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Epithelial cell adhesionmolecule negative circulating tumor cells (EpCAM- CTCs)
and EpCAM positive CTCs (EpCAM + CTCs) have different biological
characteristics. Therefore, the isolation of EpCAM + CTCs and EpCAM- CTCs
is a new strategy to study the heterogeneity of tumor cells. The azobenzene
group (Azo) and cyclodextrin (CD) composite system forms a photosensitive
molecular switch based on the effect of external light stimulation. We used the
technology of specifically capturing CTCs using anti-EpCAM and aptamers
functionalized nanochips. Both anti-EpCAM and aptamers can be connected
to Azo through the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/
N-hydroxysuccinimide (EDC/NHS) modification process. Therefore, we
assume that a photosensitive intelligent nanoreactor (PSINR) modified with
anti-EpCAM can be used to capture EpCAM + CTCs; Utilizing the
characteristics of aptamer and ligand binding, a PSINR modified with aptamer
is used to capture EpCAM- CTCs; Then, two PSINRs were separated and
stimulated with light to release EpCAM + CTCs and EpCAM- CTCs,
respectively. Based on the isolation the EpCAM + CTCs and EpCAM- CTCs,
we expected to reveal the key biological mechanisms of tumor recurrence,
metastasis and drug resistance, and make the individualized treatment of liver
cancer more targeted, safe and effective, and provide a new basis for the final
realization of accurate and individualized treatment of tumors.
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1 Introduction

CTC (Circulating Tumor Cell) is a general term for various types of tumor cells present
in the peripheral blood (Deng et al., 2022). CTC detection detects the trend of changes in the
type and number of CTCs by capturing and detecting the presence of CTCs in peripheral
blood, so as to monitor tumor dynamics in real time, evaluate treatment effects, and achieve
real-time individual treatment (Wang et al., 2023). Malignant tumors are spread through
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the bloodstream to other organs of the body, and tumor metastasis is
the main cause of death in cancer patients. Tumor cells invade the
surrounding tissues of the primary tumor cells, enter the blood and
lymphatic vessels, form CTCs, and transport them to distal tissues,
where they exude and adapt to the new microenvironment, and
finally “seed”, “proliferate”, “colonize” and form metastases (Follain
et al., 2020). Therefore, the early detection of CTCs in blood has an
important guiding role in the prognosis judgment, efficacy
evaluation and individualized treatment of patients (Ma et al., 2023).

Epithelial cell adhesion molecule (EpCAM) negative CTCs (Li
et al., 2024) (EpCAM-CTCs) refer to CTCs that do not express
EpCAM, and EpCAM- CTCs and EpCAM positive CTCs (EpCAM
+ CTCs) have different biological characteristics, that is to say,
tumor heterogeneity. EpCAM + CTCs patients had a worse overall
and progression-free survival (Franken et al., 2023), and EpCAM-
CTCs had the low metastatic potential (Lampignano et al., 2017b).
Therefore, the isolation of EpCAM + CTCs and EpCAM- CTCs is a
new strategy to study the heterogeneity of tumor cells.

The principle of capture and release of CTCs includes the capture
method based on biophysical principles (Bartosik et al., 2020), which
refers to the use of filtration, centrifugation, electrophoresis, inertial
focusing, acoustic wave, etc., and matrix materials based on the
principle of biological affinity mainly include magnetic beads,
microfluidic chips and materials with micro and nano structures.
One of themain principles of capturingCTCs is the specific binding of
Epithelial cell adhesion molecule (EpCAM) antigen expressed on the
surface of CTCs to the antibody, but this method mainly captures and
releases EpCAM + CTCs, resulting in the neglect of EpCAM- CTCs.
Therefore, there is an urgent need to find a method to capture and
release both EpCAM+ and EpCAM- CTCs simultaneously.

