerging trends in the application of AuNSs are one of the
most successful examples of biosensor innovations for DM
detection, offering exceptional biocompatibility, stability, and
conductivity, paving the way for significant breakthroughs in
POC (Haider et al.). Currently, AuNSs enhance the sensitivity
and precision of glucose monitoring devices, enabling real-time,
non-invasive glucose detection with higher accuracy (Arafa et al.,
2024). Their ability to operate in various environmental
conditions without the limitations associated with enzyme
degradation makes them ideal for continuous glucose
monitoring systems in non-enzymatic biosensors (Tehrani
et al., 2024). Additionally, they enhance the sensitivity and

FIGURE 2
Closed loop structures can improve the overall management of diabetes mellitus (DM) by providing simultaneous biomarker detection and
drug release.
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specificity of biosensors for other DM biomarkers, facilitating
real-time, non-invasive, and multi-detection DM monitoring
through smart devices (Kim et al., 2024). As an emerging
trend, the integration of AuNSs with advanced technologies
like artificial intelligence and machine learning can improve
data analysis and predictive capabilities (Ahmad and
Muhmood, 2024; Darwish et al., 2024; Eswaran et al., 2024;
Gupta et al., 2024; Zhou et al., 2024). Future perspectives also
include the development of hybrid biosensors combining
nanomaterials with other nano- and micro-structures to
simultaneously monitor a broader range of biomarkers and
the release of a drug in a closed loop to improve the overall
management of DM (Wang et al., 2024) (Figure 2). This offers a
more comprehensive health assessment and personalized
treatment strategies in the future.

6 Discussion

This study aimed to shed light on the recent advances in Au-
nanostructured-based biosensors in detecting glucose and other
diabetes biomarkers, such as HbA1c, GA insulin, IAA, and
GADA. This is imperative because DM has no certain cure to
date, and a real-time measurement of the biomarkers for proper
management of the disease can lower the risk of further
complications. Previous studies showed that AuNSs exhibited
excellent properties, including high electrical conductivity, a
large specific surface area, relatively low cost of synthesis, and
high biocompatibility. Thus, they are suitable options in the
construction of biosensors for DM monitoring. AuNSs are
valuable in biosensor construction due to their established low
electrical resistivity and wide electrochemical potential window.
In addition, they can enhance the sensitivity and stability of
biosensors through properties such as intrinsic specific molecule
recognition capacity, signal transduction amplification in
different methods, fast electron transfer, and the ability to
stabilize structures of GOx and/or antibodies on electrodes.
They also can serve as fluorescent and colorimetric materials,
benefiting from their excellent optical features based on an
aggregation/dispersion switch.

The explanation for the wide applications of the Au-
nanostructures in DM biosensor construction is their strong
properties, such as chemical stability and consistent
morphology and size, while detecting various biomarkers.
Another important characteristic is the ease of functionalization
of biosensors with biomaterials such as GOx and antibodies, which
can increase the efficiency, sensitivity, and specificity of the
biosensor. The high surface-to-volume ratio of the Au
nanostructures allows for the attachment of many biomaterials
and chemicals. Outstanding electrical conductivity enables a
reliable signal response for various biomarkers in different
biological matrices. Last but not least, good biocompatibility, in
addition to affordable price warranty the mass production of the
DM biosensors. The designed biosensors based on
biocompatibility and stability will be safe for medical
applications that contact body fluids. These properties are
crucial for designing stable, cost-effective, efficient, and fast DM
biosensors, which are vital in DM monitoring.

Here, we emphasized that using AuNSs accompanied by other
nanomaterials and biological agents can improve the most
influential aspects of successful DM biosensors, namely,
sensitivity, specificity, assay time, and stability. This work covers
AuNS applications in simple and easy-to use detection of many
different DM biomarkers. Researchers are attempting to discover
possible transformations to achieve stability and high sensitivity and
selectivity. Substantial advances are expected. However, the
approaches described in this review are based on experimental
research that has as yet no significant commercialized
application. Further consideration is required to translate these
technologies into routine and functional biosensing devices.
Another vital concern is that the existing glucose biosensors are
not continuous, wearable, or implantable equipment. Developing
non-invasive, continuous, and wearable biosensors can eliminate the
discomfort associated with finger-prick tests, improving patient
compliance and providing comprehensive DM management
throughout the day. Meanwhile, challenges such as regulatory
hurdles, scalability, cost, and user adaptation must be addressed.
Another limitation of this work is the exclusion of the fourth-
generation category of reagent-less glucose biosensors incorporating
AuNSs. In conclusion, AuNSs, with their unique properties, can
greatly improve the ability to detect DM biomarkers in biosensors.
In this context, they are valuable nanomaterials for DM diagnosis,
but further research and development are needed.
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