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Running poses a high risk of developing running-related injuries (RRIs). The
majority of RRIs are the result of an imbalance between cumulative
musculoskeletal load and load capacity. A general estimate of whole-body
biomechanical load can be inferred from ground reaction forces (GRFs).
Unfortunately, GRFs typically can only be measured in a controlled
environment, which hinders its wider applicability. The advent of portable
sensors has enabled training machine-learned models that are able to
monitor GRF characteristics associated with RRIs in a broader range of
contexts. Our study presents and evaluates a machine-learning method to
predict the contact time, active peak, impact peak, and impulse of the vertical
GRF during running from three-dimensional sacral acceleration. The developed
models for predicting active peak, impact peak, impulse, and contact time
demonstrated a root-mean-squared error of 0.080 body weight (BW),
0.198 BW, 0.0073 BW · seconds, and 0.0101 seconds, respectively. Our
proposed method outperformed a mean-prediction baseline and two
established methods from the literature. The results indicate the potential
utility of this approach as a valuable tool for monitoring selected factors
related to running-related injuries.
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1 Introduction

Recreational distance running is a popular form of physical activity that offers
numerous health benefits ranging from improvements in mental health (Oswald et al.,
2020) to a lower risk of all-cause or cardiovascular mortality (Lee et al., 2017; Schnohr et al.,
2013; Lavie et al., 2015). However, running also creates the risk of developing running-
related injuries (RRIs) such as medial tibial stress syndrome, Iliotibial band syndrome, and
Achilles tendinopathy, among others (Lopes et al., 2012). The incidence of RRIs in novice
and recreational runners are 17.8 and 7.7 per 1,000 h of running respectively (Videbæk et al.,
2015). About 75%–80% of RRIs are overuse injuries (Hespanhol Junior et al., 2017; Walther
et al., 2005), which are a consequence of an imbalance between the cumulative
musculoskeletal loading load and the runners’ load capacity (Bertelsen et al., 2017).
Therefore, monitoring the musculoskeletal load during running is essential to prevent
RRIs (Johnson et al., 2020).
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A surrogate for the musculoskeletal load is the whole-body
biomechanical load, which can be extrapolated from ground
reaction forces (GRFs). The vertical GRF (vGRF) force-time
curve exhibits characteristics linked to the risk of running-related
injuries, which we will examine. In rearfoot-strike runners, the
vertical GRF (vGRF) force-time curve displays an impact peak
within the first 10% of the stance phase, followed by a larger
active peak around halfway through the stance phase. Higher
active peaks have been associated with an increased risk of RRIs,
for example, a stress fracture (Popp et al., 2017; Grimston et al.,
1991; Kliethermes et al., 2021), patellofemoral pain (Messier et al.,
1991), and ankle instability (Bigouette et al., 2016). While some
studies (Messier et al., 2018; Bredeweg et al., 2013; Davis et al., 2016)
observed no differences in the impact peak between injured and
non-injured runners, undergoing a gait-retraining program
targeting the reduction of the impact peak (Chan et al., 2018)
has shown to reduce a runner’s chance of sustaining an injury.
The differences in ground contact time among injured and non-
injured male novice runners (Bredeweg et al., 2013) and the
association between vGRF impulse and bone stress injuries
(Kliethermes et al., 2021), further indicate the importance of
vGRF characteristics in assessing the risk of RRIs. Despite these
results, inconsistencies persist in the relationship between vGRF
characteristics and RRIs. One contributing factor may be that these
studies only capture a snapshot of the load during running in a
controlled environment. A more comprehensive understanding of
the relationship between load throughout the training program and
the development of RRIs requires incorporating load measures in
real-life settings.

