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Introduction: Lower limb exoskeletons have shown considerable potential in
assisting human walking, particularly by reducing metabolic cost (MC), leading to
a surge of interest in this field in recent years. However, owing to significant
individual differences and the uncertainty of movements, challenges still exist in
the personalized design and control of exoskeletons in human-robot
interactions.

Methods: In this study, we propose a hybrid data-driven approach that integrates
musculoskeletal simulation with machine learning technology to customize
personalized assistance strategies efficiently and adaptively for ankle-foot
exoskeletons. First, optimal assistance strategies that can theoretically
minimize MC, were derived from forward muscle-driven simulations on an
open-source dataset. Then, a neural network was utilized to explore the
relationships among different individuals, movements, and optimal strategies,
thus developing a predictive model.

Results: With respect to transfer learning, our approach exhibited effectiveness
and adaptability when facedwith new individuals andmovements. The simulation
results further indicated that our approach successfully reduced the MC of calf
muscles by approximately 20% compared to normal walking conditions.

Discussion: This hybrid approach offers an alternative for personalizing
assistance strategy that may further guide exoskeleton design.
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1 Introduction

Ankle-foot exoskeletons (AFEs) have shown considerable potential in enhancing human
mobility (Lee et al., 2020). In recent decades, a variety of AFEs have been introduced (Collins
et al., 2015; Mooney and Herr, 2016; Galle et al., 2017; Zhang et al., 2017; Nuckols and Sawicki,
2020; Slade et al., 2022), each aiming to optimize walking efficiency--a key factor that reduces
fatigue, increases comfort and extends usage time (Sawicki et al., 2020). Despite these efforts,
achieving significant improvements in the walking economy has proven challenging, with only
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modest advancements realized relative to the substantial benefits
anticipated. For example, Collins developed a passive AFE that
offloads muscle forces by incorporating a spring parallel to calf
muscles, achieving a metabolic cost (MC) reduction of 0.21 w/kg
compared to normal walking (Collins et al., 2015). Mooney
introduced an active AFE powered by a winch actuator that
indirectly supports ankle plantar flexion (PF), reducing the MC by
0.43 w/kg (Mooney and Herr, 2016). Similarly, Galle designed a
tethered AFE that partially substitutes muscle effort with a
pneumatic muscle, reducing the MC by 0.44 w/kg (Galle et al., 2017).

Personalizing assistance is essential for AFEs to effectively reduce
MC. However, developing a personalized assistance (PA) strategy
adaptable to users and movements remains challenging (Young and
Ferris, 2016). Traditional methods typically adjust predefined torque
profiles and apply compliance-based impedance/admittance control.
For instance, Chinimilli et al. (2019) introduced an impedance-tuning
method for knee exoskeletons based on activity and gait phases.
However, such methods may not sufficiently lower the MC or are
limited to specific movements. Recently, human-in-the-loop
optimization methods have emerged, which utilize physiological
signals to assess movement performance and refine assistance
strategies. Slade et al. (2022); Kantharaju et al. (2022) utilized
respiratory data to generate PA strategies for walking and squatting,
respectively. However, these methods are time-intensive and typically
require several minutes to achieve convergence in optimizing these
strategies. They also presuppose a steady-state movement process,
which is rarely consistent in real-world scenarios. Additionally, the
practicality of wearing a respiratory mask during daily activities is
questionable, posing another hurdle to the widespread adoption of
such methods.

Musculoskeletal (MS) simulation is a powerful tool for
investigating human motion (Seth et al., 2018) and human-robot
interactions (Sartori et al., 2018; Durandau et al., 2022). It enables
the analysis of physiological signals that are otherwise challenging to
measure directly. For example, Durandau et al. (2017) utilized an
electromyography (EMG) driven MS model to infer muscle forces
from EMG signals. Peternel et al. (2019) employed MS simulation to
estimate muscle forces and fatigue levels. MS simulation provides a
cost-effective alternative to experiments for exploring the impact of
various types of assistance on movement and guiding exoskeleton
design. Notably, Uchida et al. (2016); Dembia et al. (2017) employed
MS models coupled with massless actuators to investigate optimal
assistance for running and weight-bearing walking, respectively.