In recent years, the potential applications of intelligent
nanomaterials in controllable catalysis, drug delivery, sensor
systems, and intelligent nanodevices have attracted researchers’
interest (Ding et al., 2023; Zheng et al., 2023; Bag et al., 2024; Xu
et al., 2024; Zhang et al., 2022b; Liao et al., 2022). More importantly,
the application of these nanomaterials or nanotechnology has
brought tremendous progress to the diagnosis and treatment of
tumors (Liao et al., 2020; Liang et al., 2024; Zhang et al., 2022a).
According to the stimulation methods, intelligent nanomaterials can
be classified into temperature sensitive, pH sensitive, photosensitive,
electromagnetic sensitive, and pressure sensitive types (Dong et al.,
2019). The characteristics of intelligent nanomaterials provide us
with an opportunity to solve this problem. Through literature study,
we learned that the azobenzene group (Azo) can undergo cis trans
isomerization under the effect of external light stimulation, thus
reversible recombination (430 nm) and decomposition (365 nm)
processes with cyclodextrin (CD) by host–guest interactions (Liu
et al., 2017), namely, the Azo group and α- CD composite system
forms a photosensitive molecular switch, which is then branched
onto a Silicon dioxide (SiO2) chip to form a photosensitive
molecular switch. In the early stage, we studied the technology of
specifically capturing CTCs using EpCAM antibodies and aptamers
functionalized nanochips (Shen et al., 2013; Shen et al., 2016; Hou
et al., 2013). Both anti-EpCAM and aptamers can be connected to
Azo-NH2 through the 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide/N-hydroxysuccinimide (EDC/NHS) modification
process (Yavari et al., 2023; Song et al., 2019). Therefore, we
assume that a PSINR modified with anti-EpCAM can be used to

capture EpCAM + CTCs; Utilizing the characteristics of aptamer
and ligand binding, a PSINR modified with aptamer is used to
capture EpCAM- CTCs; Then, two PSINRs were separated and
stimulated with light to release EpCAM + and EpCAM- CTCs,
respectively, as shown in Figure 1.

2 Methods

2.1 Screening of aptamers with high
specificity and high affinity for EpCAM-
hepatocellular carcinoma (HCC) tumor cells

2.1.1 DNA library selection
First, a 76-base DNA library with nucleotide sequences is

chemically synthesized, which contains a central sequential 36-
base random sequence and a conventional PCR primer region of
20 nucleotides on either side (i.e., 5′-TAC CTC TGA CAC ACG AG
(36 nt) CTC ATG GAC GTG CAG CTG AG-3′). The synthesis
of libraries and primers and purification by high performance
liquid chromatography were completed by Dalian Takara
Bioengineering Co., Ltd.

2.1.2 Cell SELEX for aptamer screening
2.1.2.1 EpCAM- SMMC-7721 cell sorting

SMMC-7721 and Jurkat cells were obtained from American
Type Culture Collection (Manassas, VA, United States). According
to the cell density, 1 × 103 SMMC-7721 cells were added to 1 mL of
culture medium after dilution, 10 μL of EpCAM-Fluorescein
Isothiocyanate (FITC) antibody was added, the antibody and
incubated cells were fully resuspended and mixed, stored in a 4°C
freezer protected from light, and stained for 30 min, invert and mix
every 5 min to prevent cells from sinking and uneven staining. The
stained SMMC-7721 was then sorted by FACScan to II flow
cytometry to screen out EpCAM + SMMC-7721 cells.

Collect the remaining liquid, centrifuge at 1,000 rpm for 5 min,
discard the supernatant, resuspend the washed cells in pre-chilled
PBS at 4°C once to remove excess antibodies to EpCAM-FITC that
have not bound to the cells, add 1 mL of PBS again to resuspend the
washed cells once, centrifuge at 1,000 rpm for 5 min, discard the
supernatant, and obtain EpCAM- SMMC-7721 cells as subsequent
target cells.

2.1.2.2 Cell-SELEX technology screened aptamers with high
affinity for EpCAM- SMMC-7721 cells

EpCAM- SMMC-7721 was a positive sieve cell, and human
normal liver epithelial cell QSG-7701 was a reverse sieve cell.