The conventional method for measuring GRFs during running
relies on an expensive instrumented treadmill installed in a
laboratory setting. While this method is accurate (Kram et al.,
1998), it is impractical for real-world environments. In contrast,
inertial measurement units (IMUs) consisting of an accelerometer, a
gyroscope, and a magnetometer, facilitate monitoring runners in
their natural environment. IMUs have already shown their potential
in estimating runners’ fatigue status (Op De Beéck et al., 2018), gait
kinematics (Wouda et al., 2018), and injury status (Bogaert et al.,
2022). IMUs can also be used to indirectly estimate GRFs with
studies proposing approaches for the impact peak, active peak,
loading rate, and impulse of the vGRF (Verheul et al., 2019;
Alcantara et al., 2021; Wouda et al., 2018; Seeley et al., 2020).
One approach estimates these characteristics using an alternative
expression of Newton’s second law, where the vGRF is
approximated from the sum of the product of the masses and
the acceleration of body segments (Verheul et al., 2019).
Including more segments increases this approach’s accuracy but
comes with added financial expenditures, logistical complexities,
and discomfort. An alternative to the physics-based approach in a
single-IMU setting is to use machine learning to predict the
characteristics of the vGRF (Alcantara et al., 2021; Wouda et al.,
2018; Donahue and Hahn, 2023).

While the machine-learning approaches are appealing, they still
have several shortcomings. First, while they may be more accurate
than the physics-based approach in a single-IMU setting, they do
not reach the level of performance required for all applications. For
example, detecting changes in vGRF active and impact peaks
attributed to chronic ankle instability requires an accuracy of

0.095 body weight (BW) and 0.18 BW respectively, which these
models do not achieve (Bigouette et al., 2016). Second, they focus on
domain-specific (e.g., acceleration-based-estimated active peak, step
frequency, and speed) and subject-specific (e.g., body mass) features,
ignoring automatically-extracted features, which have proven to
improve performance (Bogaert et al., 2022). Third, previous
studies focused on a narrowly defined population of elite athletes
(Alcantara et al., 2021; Verheul et al., 2019; Komaris et al., 2019).
Hence, it is unclear if these approaches are applicable to the broader
population. Finally, previous studies have not compared the
developed approaches on the same dataset. This raises concerns
about the reliability of the comparisons because the considered
dataset can have a large effect on the findings.

This study aims to develop a new machine-learning approach
that results in more accurate predictions of vGRF
characteristics—active peak, impact peak, impulse of stance
phase, and contact time—during running and tackles the
abovementioned shortcomings. In addition, we will compare this
method with existing methods on the same dataset.

2 Methods

2.1 Participants

Forty-three subjects, 31 males and 12 females, with varying
running experience and sports engagement participated in the study.
The social and societal ethics committee at the KU Leuven approved
this study (G-2022-5367-R4) and every participant signed an
informed consent.

2.2 Data collection

Every participant walked and ran on a treadmill for 11 min to
warm up and familiarize with running on a treadmill. Afterward, the
subject ran in random order at 2.22 m/s, 2.50 m/s, 2.78 m/s, 3.33 m/s,
self-reported preferred speed for a 5,000 m run, preferred
speed–0.14 m/s, and preferred speed +0.14 m/s. The subjects
skipped any speeds they were uncomfortable with and did not
repeat any speeds.

The Xsens link system (Xsens Technologies, Movella; Enschede,
the Netherlands) collected 3D acceleration at 240 Hz and was
secured using straps, a closely-fitted T-shirt, and a belt over the
L3 to L5 spinal segments for the pelvis sensor. An instrumented
treadmill (Motek, Motek Medical B.V.; Houten, the Netherlands)
captured ground reaction forces at a sampling rate of 1,200 Hz (or
1,000 Hz for one subject). We synchronized the vertical ground
reaction force and acceleration data using a marker positioned on or
next to the pelvis sensor monitored by a 3D motion capture system
(Vicon Motion Systems; Los Angeles, United States) at a sampling
rate of 120 Hz (or 100 Hz for one subject).