Despite significant achievements, MS simulation faces limitations
in terms of time consumption and adaptability. These challenges stem
from the necessity to rerun simulations for minor variations among
individuals or movements, an inability to utilize historical data for
future movement predictions, and an overreliance on extensive
experimental data and expertise. To address these limitations, recent
studies have explored integratingMS simulation with machine learning
(ML) techniques. For instance, Burton et al. (Burton et al., 2021)
employed ML to swiftly estimate muscle and joint forces following
initial calculations using MS simulation. Similarly, Sharma et al.
(Sharma et al., 2022) utilized MS simulation to gather biomechanical
data on upper extremity movements, which they then processed using
ML algorithms for quick prediction. Other related research includes
studies focused on predicting ground reaction forces (Wouda et al.,
2018), implant pressure distributions (Ardestani et al., 2015), and the

deformability of joint contacts (Eskinazi and Fregly, 2015). These hybrid
methods demonstrate advantages over traditional MS simulation.
However, the application of this approach to exoskeleton design and
human-robot interactions remains relatively unexplored. Motivated by
these advances, our research further investigates the dynamic interplay
between exoskeleton assistance and biomechanics, to uncover more
effective patterns of human-robot interaction.

Personalizing assistance faces two primary challenges: variability in
movements and significant individual differences. This study proposes a
novel hybrid approach that combines MS simulation with ML to tackle
the inherent challenges, as illustrated in Figure 1. This method uses MS
simulation initially to identify optimal assistance (OA) strategies
tailored for individuals across different walking scenarios.
Subsequently, a feedforward neural network (FNN) model is
employed to detect patterns and relationships between individual
characteristics, movements, and OA features. Leveraging transfer
learning, the trained model adapts to new users and movements.
The main advantages of the proposed method include the following:
1) Utilizing the strengths of MS simulation in movement analysis and
assistance customization, it quantifies and optimizes user performance,
ensuring the effectiveness of PA strategies in reducing MC. 2)
Integrating ML capabilities, facilitates the generation of PA strategies
for new users andmovements, addressing traditional limitations such as
time consumption and inflexibility. Through simulation validation, our
results show that the PA strategy can significantly reduce MC by
approximately 20% compared to normal walking, demonstrating its
potential efficacy and applicability.

2 Materials and methods

Our objective is to develop a comprehensive and effective
approach for the automated generation of PA strategies that are
applicable to diverse individuals and movements. We utilized
OpenSim (Seth et al., 2011) for MS simulation. The gait data,
comprising marker trajectories and ground reaction forces, were
derived from the Camargo dataset (Camargo et al., 2021). What
follows is an in-depth exposition of our approach.

2.1 Forward muscle-driven simulation for
optimal assistance

We conducted forward muscle-driven simulations to identify OA
strategies that minimize MC. These simulations utilized a generic MS
model with 23 degrees of freedom named Gait2392 (Delp et al., 1990).
Subject-specific models were customized by scaling this generic model.
To enhance the realism of human-robot interactions and ensure
universality, we designed an AFE using SolidWorks. This AFE
comprises two main components: a cuff attached to the calf and a
sole secured to the foot, interconnected by a hinge at the ankle joint to
enable rotational movement. To prevent the AFE from imposing
constraints on normal ankle joint movement, we fixed the cuff part
within the tibia coordinate frame, and the sole part within the calcaneus
coordinate frame of the MS model. To address the potential
misalignment issues, we meticulously adjusted the relative positions
of the two parts within their respective coordinate frames during the
initial standing position for each participant. This adjustment ensured
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the alignment of the exoskeleton’s rotational axis with that of the
human ankle joint as closely as possible. Assistance is simulated by
applying an external torque at this hinge, effectively mimicking the
support from AFEs. Additionally, we accounted for the extra mass of
the AFE by assigning 1.5 kg to the cuff and 0.5 kg to the sole.

Inverse kinematics and inverse dynamics were executed to
determine joint angles, and the net biological moments,
respectively. To improve the consistency between the simulation
results and the experimental results, we employed the residual
reduction algorithm. Subsequently, we employed the computed
muscle control (CMC) algorithm (Thelen and Anderson, 2006),
an algorithm for forward muscle-driven simulation, to compute a
series of muscle activations that minimize the overall instantaneous
MC within the defined kinematic and kinetic constraints. Figure 2
depicts the flowchart of our simulation.