First, the 6-nM DNA library was added to 500 μL of binding
buffer (0.1 mg/mL of yeast tRNA, 1 mg/mL of BSA, 4.5 g/L glucose,
and 5 mM ofMgCl2 in PBS) and thawed at 95°C for 5 min, cooled on
ice for 10 min, and then kept at room temperature for 5 min to
obtain a pool of single-stranded DNA. The single-stranded DNA
pool was then incubated with the EpCAM- SMMC-7721 cells
screened in step (1) in a cell culture dish (5 cm diameter,
Corning, United States) in 20% FBS for 90 min at 37°C。 After
incubation, cells were washed twice with wash buffer (4.5 g/L of
glucose and 5 mM ofMgCl2 dissolved in PBS), scraped off with a cell
scraper for collection, then transferred to a 1.5 mL tube for

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Mao et al. 10.3389/fbioe.2024.1443843

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1443843


centrifugation washes 3 times, then heated at 95°C for 10 min to
separate the DNA sequences bound to the surface of the target cells
(EpCAM- SMMC-7721 cells), the supernatant was collected, and
finally the supernatant was collected for the first PCR amplification,
using primer sequences (forward primer:5′-FITC-TAC CTC TGA
CAC ACG AG -3’; Reverse primers:5′-Biotin-CTC AGC TGC ACG
TCC ATG AG-3′)to obtain the first amplification PCR product, and
then 5 μL PCR of the first amplification product was taken as a

template, and the second PCR was performed using the primers and
reaction conditions of the first PCR reaction, and the double-
stranded PCR product was separated on a 4% agarose gel.

The two PCR reaction procedures were: hot start at 95°C for
3 min and 1 cycle, denaturation at 94°C for 30 s, annealing at 59°C
for 30 s, extension at 72°C for 20 s, 10–18 cycles.

The double-stranded PCR product was cleaved into single
strands with agarose beads modified with streptavidin

FIGURE 1
A schematic diagram of the capture and release of EpCAM + CTCs and EpCAM- CTCs. Notes: (A) A schematic diagram of the capture and release of
EpCAM + CTCs by a photosensitive smart nanoreactor modified with anti-EpCAM. (B) A schematic diagram of the capture and release of EpCAM- CTCs
by a photosensitive smart nanoreactor modified with Aptamer. (C) The flow chart of the capture and release of EpCAM + CTCs and EpCAM- CTCs by the
PSINR. Abbreviations: α-CD-NH2:Amino - α- Cyclodextrin; Azo-NH2: p-aminoazobenzene; IPTS:1-Isocyanate propyltriethoxysilane; EDC/NHS: (1-
(3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride)/N- hydroxysuccinimide.
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(Amersham Biosciences, United States), washed with PBS, and then
denatured with 0.2 M of NaOH. The lysed single-stranded DNA
solution is then passed through a Nap-5 desalting column (GE
Healthcare, United States). Pools of single-stranded DNA labeled
with selected FITCs were collected for the next round of screening
and flow cytometry analysis.

In order to obtain aptamers with high affinity and specificity, the
selective pressure is progressively increased by progressively
shortening the incubation time with target cells (from 1.5 to
0.5 h) and by increasing the incubation time with control cells
(from 1 to 1.5 h). After multiple rounds of screening, a concentrated
single-stranded DNA library was obtained, which was sequenced
with unmodified primers before amplification and cloned into E. coli
(Takara, China) with TA cloning kit.

The sequencing results showed that 5 ligands were selected and
named SHT1, SHT2, SHT3, SHT4, and SHT5, respectively. The
nucleotide sequences of SHT1, SHT2, SHT3, SHT4, and SHT5 are
shown in sequence from SEQ ID NO.1 to SEQ ID NO.5(The details
as shown in the results).