2.3 Data preprocessing

Following the exclusion of data-corrupted trials, the dataset
comprises 234 trials across 43 subjects. The ground reaction force of

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Bogaert et al. 10.3389/fbioe.2024.1440033

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1440033


the remaining trials was filtered using a fifth-order Butterworth low-
pass filter with a 30 Hz cutoff frequency and normalized to the
participant’s body weight. We identified steps by localizing where
the vGRF intersects the 50 N threshold (Vanwanseele et al., 2020).
For each detected step, we calculated the ground truth value of the active
peak, impact peak, impulse of the stance phase, and contact time. The
acceleration signals were filtered with a fifth-order Butterworth low-
pass filter with a cutoff value of 60 Hz. The detection of initial contact
and the toe-off event was based on the acceleration signal crossing the
threshold of 0.18 g (with g = 9.81 m/s2) and −0.25 g along with a set of
constraints concerning the expected increase after initial contact and
decrease before initial contact and toe-off event. When no toe-off event
was found for a detected step, the threshold of −0.25 g was increased.
Acceleration-detected steps that could not be matched to a
corresponding GRF-detected step, steps with a stance phase longer
than 0.4 s or shorter than 0.167 s, or for which there was suspicion of
data corruption (e.g., signal falling away) were omitted. Overall, we
obtained 92,974 steps of which 38,245 had an impact peak.

2.4 Feature extraction and model

For each step, we calculated a set of features, which can be
divided into three categories:

Subject-specific features include mass and leg length (based on
the distance from the hip to the ground during standing).

General time-series features are constructed using the TSFresh
package (Christ et al., 2018). The Supplementary Material shows the
considered features.

Domain-specific time-series features include step frequency,
impulse of vertical acceleration data during the stance phase, and
impulse of the entire step of the vertical acceleration data.

We eliminated features with a missing value or that always take
on the same value. Categorical features are one-hot encoded and
numerical features are standardized within a cross-validation
approach. Next, we used a Lasso (Least Absolute Shrinkage and
Selection Operator) model to predict the vGRF characteristics with a
regularization strength between 5 · 10−6 and 0.05.

Including running speed as an input feature allows the model to
account for the variations tied to changes in speed, particularly if
running speed is relevant to the prediction task. However, to also
account for the limited availability of accurate running speed outside
a controlled environment, we trained the models with and without
speed as an input parameter.

2.5 Method comparison

We compared our proposed approach to Verheul et al. (2019)’s
method for predicting the impact peak, and Alcantara et al. (2021)’s
approach for predicting the active peak, impulse, and contact time.
Finally, we considered the mean regressor, a model that always
predicts the mean value of the target variable as computed on the
training data.

In Alcantara et al. (2021)’s method, active peak, contact time,
impulse, and step frequency are derived from the estimated vGRF,
calculated by the product of sacral acceleration and body mass.
These acceleration-derived characteristics serve, along with body

mass and speed, as input for a linear regression model or a quantile
regression forest. Given the original paper’s results favoring linear
regression over a quantile regression forest, we chose the linear
regression model for implementing the Alcantara et al. (2021)’s
method. Alcantara et al. (2021)’s method used, just like our method,
3D acceleration data collected from a sacral IMU.

In Verheul et al. (2019)’s method, a linear regression model
utilizes the impact peak of the curve derived from the sum of the
product of segments’mass and acceleration to estimate the impact peak
of the vGRF. To ensure a fair comparison with our method, we used for
Verheul et al. (2019)’s method the 3D acceleration from a single
position. Specifically, we selected the 3D trunk center of mass
(CoM) acceleration data, the optimal segment for their single-
segment model. The trunk’s CoM acceleration was approximated by
linearly interpolating between the acceleration at the base of the neck
and the base of the L5 disc which could, in principle, be captured by a
single accelerometer. We used anatomical data to determine the
position of the mass and CoM of the trunk (Plagenhoef et al.,
1983). Verheul et al. (2019) used marker trajectories to derive the
acceleration of the CoM of different segments. However, we adapted
this to using acceleration measured by IMUs.

2.6 Model training and evaluation

We partitioned the data into a train and test set on subject level.
There were 36 subjects in the train set and seven subjects in the test
set. To select the hyperparameter settings and the set of features, we
conducted a leave-one-subject-out cross-validation on the train set.
Finally, the trained model was evaluated on the test dataset. All
models were assessed using the root-mean-square error (RMSE) to
quantify the difference between the predicted and observed values.
In addition, we reported the mean-absolute-percentage error
(MAPE) and the determination coefficient (R2). This model
training and evaluation process is consistently applied across
all methods.