In our simulations, we employed the Hill-type muscle model
(Zajac, 1989) to elucidate the mechanism of muscle force Fmuscle

with the following mathematical model (Eq. 1):

Fmuscle,i � ϕ li, vi, ai, Pi( ) (1)
where li represents the normalized length of muscle i; vi denotes the
muscle’s contraction velocity; ai is the activation level, ai ∈ [0.02, 1]; Pi

includes muscle-specific parameters such as the maximum isometric
force; and ϕ functions as a mapping relation. To optimize the CMC
problem, we integrated residual and reserve actuators as external torque
providers at each joint. These actuators are crucial for providing
additional torque when muscle-generated forces are insufficient,
particularly in scenarios where joints experience higher-than-
expected loads. The CMC computes a set of muscle activations that
minimize the following instantaneous cost function:

min J � ∑Nmuscles

i�1 a2i +∑Nreserves

i�1
τj
wj

( )2

+∑Nresiduals

i�1
τk
wk

( )2

(2)

where Nmuscles, Nreserves and Nresiduals denote the number of muscle-
tendons, reserve, and residual actuators, respectively; τj and τk are the
instantaneous output torques of the reserve and residual actuators; and

FIGURE 1
Schematic outlining the framework of the proposed method. (A): Preprocessing of raw gait data. (B): Human-robot modeling and forward muscle-
driven simulation for optimal assistance. (C): Metabolic cost calculationmodel. (D,E): Feature extraction from the optimal strategies and feature selection.
(F): Training and transfer learning process of an FNN for generating PA strategies.

FIGURE 2
Flowchart of the simulation. Input: subject-specific model and experimental gait data. Preprocess: experimental data were processed, the human-
AFE models were coupled, and metabolic probes were added. Simulation: forward muscle-driven simulation with metabolic cost calculation.
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wj and wk are constants that signify the penalty factors, with a higher
(τj/wj) ratio incurring a greater penalty. In Equation 2, the first term
represents the square of muscle activation, which is also proportional to
muscle MC. The subsequent terms function as penalty terms for the
utilization of reserve and residual actuators. These actuators are designed
to remain inactive unless necessary, being activated only when muscle-
generated torques alone are inadequate. Consequently, the weighting
factorsw are typically set to 1. Additionally, the following constraint (Eq.
3) must be satisfied for each joint m:

τnet,m � ∑Nmuscles

i�1 ri,m × Fmuscle,i +∑Nreserves

j�1 τj +∑Nresiduals

k�1 τk (3)

where τnet,m is the net biological moment of joint m; ri,m is the
moment arm of muscle i for joint m.

To simulate AFE assistance and deriving the OA strategy, we
adopted the method proposed by Uchida (Uchida et al., 2016). We
introduced an ideal actuator at the right ankle joint, to satisfy the net
moment demands while simultaneously reducing the effort exerted by
the leg muscles. This actuator, an evolved version of the reserve actuator,
boasts the ability to apply torques of any magnitude and direction
directly to the ankle joint. Different from the reserve actuator, we
adjusted its parameters to encourage the optimizer could employ it
freely. Specifically, its penalty factor wideal, was increased from 1 to 106,
implying that even a substantial torque it provides incurs a negligible
penalty. After obtaining the muscle activations, we utilized the MC
model proposed by Umberger (2010) to calculate the instantaneous
metabolic rate, _Ei, for each muscle i. Detailed calculations of _Ei are
available in the referenced publication.We then aggregated the outcomes
across all muscles and conducted a time-based integration. The resulting
value was then divided by the gait duration T and normalized by the
subject’s mass M to yield the total metabolic power (in W/kg, Eq. 4):

E � 1
MT

∫T

0
∑Nmuscles

i�1
_Ei t( )( )dt (4)

This study utilized a subset of the Camargo dataset to perform MS
simulations. The selected data comprised 22 healthy subjects (9 females
and 13 males, age: 21.6 ± 3.58 years, mass: 68.5 ± 11.33 kg, height:
1.71 ± 0.07 m, mean ± SD) walking on a treadmill at 14 distinct
velocities (ranging from 0.5 to 1.8 m/s in 0.1 m/s increments). The raw
data captured 30 continuous seconds of each subject’s movement at
every speed level. We segmented the raw data into gait cycles based on
the right heel strike event and normalized each cycle from 0% to 100%
in 1% increments. The number of gait cycles recorded for each subject
varied with speed, ranging from approximately 20 cycles at 0.5 m/s to
40 cycles at 1.8m/s. After omitting any incomplete gait cycles, we used a
total of 8,935 cycles for simulation. On average, each subject contributed
approximately 400 cycles to the simulation. The Camargo dataset
provides a subject-specific model for each participant. Additionally,
to improve the mechanical reliability of each model, dynamic
parameters were adjusted before the formal simulations to reduce
discrepancies between simulated muscle excitations and EMG data.

2.2 Feedforward neural network for
personalized assistance

To explore the potential relationships between individuals, their
movements, and the derived OA strategies, we deployed an FNN

model. We anticipated that this model, when fed with specific body
features and movement characteristics, could swiftly devise PA
strategies that are effective in reducing MC.