The structure of these 5 aptamers was analyzed by DNAMAN
software, and 10 truncated aptamers were obtained by truncating part
of the sequences (nucleotide sequences are shown in SEQ ID NO.6-
SEQ ID NO.15, the details as shown in the results). The truncated
aptamers have different secondary structures, but most have a stem-
loop structure. Flow cytometry measured the binding capacity of each
aptamer and calculated the equilibrium dissociation constant (Kd
value) of each aptamer. Aptamers (abbreviated as Apt-HCC-Neg) that
can bind specifically to EpCAM- SMMC-7721 cells were screened.

2.1.2.3 Flow cytometry to detect the equilibrium
dissociation constant (Kd value)

To detect the enriched pool of single-stranded DNA and to
assess the binding affinity (Kd value characterization) of the
screened aptamer, single-stranded DNA labeled by FITC is
detected by flow cytometry after different rounds. Specifically, it
includes the following steps:

Aptamers at gradient concentrations (e.g., 0 nM, 10 nM, 25 nM,
100 nM, 200 nM, etc.) were incubated in 200 μL of binding buffer
with 20% FBS and 3 × 105 positive sieve cells for 60 min at 37°C to
obtain aptamer solutions for flow cytometry.

Flow cytometry uses a distracting DNA sequence as a control.
Both control and EpCAM- SMMC-7721 sequences were used. The
average fluorescence intensity of 104 cells with different aptamer and
control DNA sequences was obtained. Detection of the pool of DNA
enriched during SELEX, the final concentration of FITC-labeled
single-stranded DNA is 500 nM. Further evaluation of binding
affinity, the final concentrations of FITC-labeled aptamer
solutions were 0 nM, 10 nM, 25 nM, 100 nM, 200 nM. Adherent
cells are detached from the Petri dish with 0.02% EDTA.

2.1.2.4 Verification of high specificity of the screened Apt-
HCC neg

To verify that the screened aptamer binds specifically to
EpCAM- SMMC-7721 and is bound to the cell membrane, we
designed an experimental group and two control groups.

Experimental group: EpCAM- SMMC-7721 cells bind to FITC-
labeled streptavidin and Apt-HCC-Neg;

Control group 1: EpCAM- SMMC-7721 cells with FITC-labeled
streptavidin;
Control group 2: Jurkat cells were conjugated with FITC-labeled
streptavidin and Apt-HCC-Neg, and the nuclei of each group
were stained with DAPI, and then the fluorescence staining of
each group was observed under a fluorescence microscope.

2.2 Preparation method of PSINR

2.2.1 Isocyanate esterification on the surface
of SiO2

The SiO2 chip was soaked in an appropriate amount of
anhydrous tetrahydrofuran (THF), an appropriate amount of
isocyanate propyltriethoxysilane (IPTS) was added, and the
reaction was carried out at 40 °C under the protection of N2 for 8 h.

2.2.2 SiO2 chip surface modification α-CD
The SiO2 chip modified by α-CD were obtained by soaking the

SiO2 chip on the surface isocyanate in α-CD-NH2 solution for 24 h
at room temperature, and then taking out the SiO2 chip after the
reaction, washing them repeatedly with deionized water and drying
them with N2.

2.2.3 Preparation of azobenzene modified anti
EpCAM and Apt-HCC neg

Take 200 μL anti EpCAM or Apt HCC Neg dissolved in 3 mL of
deionized water, add 500 μ L’s 1- (3-dimethylaminopropyl) -3-
ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide
(NHS) (in equal amounts and volumes) were stirred at 4 °C for 24 h.
Afterwards, an appropriate amount of 3 nM para aminoazobenzene
was added, and the reaction was further stirred at 4 °C for 24 h. Then,
the temperature was raised to room temperature and the reaction
continued for 24 h to obtain anti EpCAM/Azo or Apt HCC Neg/Azo
modified with azobenzene.