We executed all data processing, model training, and model
evaluation in Python 3.10.9, except for the Alcantara et al. (2021)’s
model, which was trained and evaluated using R 4.2.2.

3 Results

3.1 Participants

Table 1 summarizes the descriptive characteristics of the
43 participants. The participants’ ages ranged between 19 and

TABLE 1 Descriptive characteristics of all participants included in the
analysis. Values of continuous variables are expressed as mean ± standard
deviation.

All Male Female

Number of participants 43 31 12

Age (years) 24.7 ± 7.8 24.3 ± 6.6 25.8 ± 10.4

Mass (kg) 74.0 ± 11.9 79.2 ± 9.4 60.7 ± 5.5

Length (cm) 181.1 ± 10.2 185.6 ± 7.6 169.3 ± 5.9
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58 years, and their sports participation level varied from no sport to
running more than 100 km a week.

3.2 Model performance

Across all steps of all participants, the mean ± standard
deviation of the active peak, impact peak, and vGRF impulse,
and contact time is 2.44 ± 0.24 body weight (BW), 1.65 ±
0.26 BW, 0.37 BW · s ± 0.019 BW · s, and 0.26 s ± 0.03 s, respectively.

Table 2 shows the performance of the vGRF characteristics
prediction models. For each model, the validation score, used for
hyperparameter tuning, and test score, used for model evaluation,
are reported. For each characteristic, four different models are
compared: (1) and (2) our method with and without speed as an
input parameter, (3) the comparison method, and (4) a mean
regressor. Our impulse-prediction model uses automatic-
extracted features from the entire step, while our other models
employ automatic-extracted features from the stance phase–a
decision guided by validation scores.

Overall, the results of Table 2 indicate that our models
performed better than the corresponding comparison method
from the literature and the baseline (i.e., the mean regressor).
Including speed in the feature set of our model did not improve
the performance of the models.

Table 3 presents the performance of ourmodel (without speed as
an input), trained on data of different running speeds, but evaluated
on subsets of the test set according to speed. The performance of the
models, evaluated by RMSE, generally declines as speed increases,
except for the contact-time model. A minor dip in RMSE is observed
at 2.50 m/s for the active peak.

4 Discussion

We developed models to predict the active peak, impact peak,
impulse, and contact time during running from 3D acceleration
collected by a sacral-mounted IMU. Our models performed better
than the corresponding comparison method from the literature and
the baseline (i.e., the mean regressor).

Our no-speed model for predicting the active peak of the vGRF
obtained an RMSE of 0.080 BW and a MAPE of 2.42%, indicating
that, on average, the model’s predictions were 2.42% off from the
actual active-peak values. The RMSE score corresponds to an
improvement of 0.077 BW compared to the Alcantara et al.
(2021)’s model and 0.136 BW with respect to the mean regressor.
The improvement in the coefficient of determination further
underscores the enhanced performance of our model compared
to the Alcantara et al. (2021)’s and baseline model. Similarly, our
model’s contact time prediction accuracy, measured by RMSE, was

TABLE 2 Root-mean-square error (RMSE), mean-absolute-percentage error (MAPE) and determination coefficient (R2) of our method (with and without
speed as input), a comparison method, and a mean regressor to predict different characteristics of vGRF. The results of the validation set are a mean of the
validation score over all folds of the cross-validation procedure.

Characteristic
(unit)