2.2.1 Selection of body features and movement
characteristics

Previous studies (Chehab et al., 2017; Embry et al., 2018; Reznick
et al., 2021) have emphasized that physiological attributes such as
age, sex, height, mass, and body mass index significantly influence
gait patterns. In this study, given that young adults had minimal age
variance, age was not considered a suitable feature and was excluded
from the body features. Additionally, after conducting a feature
analysis, we observed a pronounced correlation between the
dimensions of body segments--specifically the lengths of the
thigh, calf, and foot, as well as the dimensions of the torso and
pelvis--and the assistance strategy. Thus, these features were
included as critical input body features. The various movements
primarily manifest as walking speed. Furthermore, we also identified
disparities in stride length, cadence, and maximum heel clearance.
As a result, these movement characteristics were incorporated as
additional features in our analysis.

2.2.2 Parameterization and feature extraction of
the optimal assistance

During the modeling process, we enabled the AFE to support both
ankle PF and dorsiflexion (DF)movements, imposing no constraints on
the optimization of OA strategies. However, assisting in both directions
generally requires sophisticated hardware capabilities beyond what is
typically available inmost existing AFE designs, which typically support
PF only (Collins et al., 2015; Mooney and Herr, 2016; Galle et al., 2017;
Zhang et al., 2017; Nuckols and Sawicki, 2020; Slade et al., 2022).
Moreover, studies like Dembia et al. (2017) suggest that focusing
exclusively on PF assistance is a more cost-effective method for
reducing MC than offering dual-direction support. Consequently,
after optimization, we refined our OA strategy to exclusively assist
in the PF direction, while eliminating assistance in the DF direction. To
standardize the expression of all OA strategies, we adopted a piecewise
cubic function as a universal template, which is depicted in Figure 3A.
This template is defined by four key parameters: peak value, peak time,
start time, and end time. The function of the assistance profile is
mathematically articulated as follows (Eq. 5):

f t( ) �
f1 t( ) � a1t

3 + b1t
2 + c1t + d1, t1 ≤ t≤ t2

f2 t( ) � a2t
3 + b2t

2 + c2t + d2, t2 ≤ t≤ t3
0, otherwise

⎧⎪⎨⎪⎩ (5)

while satisfying the following constraints (Eq. 6):

f1 t1( ) � 0, f1 t2( ) � τpeak, f2 t2( ) � τpeak, f2 t3( ) � 0
f1
′ t1( ) � 0, f1

′ t2( ) � 0, f2
′ t2( ) � 0, f2

′ t3( ) � 0
(6)

where t1, t2, and t3 denote the start, peak, and end times,
respectively. By adjusting the generic template, we can derive
distinct profiles tailored to different individuals and movements.
The generic template yields multiple possible profiles, as depicted in
Figure 3B. To distill the profile features from the simulation
outcomes, the OA strategy was first normalized over the time
axis from 0% to 100% in 1% increments. Subsequently, a zero-lag
6th-order Butterworth low-pass filter with a cutoff frequency of
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10 Hz was applied to mitigate noise. Then the filtered profile
underwent full-wave rectification. Finally, we extracted the four
features of each profile via the template matching method.

2.2.3 Construction and training of the feedforward
neural network model

To generate PA strategies, we employed a standard fully
connected FNN as a substitute for MS simulation. A grid search
was conducted to optimize the hyperparameters of this FNN. The
network architecture comprises an input layer with 13 nodes, each
representing specific body features and movement characteristics as
detailed in Section 2.2.1. This is followed by three hidden layers with
32, 24, and 12 nodes, respectively. It concludes with an output layer
of four nodes, with each corresponding to one of the profile features
as explained in Section 2.2.2. The rectified linear unit served as the
activation function. We utilized the L1 norm as the loss function to
minimize the sum of the absolute differences between actual and
predicted values for all four profile features, formulated as (Eq. 7):

L � ∑N

i�1∑4

j�1 yij − ŷij

∣∣∣∣∣ ∣∣∣∣∣ (7)

where yij represents the actual value and ŷij denotes the predicted
value for the jth profile feature of the ith sample, andN is the number
of samples. This loss function was chosen for its robustness to
outliers, a quality that is crucial for handling the high variability
inherent in human gait data. The FNN was developed using
PyTorch with the Adam optimizer. The network was trained
over 200 epochs, incorporating early stopping mechanisms to
prevent overfitting. The initial learning rate was set at 0.001 and
was dynamically adjusted based on the loss rate. We set the batch
size at 64 and implemented a dropout rate of 0.1 and
L2 regularization (λ � 0.001) to enhance the model’s
generalization capabilities and mitigate overfitting.