2.2.4 Host-guest interaction to construct a PSINR
Under dark conditions α- CDmodified SiO2 chips can be soaked

in azobenzenemodified antibody or aptamer solution (anti EpCAM/
Azo or Apt HCC Neg/Azo) for 24 h to construct a PSINR SiO2

through host guest interaction- α- CD/Azo anti EpCAM or SiO2- α-
CD/Azo Apt HCC Neg.

2.3 Light stimulated PSINR captures and
releases EpCAM + CTCs and EpCAM CTCs

2.3.1 Specific capture and photosensitive release of
EpCAM + CTCs and EpCAM- CTCs

Dilute 100 SMMC-7721 cells according to cell density and add
them to 500 μL. After passing through the PSINRs modified with
anti EpCAM and Aptamer at speeds of 0.5 mL/h, 1 mL/h, 2 mL/h,
4 mL/h, and 8 mL/h in culture medium, respectively, EpCAM +
CTCs and EpCAM- CTCs were obtained, respectively, and then the
two photosensitive smart nanoreactors were separated, and then the
two photosensitive smart nanoreactors were irradiated with
ultraviolet light, and then 500 μL was used Rinse the two chips
3 times in PBS, collect the flushed liquid, centrifuge, remove the

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Mao et al. 10.3389/fbioe.2024.1443843

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1443843


supernatant, and the following ones are EpCAM + CTCs and
EpCAM- CTCs, respectively.

2.3.2 Identification of EpCAM + CTCs and
EpCAM- CTCs

For the SiO2-α-CD/Azo-anti-EpCAM PSINR, we used the three-
color principle of FITC-labeled EpCAM antibody and Cyanine5
(Cy5)-labeled cluster of differentiation 45 (CD45) antibody and
4′,6-diamidino-2-phenylindole (DAPI) to distinguish the non-
specifically captured white blood cellsWBCs), and for the SiO2-α-
CD/Azo-Apt-HCC-Neg PSINR. The laser power of fluorescence
microscopy is 1 mW, and the exposure time is 20 s. We used the
three-color principle based on Vimentin-conjugated Apt-HCC-Neg
and Cy5-conjugated anti-CD45 anti and DAPI to distinguish non-
specifically captured WBCs. The criteria for determining EpCAM +
CTCs, EpCAM- CTCs, and WBC are as follows:EpCAM + CTCs:
DAPI+/FITC+/Cy5-,WBC:DAPI+/FITC-/Cy5+; EpCAM- CTCs:
DAPI+/Vimentin+/Cy5-, WBC: DAPI+/Vimentin-/Cy5+。

3 Results and disscusion

3.1 Cell-SELEX screened aptamers and
equilibrium dissociation constants (Kd)
for aptamers

To achieve better CTCs’ capture efficiency, we used cell SELEX
technology to screen high affinity aptamers. We selected and named

five Sequences from SEQ ID NO.1 to SEQ ID NO.5, and
10 truncated aptamers were obtained by truncating part of the
sequences (nucleotide sequences are shown in SEQ ID NO.6-SEQ
ID NO.15. The details can be seen in Table 1.

As can be seen from Table 2, the aptamers can specifically
bind to EpCAM- SMMC-7721 cells, and have strong binding and
high specificity, among which the equilibrium dissociation

TABLE 1 The sequences of Cell-SELEX screened aptamers.