Data
set

Our method
no speed

Our method
with speed

Comparison
method

Mean regressor

RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2

Active peak (BW) Validation 0.106 3.59 0.099 3.33 0.173 6.31 0.225 8.14

Test 0.080 2.42 0.83 0.083 2.57 0.82 0.157 5.48 0.44 0.216 7.03 −0.22

Impact peak (BW) Validation 0.172 9.22 0.168 9.01 0.255 13.88 0.259 14.24

Test 0.198 8.29 0.16 0.204 8.71 0.11 0.275 11.88 −0.62 0.266 11.53 −0.51

Impulse (BW·s) Validation 0.0075 1.59 0.0075 1.59 0.0109 2.37 0.0181 4.35

Test 0.0073 1.53 0.79 0.0075 1.55 0.78 0.0087 1.78 0.71 0.0160 3.61 −0.01

Contact time (s) Validation 0.0126 3.93 0.0109 3.45 0.0146 4.80 0.0301 10.07

Test 0.0101 3.01 0.89 0.0106 3.29 0.87 0.0125 3.89 0.83 0.0309 10.63 −0.07

TABLE 3 Performance of our model (without speed as input) on speed-grouped subsets of the test set. Abbreviations: Root-mean-square error (RMSE) and
mean-absolute-percentage error (MAPE).

Speed (m/s) Active peak Impact peak Impulse Contact time

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

2.22 0.0704 2.36 0.164 8.62 0.00635 1.32 0.0128 3.27

2.50 0.0653 2.13 0.172 8.96 0.00661 1.35 0.0084 2.22

2.78 0.0715 2.28 0.182 8.15 0.00746 1.56 0.0097 3.00

3.33 0.0948 2.86 0.279 10.5 0.00876 1.92 0.0118 4.08
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0.0024 s better than the Alcantara et al. (2021)’s method. For the
impulse, our and Alcantara et al. (2021)’s model can accurately
predict the impulse, yet our model has reduced the RMSE by
0.0014 BW·s and improved the R2 by 0.08. Overall, we see a
clear improvement in error compared to the Alcantara et al.
(2021)’s model. One possible reason for the better results with
respect to the Alcantara method is that the automatically-
extracted features implemented in our model provide useful
information.

Regarding contact time, Alcantara et al. (2021)’s method
applied to our dataset yielded RMSE, MAPE, and R2 values
consistent with those reported in the original paper, indicating
the generalizability of these models. We obtained slightly worse
metric values for Alcantara et al. (2021)’s method for the active
peak compared to those reported in the original paper. Our
evaluation of the impulse model yielded an RMSE and MAPE
over three times larger than the originally reported results. This
inconsistency may be attributed to various factors, including the
diverse characteristics of our participants, sample size, and
running speeds. In light of these findings, it is crucial for
forthcoming studies to examine the method’s generalizability
and robustness.

We compare our model for estimating the impact peak with the
single-IMU version of Verheul et al. (2019)’s method. As the
reasoning behind the Verheul et al. (2019)’s model is based on
the use of acceleration data of multiple segments, it has a relatively
high RMSE for a single-IMU setting. Our model outperforms
Verheul et al. (2019)’s approach and the mean regressor yielding
an improvement in the RMSE of 0.077 BW and 0.068 BW
respectively. The low determination coefficient for the impact-
peak models and the high MAPE indicate the low quality of the
prediction. This highlights that more research is needed to find a
more suitable set of features and models for predicting the impact
peak of the vGRF.

Since our models and the comparison models are trained and
evaluated on the same dataset, differences in performance are not
attributed to the dataset itself but rather to factors such as feature
selection and model architecture. For all four vGRF characteristics,
the superior performance of our method over the baseline model
underscores the informativeness of the features in capturing
deviations from the average.

Literature indicates that, in general, as running speed increases,
contact time decreases. Concurrently, there is an increase in active
peak, impact peak, and impulse (Nilsson and Thorstensson, 1989).
Consequently, we expected that speed would be a valuable feature
for predicting all characteristics. However, including speed in the
feature set of our model to predict these characteristics didn’t have a
large influence. A possible explanation for why including speed did
not improve the predictions for the active peak, impact peak,
impulse, and contact time models is that speed is potentially
correlated with another considered feature based on the
accelerometer signal. In addition, adjustments in running style in
response to increased speed can vary on an individual level. Some
runners might increase their stride length, others their stride
frequency, which also has variable effects on the vGRF,
complicating the relationship between speed and vGRF.
Considering these outcomes alongside the general lack of readily
available accurate speed information, incorporating speed into the

model does not seem to be crucial for predicting vGRF
characteristics.