The training dataset comprised 20 subjects randomly chosen
from a pool of 22 subjects. Each subject contributed 300 samples

randomly selected from approximately 400 available samples. These
selected samples spanned 14 different speeds, with at least
10 samples per speed, yielding a total of 6,000 samples. We
utilized cross-validation, allocating 80% of the shuffled training
dataset for training and the remaining 20% for validation. The
remaining two subjects, not included in the training group, were
used as the test dataset; similarly, 300 samples were randomly
selected for each subject, totaling 600 samples. We observed a
notable improvement in prediction performance through the
application of transfer learning using partial data from the test
subjects before actual testing. This approach not only improves the
network’s adaptability to new individuals but also demonstrates
practical viability in real-world settings. Specifically, we used gait
data from the two test subjects at extreme speeds of 0.5 m/s and
1.8 m/s for transfer learning, and the remaining data were used for
evaluation.

2.3 Evaluation of simulation results and the
FNN model

In this study, approximately ten thousand MS simulations were
performed. To verify the reliability of our simulations, we evaluated
various parameters, including positional errors and the magnitudes
of residual/reserve actuators. For instance, a comparison of the
inverse kinematic results with experimental marker trajectories
indicated that both the maximum and the root mean square
positional errors were maintained below 4° (2 cm). This level of
accuracy signifies a high consistency between the simulation results
and experiments. Furthermore, the peak values of the reserve/
residual actuators, which were less than 25 (60) Nm, confirmed
the reliability of our dynamic results. All these parameters fell within
the best practice thresholds recommended by OpenSim (Opensim
Documentation, 2024), confirming the validity of our
simulation results.

FIGURE 3
Parameterization of the OA strategy. (A) Generic torque profile template, defined as a function of time through four features. (B) Examples of
possible profiles.
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To assess the performance of the FNN, we analyzed its
prediction accuracy both before and after applying transfer
learning using the same test dataset. Additionally, we assessed
the effectiveness of the PA strategy in reducing MC across three
distinct walking scenarios: slow (1 m/s), normal (1.3 m/s), and fast
(1.6 m/s). Five gait cycles per test subject were randomly selected at
each speed for analysis. Utilizing the MC model, we compared the
impacts of different assistance strategies on the MC.

3 Results

We performed a qualitative analysis of the kinematic and
dynamic disparities among individuals across various movements.
We analyzed the variations in OA strategies under different
conditions and the trends of four assistance features concerning
speed. The prediction accuracy of the FNN was quantitatively
assessed. Additionally, we thoroughly compared the effects of
different types of assistance on both overall and muscle-specific
MC at various speeds. All the results were derived from simulations.

3.1 Gait analysis from kinematic and
kinetic results

The joint angles and biological moments at the ankle joint are
depicted in Figure 4. The kinematic results are presented in Figures
4A, B. The variation in joint kinematics with increasing speed
indicates that human walking patterns are not fixed, which is
consistent with previous results (Winter 2009). Figure 4A
displays the average angle profiles for all subjects within one gait
cycle. Notably, as the speed increases, the maximum DF angle
decreases from approximately 25 to 15°, while the maximum PF
angle increases from approximately 0–15°, accompanied by an
earlier peak PF occurrence from approximately 70%–60% of the
gait cycle. Figure 4B details the relationship between the rotation
angle and speed. The rotation angle, defined as the ankle’s range of
motion during the push-off phase, typically spans from 40% to 70%
of one gait cycle. This phase is crucial not only for propelling the
body forward but also for vaulting the center of mass over the stance
leg (Dubin, 2014). It serves as the primary phase of mechanical work
output from the ankle (Dubin, 2014), and the optimal phase for

FIGURE 4
Kinematic and kinetic results of the ankle joint. (A). Average angle profiles across all subjects. (B). Rotation angle versus speed. Boxes extend from the
lower quartile to the upper quartile, with notches at the median and squares at the mean. The whisker length = 1.5 interquartile range, and outliers are
marked with asterisks. (C). The average biological torque was normalized by mass. (D) Peak PF moment.
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AFEs to support (Zhang et al., 2017). Notably, higher speeds exhibit
a greater rotation angle, resulting in increased mechanical work
output. Speed also influences kinetics, as evidenced by the average
biological torque depicted in Figures 4C, D. As the speed increases,
the peak torque increases from approximately 1.1–1.7 Nm/kg,
accompanied by an earlier peak time from approximately 50%–
45% of the gait cycle. These changes reflect the dynamic nature of
biomechanical demands as walking speed varies, emphasizing the
importance of adaptable assistance strategies to optimize
performance and reduce MC efficiently.