Sequence NO. Sequence

SEQ ID NO. 1 5′- TACCTCTGATGACACACGAGGCGCCACGGCCGCATCATGTGACTCATCTACGCGAAGGTAGCCGTAATCCCTCATGGACGTGCA
GCTGAG-3′

SEQ ID NO. 2 5′- TACCTCTGATGACACACGAGCATCCACGGTGCCATCATGTGACTCATCTACGCGAAGGTAGTAGTAACAGCTCATGGACGTGCA
GCTGAG-3′

SEQ ID NO. 3 5′- TACCTCTGATGACACACGAGCATCCACGGCCGCATCATGTGACTGCGCTACGCGAAGGTAGACGTAAAGCCTCATGGACGTGCA
GCTGAG-3′

SEQ ID NO.4 5′- TACCTCTGATGACACACGAGCATCCAATCCCGCATCATGTGACTCATCTACGACAAGGTAGCCGAGCTCCCTCATGGACGTGCAGCT
GAG-3′

SEQ ID NO. 5 5′- TACCTCTGATGACACACGAGCATAATCGGCCGCATCATGTGACTCATCTACGACAAGGTAGCCGACGTCCCTCATGGACGTGCA
GCTGAG-3′

SEQ ID NO. 6 5′- TACCTCTGATGACACACGAGATCCCACGGAATCATCATGTGAATCATCTACGACAACTCATGGACGTGCAGCTGAG-3′

SEQ ID NO. 7 5′- TACCTCTGATGACACACGAGGCACCAGCACCGCATCATACGACTCATCTACGAGGCCTCATGGACGTGCAGCTGAG-3′

SEQ ID NO. 8 5′-TACCTCTGATGACACACGAGCATAGCCGGCCGCATGCGGTGACTCATCTACGATGCCTCATGGACGTGCAGCTGAG-3′

SEQ ID NO. 9 5′-TACCTCTGATGACACACGAGTGCCCACGGATACATCATCGCACTCATCTAACGCAACTCATGGACGTGCAGCTGAG-3′

SEQ ID NO. 10 5′- TACCTCTGATGACACACGAGGCGCCACGGCCGATCCATGTGGCACATCTACGACAGCTCATGGACGTGCAGCTGAG-3′

SEQ ID NO. 11 5′- TACCTCTGATGACACACGAGCATCGCCGGACGCATCATGTGACTGCGCTACGATAGCTCATGGACGTGCAGCTGAG-3′

SEQ ID NO. 12 5′- TACCTCTGATGACACACGAGACGCCAGCGCCGCATTAGGTGTAGCATCTACGAGCGCTCATGGACGTGCAGCTGAG-3′

SEQ ID NO. 13 5′- TACCTCTGATGACACACGAGCCGTAGCGGACGCATCATGTGTGCCATGGCCGACAACTCATGGACGTGCAGCTGAG-3′

SEQ ID NO. 14 5′- TACCTCTGATGACACACGAGCGCCCACATACGCATCATCCGACTCATCTACGAGGCCTCATGGACGTGCAGCTGAG-3′

SEQ ID NO. 15 5′-TACCTCTGATGACACACGAGCATGCGCGGATCCATGCGGTGACTCATCTACGCCAGCTCATGGACGTGCAGCTGAG-3′

TABLE 2 Detection of equilibrium dissociation constant of the selected
aptamers.

Sequence NO. Equilibrium dissociation constant
(Kd) (nM)

SEQ ID NO. 6 237.6

SEQ ID NO. 7 265.2

SEQ ID NO. 8 283.4

SEQ ID NO. 9 198.3

SEQ ID NO. 10 367.8

SEQ ID NO. 11 326.4

SEQ ID NO. 12 275.3

SEQ ID NO. 13 342.1

SEQ ID NO. 14 238.9

SEQ ID NO. 15 356.2
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constant (Kd) of SEQ ID NO.9 is the lowest and the affinity is
the largest.

3.2 Verification of high specificity of the
screened Apt-HCC neg

We applied the flow cytometry and the fluorescence staining to
test and verify the screened Apt-HCC Neg with high specificity (The
details can be seen in Figure 2A). To verify the high specificity of the
screened Apt-HCC Neg, and is bound to the cell membrane,we used
the Jurkat cells as a control (The details can be seen in Figure 2B).
The superior performance of Apt-HCC Neg proves the feasibility of
our screening process. The screened Apt-HCC Neg is the most
critical substance for capturing EpCAM negative CTCs, and further
confirming the reliability of our hypothesis.