The model’s evaluation on speed-grouped subsets of the test set
(see Table 3) shows that the performance of the model for active
peak, impact peak, and impulse decreases slightly with increasing
speed. Apart from minor fluctuations, similar trends were seen for
active peak (Donahue and Hahn, 2023; Patoz et al., 2022; Komaris
et al., 2019) and impulse (Donahue and Hahn, 2023) in earlier
studies. For the contact time, the model performs best at the
intermediate speed, similar to the trend observed in a study by
Patoz et al. (2022). Despite the observed trends, the variations are
minimal and our models perform robustly across the speeds (except
the impact-peak model for 3.33 m/s). This highlights the potential
usefulness in a variety of practical applications.

The suitability of a model for a given application depends on
achieving the required accuracy of that application. We evaluated
our active- and impact-peak models for the ability to detect changes
in active peak and impact peak due to chronic ankle instability,
aiming for an RMSE of 0.095 BW for active peak and 0.18 BW for
impact peak, based on half of the reported differences of 0.19 BW
and 0.36 BW respectively (Bigouette et al., 2016). Our method meets
the accuracy requirement for predicting the active peak, in contrast
to the comparison method. However, for the impact peak, neither
our nor the comparison method predicts the impact peak short with
adequate accuracy, indicating the need for further improvement.

Regarding the impulse models, our and Alcantara et al. (2021)’s
models are accurate enough to observe half of the difference in
impulse after a 6-week forefoot strike intervention in runners with
exertional compartment syndrome (Diebal et al., 2012).

For contact time, the practical threshold is 0.01 s, based on half
the difference in contact time between the 40th and eighth kilometer
of a marathon (Chan-Roper et al., 2012). Our no-speed model has a
performance close enough (RMSE of 0.0101 s) to be considered
acceptable for this practical application. In the Supplementary
Material, the results and thresholds are visualized for all four
vGRF characteristics.

Besides the Alcantara et al. (2021)’s and Verheul et al. (2019)’s
methods, several other studies have investigated predicting
characteristics of the vGRF. One study by Patoz et al. (2023)
estimated active peak and contact time from running speed, body
mass, stride frequency, and acceleration-based estimates using a
machine-learning model. Their best-performing models achieved an
RMSE of 0.12 BW and 11.9 ms for active peak and contact time,
respectively, which is worse compared to our models. Some other
studies have estimated these metrics by approximating the vGRF
waveform and calculating the metric from this curve (Donahue and
Hahn, 2023; Komaris et al., 2019; Patoz et al., 2022), considered
using multiple sensors (Donahue and Hahn, 2023), or the
acceleration signal from positions other than the sacrum
(Komaris et al., 2019). However, they generally reported higher
RMSEs than we achieved. Nevertheless, as every study possesses a
unique dataset and often uses a different evaluation metric, it
remains hard to directly compare the reported performance
without implementing the methods on the same dataset.

The age, running experience, and sports participation varied
across the participants. Nevertheless, the older population was
underrepresented which might still limit the generalizability of
our findings. Furthermore, all running took place on a level
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treadmill with speeds from 2.22 to 3.89 m/s. As a result, our models
might have difficulties in generalizing to different populations,
speeds, slopes, or undergrounds. Future studies should investigate
the current model’s generalizability to these different conditions. A
possible challenge is that vGRFmeasurements typically require force
plates, making it difficult to assess vGRF across varied running
surfaces. Moreover, recruiting a diverse participant pool could also
be challenging. Investigating the model’s generalizability could be a
first step towards adopting the models in the field. A second step
requires integrating the models is wearable devices or apps to allow
real-time monitoring of the vGRF characteristics in a user-
friendly way.

5 Conclusion

In this study, we demonstrate that Lasso models can predict
vertical ground reaction force (vGRF) characteristics during running
from 3D acceleration data collected by a sacral IMU. Our proposed
method outperformed the mean-prediction baseline and two
established methods for predicting the contact time, active peak,
impact peak, and impulse. Overall, our findings indicate the
potential utility of this approach as a valuable tool for
monitoring select factors related to running-related injuries.
Nonetheless, there is a need for further research, mainly toward
the accurate prediction of impact peak, and to assess the
generalizability to different running conditions.
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