3.2 Insight into ankle assistance strategies

Through MS simulations, we derived the output torque of the
AFE called the OA strategy. Figure 5A displays the average OA

strategies across all subjects, exhibiting variations in magnitude
and timing with speed. Unconstrained in the simulations, the OA
strategy supported both PF and DF. PF assistance was active from
mid-stance (approximately 40% of the gait cycle) to toe-off
(approximately 70% of the gait cycle), coinciding with the
propulsion phase of walking. Figures 5B, C depict how the
four profile features of the OA strategy varied with speed.
Speed impacts these features diversely; as the speed increases,
the peak PF torque increases from approximately 0.6–1.2 Nm/kg,
with both the peak time and end time advancing (from
approximately 55%–48%, and from 65% to 55%, respectively).
These observations align with expectations: higher speeds
necessitate greater support from AFEs. Moreover, with faster
speeds, the leg transitions from the stance to the swing phase
more rapidly, resulting in earlier peak and end times.
Interestingly, the start time of the OA strategy exhibited less

FIGURE 5
(A). The average OA profiles, normalized by mass. The influence of speed on four features: (B) peak PF torque, and (C) peak time (blue), start time
(orange), and end time (green).
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apparent variation with speed and generally fluctuated around
38% of the gait cycle within a more concentrated range. This
suggests that the initiation of assistance is relatively stable and
hard to predict across different speeds. In addition to speed, other
movement characteristics also affected the OA features. For
example, both stride length and heel clearance exhibited a
strong negative correlation with timing features but a positive
correlation with peak torque. Body dimensions, especially the
lengths of the thigh and calf, demonstrated a stronger correlation
with OA features than with other body features. Comparing the
OA strategy with the biological torque profiles revealed notable
differences in both magnitude and timing. This suggests that
directly mimicking the biological torque profile may not be the
optimal choice for exoskeletons.

3.3 Evaluation results of the feedforward
neural network model

In evaluating the predictive accuracy of our FNN, we focused
on four key profile features: peak value, peak time, start time, and
end time. This evaluation was conducted both before and after
the implementation of transfer learning. We compared the
predicted values against the ground truth from simulations.
The R-squared metric served as our evaluation criterion, with
values closer to 1 indicating higher accuracy. The results, detailed
in Table 1, revealed a notable enhancement in prediction
accuracy following the application of transfer learning.
Initially, while the FNN was proficiently trained on data from
20 subjects, its accuracy was somewhat limited when predicting
for new individuals, primarily due to the variability in individual
characteristics and the model’s lack of subject-specific tuning.
Transfer learning effectively addressed these limitations by
leveraging additional data to enhance the model’s ability to
new individuals and movement patterns. Consistent with our
observed OA strategy, the FNN demonstrated high accuracy in
predicting the peak value, peak time, and end time of the profiles.
However, the accuracy for predicting the start time was
comparatively lower. To further quantify the shape similarity
between the profiles generated from ground truth, predicted
values, and those obtained from simulations, we employed
point-wise profile Euclidean distance and the Chamfer
distance as evaluation metrics (both L2 distances, with lower
values indicating greater similarity between profiles). Detailed
computations based on the test dataset underscored the efficacy
of transfer learning in enhancing the congruence between
predicted profiles and those generated from ground truth and
simulations, as illustrated in Table 2. These evaluations not only
demonstrate the robustness and flexibility of our FNN approach
but also highlight its potential for real-world applications.

3.4 Comparing metabolic reductions among
assistance strategies

Using MS simulation, we evaluated the MC under various
assistance conditions: No-exo (without wearing the AFE), NA (no
assistance, wearing the AFE but without assistance), OA, and PA. Given
the absence of upper limb muscles, our analysis focused primarily on
unilateral calf muscles which govern right ankle joint movement.
Figure 6A–C illustrates the average results from five gait cycles per
test subject at each speed. We utilized two-way analysis of variance to
identify differences. Regardless of assistance, the total MC of calf
muscles increased with speed, with the NA condition exhibiting the
highestMC (+2%) compared to the others. This observation aligns with
prior research (Seethapathi and Srinivasan, 2015), indicating that the
MC increases with speed, and adding mass to the leg also elevates the
MC (Browning et al., 2007). Both OA and PA decreased the MC
compared to the No-exo condition. PA reduced the total calf muscle
MC by 0.26 + 0.05 w/kg (slow, mean ± SD), 0.32 ± 0.08 w/kg
(normal), and 0.39 ± 0.10 w/kg (fast), a relative decrease of
approximately 20% compared to that of No-exo. Different types of
assistance had distinct impacts on specific muscles. We analyzed the
MC of the muscles, including the soleus, gastrocnemius, and tibialis
anterior, as shown in Figures 6D–F. Under OA conditions, the MC of
the tibialis anterior and soleus decreased by approximately 85% and
75%, respectively. However, there was no discernible reduction in the
gastrocnemius. Conversely, the PA condition reduced the MC of the
soleus and gastrocnemius by approximately 45% and 10%, respectively,
while slightly increasing that of the tibialis anterior by 5%.