3.3 Identification of EpCAM + CTCs and
EpCAM- CTCs by
immunofluorescence staining

To verify the performance of PSINR, we used the three-color
principal immunofluorescence staining to identify EpCAM + CTCs
and EpCAM- CTCs, and distinguish the non-specifically captured
WBCs.The immunofluorescence staining results indicate a very clear
identification EpCAM + CTCs, EpCAM- CTCs, and WBCs (The
details are shown in Figure 3). The immunofluorescence staining
further confirms the advantageous performance of PSINR equipment,
and the results also proved that capturing and releasing EpCAM +
CTCs and EpCAM- CTCs is completely feasible.

4 Disscusion

Liver cancer is considered one of the most heterogeneous
tumors, and heterogeneity is the main cause of tumor metastasis,
recurrence, and drug resistance (McGranahan and Swanton, 2017;
Tellez-Gabriel et al., 2019). However, due to the highly
heterogeneous of liver cancer, individualized clinical treatment of
liver cancer has great blindness, limitations, and differences, which
also poses great challenges to the diagnosis and treatment of liver
cancer. The chemotherapy resistance, lack of effective targets, and
recurrence and metastasis of liver cancer have always troubled
clinical oncologists. Therefore, it is urgent for researchers to
explore new ways to decipher the heterogeneity of liver cancer.

CTCs can be regarded as liquid specimens of solid tumors,
which have advantages such as easy acquisition, minimal trauma,
non-invasiveness, and repeated collection, making them a more
ideal source of specimens for clinical testing. In recent years,
researchers have developed techniques and methods for specific
capture of CTCs based on the principle of combining surface
antigens and antibodies of CTCs. However, there were also some
stromal CTCs in liver cancer patients, leading to low expression or
even lack of EpCAM in some CTCs (Lampignano et al., 2017a).
Given the differential expression of EpCAM in CTCs, this provides
us with valuable insights into the heterogeneity of liver cancer.

The EpCAM is widely expressed in epithelial tumors, and the
EpCAM has a variety of biological functions such as regulating cell
proliferation, differentiation, and migration (Amoury et al., 2016;
Kubo et al., 2018). Therefore, the differential expression of EpCAM
can have an important impact on the biological characteristics of
tumor cells, especially the effects of tumor metastasis and
recurrence. We utilize a PSINR to specific capture and release

FIGURE 2
Verification of high specificity of the screened Apt-HCC Neg. Notes: (A) Flow cytometry detection of EpCAM- SMMC-7721 bound to FITC-labeled
single-stranded DNA. (A) Black line: EpCAM- SMMC-7721 unbound single-stranded DNA; red line: EpCAM- SMMC-7721 cells bind to library control
single-stranded DNA, blue line: EpCAM- SMMC-7721 cells bound to FITC-labeled single-stranded DNA; (B) To verify the specific binding of Apt-HCC-
Neg to EpCAM- SMMC-7721 cells a) In the experimental group, EpCAM- SMMC-7721 cells bind to FITC-labeled streptavidin and Apt-HCC-Neg; b)
Control group 1: EpCAM- SMMC-7721 cells were conjugated with FITC-labeled streptavidin; c) Control group 2: Jurkat cells were conjugated to FITC-
labeled streptavidin and Apt-HCC-Neg (x200).
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the EpCAM + CTCs and EpCAM- CTCs of liver cancer at
the same time.

As we all known, the number of EpCAM + CTCs and EpCAM-
CTCs is too small, and the capture and release operations may affect
the viability of released CTCs. We should strive to increase the
quantity and viability of released CTCs, and make subsequent
biological analysis or in vitro culture possible. The in-depth
analysis of releasing CTC will bring greater significance.

Our study is a novel form of exploring the heterogeneity of liver
cancer. The heterogeneity of liver cancer is expected to reveal the key
biological mechanisms of tumor recurrence, metastasis, and drug
resistance. Most importantly, the heterogeneity of liver cancer helps
to guide clinical chemotherapy, targeted therapy, and other
precision treatments, thereby making personalized treatment of
liver cancer more targeted, safe, and effective, and providing new
basis for achieving precise personalized treatment of tumors.
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