4 Discussion

Motivated by the promising potential of exoskeletons and
advancements in MS research, this study explored a more
efficient method for personalizing exoskeleton assistance.
Through MS analysis, we studied the walking activities of
22 individuals across various movements to identify
corresponding OA strategies. These OA strategies notably
reduced the total MC of calf muscles by 0.65 ± 0.17 w/kg (slow),
0.81 ± 0.14 w/kg (normal), and 0.99 ± 0.15 w/kg (fast), achieving an
approximately 50% reduction compared to normal walking. This
finding aligns with previous simulation studies, such as that reported
by Dembia et al. (2017), which showed reductions of 0.65 ± 0.28
w/kg and 0.38 ± 0.10 w/kg for PF and DF assistance, respectively. To
overcome inherent limitations of MS simulation and develop a more
efficient approach, we employed an FNN to establish a mapping
from body characteristics and movement features to assistance
profiles. This FNN simplifies the process of generating PA strategies.

Our method demonstrates remarkable efficiency in terms of
time. While traditional MS simulations typically require several
minutes (approximately 8 min per cycle on an Intel-13900 K
platform) to complete a single gait cycle, our method delivers PA
strategies in milliseconds. Furthermore, our method exhibits greater
adaptability and extendibility compared to existing methods, which
are often restricted to specific individuals and movements. Our
approach obtains PA strategies that not only effectively reduce MC
but also swiftly adapt to new individuals and movements. Although
this study primarily focused on the ankle joint, the methodology can

TABLE 1 Comparison of prediction accuracy before and after transfer
learning (R-squared).

Peak value Peak time Start time End time

Before 0.6861 0.5912 0.6241 0.6386

After 0.8562 0.7658 0.6849 0.8224
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be expanded to other joints such as the hip and knee by adjusting the
parameterization of PA strategies. As outlined by Bryan et al. (2021),
suitable parameterizations of PA strategies for different joints can
always be identified.

Our PA strategy achieved an approximately 20% reduction in
the total MC of calf muscles, indicting a notable improvement in

walking economy despite not achieving the 50% reduction attained
by the OA strategy. Several factors account for this disparity in
effectiveness. Primarily, the OA strategy represents the theoretical
pinnacle of assistance efficiency, and any deviation from this optimal
configuration is inevitably less efficient. Additionally, while deriving
the OA strategy, we did not impose any constraints on its profile,

TABLE 2 Comparison of shape similarity before and after transfer learning.

Point-wise profile distance Chamfer distance

Before After Before After

Simulated VS Ground truth 0.1001 0.1001 0.0661 0.0661

Simulated VS Predicted 0.1013 0.0942 0.0675 0.0638

Ground truth VS Predicted 0.0297 0.0232 0.0161 0.0137

FIGURE 6
The total calf muscles (A–C) and specific muscles (D–F) MC under various assistance conditions. The gray, black, red, and blue bars represent the
No-exo, NA, OA, and PA conditions, respectively. The percentage change compared to that of the No-exo group is marked next to each bar. The MC
values are averaged across two subjects in five gait cycles for each speed and normalized by subject mass. Asterisks denote statistical significance (Tukey
post-hoc test, n = 10, **P < 0.01, ****P < 0.0001).
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resulting in a highly intricate and impractical design. In contrast, the
PA strategy is more practical, especially since most AFEs only assist
in PF. It is a predicted outcome derived from parameterizing the OA
strategy specifically for PF, making it suboptimal even in the
PF direction.

We compared the efficiency of our PA strategy with that of
relevant studies focusing solely on AFEs supporting PF over the past
decade (Malcolm et al., 2013; Mooney et al., 2014; Collins et al.,
2015; Mooney and Herr, 2016; Dembia et al., 2017; Galle et al., 2017;
Zhang et al., 2017; Gasparri et al., 2018; Khazoom et al., 2019;
Nuckols and Sawicki, 2020; Franks et al., 2021; Nuckols et al., 2021;
Schmitz et al., 2022; Slade et al., 2022), as illustrated in Figure 7.
Notably, some studies reported impressive results by subtracting the
basal MC before comparison, while others did not, resulting in less
appealing outcomes. To ensure fairness, we converted all reductions
to absolute values. It should also be noted that experimental results
often do not perform as well as simulations. This discrepancy arises
primarily from the simplification in simulations, such as neglecting
additional mass or oversimplifying human-robot interactions.
Additionally, simulations are conducted under ideal conditions,
whereas experiments face external disturbances like minor terrain
changes, which afect overall performance.

Unlike previous studies that modeled exoskeletons as massless
entities (Uchida et al., 2016; Dembia et al., 2017), we considered the
additional mass associated with AFEs to enhance the realism of
human-robot interactions. Our review of existing AFE designs
revealed that AFEs typically comprise two components: one
attached to the calf and another to the foot, with a combined
mass generally not exceeding 1.5 kg, as depicted in Figure 7.
Moreover, commercially available AFEs, such as the ExoBoot,
weight approximately 1.9 kg. To maintain generalizability, we
modeled the AFE in the same two parts, adhering to a mass ratio
of 3:1 and setting the total mass at 2 kg. Additionally, we explored
the impact of the AFEmass on the OA strategy, by adjusting the total
mass from 1 to 4 kg while maintaining the same ratio. We observed

that for every 1 kg increase in extra mass, the peak torque increased
by approximately 0.01 Nm/kg. Furthermore, in our initial
simulations of the interaction forces between the human body
and the AFE, we utilized a linear spring model. However, upon
evaluation, we observed that varying the stiffness of the spring didn’t
impact the outcomes of the OA strategies but increased the
simulation time. Consequently, we decided to rigidly connect the
AFE to the human body in our formal simulations to expedite the
simulation process.

This study not only contributes to the personalized design of
assistance but also enhances our understanding of human gait
biomechanics. We investigated muscle activations under different
assistance scenarios, as displayed in Figure 8. Reductions in
activations and the MC primarily occurred in muscles that
cross the assisted joint and act in the same direction as the
assistance. The OA strategy notably reduced activation in the
soleus and tibialis anterior, while the effect on the
gastrocnemius was less pronounced. This difference may be
attributed to the gastrocnemius being a biarticular muscle and
receiving lower priority in the CMC algorithm. The PA strategy
showed a beneficial effect on both the soleus and gastrocnemius,
whereas the tibialis anterior required increased activation to
counterbalance the external torque, likely due to muscle
antagonism. Additionally, assisting the ankle joint had minimal
influence on muscles not directly acting on the ankle joint, such as
the vastus lateralis, rectus femoris, and semimembranosus.

However, this study has several limitations. A primary constraint is
the assumption that the assistance provided by the AFE does not alter
human movements. Contrary to this assumption, some studies
(Nuckols et al., 2021; Slade et al., 2022) have indicated that such
assistance can increase walking speed, suggesting that dynamic
human-robot interactions were not fully captured in our study.
Additionally, all the quantitative analyses were based on simulations,
which may overestimate the benefits of the AFE and lack practical
validation. To address this limitation, we are in the planning stages of

FIGURE 7
Comparison results: (left) Publishing year of each study versus reduction in MC. The colors blue, cyan, and red represent tethered devices,
autonomous devices, and simulations, respectively. Circles denote active devices, while squares denote passive devices. Red circles on the right side
highlight our bilateral results. (right) Detailed information for each study referenced on the left.

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Zhang et al. 10.3389/fbioe.2024.1442606

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1442606


conducting human trials with our developed Bowden cable-driven
ankle exoskeleton to further validate our method. More accurate
and realistic assessments could be achieved through experiments,
which would provide more compelling evidence. Other limitations
include the relatively small number of individuals used to train the
FNN.We used 20 subjects with 6,000 samples, whichmay insufficiently
represent the wider population diversity, and we will add walking data
from more subjects in the future.

5 Conclusion

This paper explores the potential of PA strategies for enhancing
walking economy and proposes a hybrid data-driven approach that
integrates MS simulation with ML technology to customize effective
and feasible assistance strategies for different users and movement
scenarios. Compared to traditional methods, our approach
effectively reduces the MC of calf muscle by approximately 20%
with lower time consumption and better adaptability. In the future,
further empirical research is needed to validate the actual
effectiveness of our method. We hope that this study can
promote some consensus on PA strategies and provide valuable
insights for exoskeleton design.
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