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The experimental approach developed in this research demonstrated how the
cloud, the Internet of Things (IoT), edge computing, and Artificial Intelligence (AI),
considered key technologies in Industry 4.0, provide the expected horizon for
adaptive vision in Continued Process Verification (CPV), the final stage of Process
Validation (PV). Pichia pastoris producing Candida rugosa lipase 1 under the
regulation of the constitutive GAP promoter was selected as an experimental
bioprocess. The bioprocess worked under hypoxic conditions in carbon-limited
fed-batch cultures through a physiological control based on the respiratory
quotient (RQ). In this novel bioprocess, a digital twin (DT) was built and
successfully tested. The implementation of online sensors worked as a bridge
between the microorganism and AI models, to provide predictions from the edge
and the cloud. AI models emulated the metabolism of Pichia based on critical
process parameters and actionable factors to achieve the expected quality
attributes. This innovative AI-aided Adaptive-Proportional Control strategy (AI-
APC) improved the reproducibility comparing to a Manual-Heuristic Control
strategy (MHC), showing better performance than the Boolean-Logic-Controller
(BLC) tested. The accuracy, indicated by the Mean Relative Error (MRE), was for the
AI-APC lower than 4%, better than the obtained for MHC (10%) and BLC (5%).
Moreover, in terms of precision, the same trendwas observedwhen comparing the
Root Mean Square Deviation (RMSD) values, becoming lower as the complexity of
the controller increases. The successful automatic real time control of the
bioprocess orchestrated by AI models proved the 4.0 capabilities brought by
the adaptive concept and its validity in biopharmaceutical upstream operations.
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1 Introduction

In the pharmaceutical manufacturing context, the US Food and
Drug Administration (FDA) defines process validation (PV) as the
systematic collection and evaluation of data throughout the entire
product lifecycle, from process design to commercial production,
demonstrating the consistent production of a quality product (FDA,
2011). This process involves three sequential stages: Stage 1 focuses
on Process Design (PD), defining the commercial manufacturing
process, including key conditions for quality. Stage 2, or Process
Qualification (PQ), evaluates the PD for capability and
reproducibility. Introduced in 2011, Stage 3, Continued Process
Verification (CPV), ensures ongoing quality assurance during
routine production through real-time data monitoring.
Concurrently, the concept of Industry 4.0 emerged in 2011,
aiming to enhance manufacturing competitiveness through cyber-
systems (Manzano and Whitford, 2023; Steinwandter et al., 2019).
The European Medicines Agency (EMA) emphasises the
importance of PV guidelines for pharmaceutical manufacturers
from Stage 1 to batch release (EMA, 2014). CPV ensures control
through real-time data and direct interaction with production
elements. Stage 2 verifies drug manufacturing processes; however,
uncertainties arise in the production environment due to equipment
stress, seasonality, shifts, and raw material variations. Established
Conditions (EC), Critical Material Attributes (CMA), Critical
Process Parameters (CPP), and Critical Quality Attributes (CQA)
from Stages 1 and 2may not capture all aspects of the manufacturing
process. Stage 3 of PV is divided into an initial step (Stage 3A) for
preliminary production assessment, and a subsequent phase (Stage
3B) based on experienced iterations with robust conditions after
successful batch releases (Figure 1).

Digital Twins (DT) can be defined as virtual replicas of physical
systems, utilising real-time data processed in cloud systems to
emulate and mirror the behaviour of the actual objects (Bao
et al., 2019). In biopharmaceuticals, the emulation of biophysical
systems through Artificial Intelligence (AI) is a known technique.
AI, employing a multivariable approach, offers statistical capabilities
to detect unexpected interactions and predict complex
interconnected factors, affording control over intricate processes

with numerous variables. AI’s proficiency in tasks like image
recognition, multivariate prediction, and fast classifications is
particularly advantageous in drug manufacturing, where human
interactions can be the root cause of issues (Cintron, 2015). AI is
effectively applied to tasks such as anomaly detection in continuous
automated processes and the identification of defects (Ündey et al.,
2010). However, challenges exist in the continuous adaptation of
equipment and tasks based on real-time data in the
biopharmaceutical setting (Ündey et al., 2010).

Regulatory bodies advocate for the use of multivariable
statistical approaches, particularly at Stage 3 of CPV, to
ensure correct batch production and reproducibility by
implementing non-invasive sensors during production, known
as Process Analytical Technologies (PAT) (Read et al., 2010). In
fact, both the EMA and FDA specify that reproducibility is an
essential aspect of the PV of the manufacture of biotechnological
or biomedical products (EMA, 2014; FDA, 2011). Despite these
recommendations, broad deployment of PAT is still lacking. The
European Pharmacopoeia recognises AI algorithms like Neural
Networks and Support Vector Machines as valid chemometric
methods for pharmaceutical contexts (Council of Europe, 2017).
The FDA has also outlined a methodology for AI application in
medical devices (FDA, 2019).

Besides offering a way of achieving improved reproducibility,
automation is considered a crucial step in implementing complex
industrial bioprocesses, enhancing product quality, reliability, and
economic efficiency (Manzano et al., 2021). It is particularly
essential in dealing with process failures appropriately (Alford,
2006; Rathore et al., 2021; Stanke and Hitzmann, 2013). Aside
from improving product quality and safety, automation also
enhances human safety by reducing the number of manual
control activities required by plant operators, which can be
potentially dangerous or jeopardise the entire bioprocess
(Clementschitsch and Bayer, 2006; Luo et al., 2021). Despite
encouragement from regulatory bodies (EMA, 2014; Embury and
Clayton, 2017; FDA, 2011), the biotech and biopharma industries
are reluctant to embrace automation with novel control strategies,
including AI, due to associated re-validation steps (Sahiner et al.,
2018). Noteworthy, reviews on the role of big data in industrial (Bio)

FIGURE 1
Process Validation stages proposed by the FDA (FDA, 2011) as good practices for drug development and manufacturing.
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chemical process operations have been published recently (ICH,
2009; Udugama et al., 2020).

In industrial biotechnology, the yeast Komagataella phaffii
(formerly known as Pichia pastoris) is currently one of the most
used microbial cell factories for the production of both chemicals
and recombinant proteins for a wide range of applications, from
biomaterials to biopharmaceuticals (García-Ortega et al., 2019).
Accordingly, a bioprocess based on this cell factory for recombinant
protein production (RPP) was selected as a model to implement the
concepts of CPV and Industry 4.0 due to relevant advantages over other
yeast cell factories (Ata et al., 2021; Duman-Özdamar and Binay, 2021;
Eskandari et al., 2024; Khlebodarova et al., 2024).

Previous studies have shown a clear increase in RPP, specifically
in continuous and fed-batch bioprocesses producing an antibody
fragment (Fab) and the enzyme Candida rugosa Lipase 1 (Crl1)
under GAP promoter (PGAP) regulation in hypoxic conditions when
glucose was used as the carbon source. This production increase
could be explained by transcriptional analyses in which glycolytic
genes expression was significantly upregulated (Baumann et al.,
2010; Garcia-Ortega et al., 2017; Gasset et al., 2022; Sales-Vallverdú
et al., 2024).

From an industrial perspective, reproducibility is crucial when
implementing a productive bioprocess (Galvanauskas et al., 2019;
Simutis and Lübbert, 2015; Veloso and Ferreira, 2017). Working
under hypoxic controlled conditions in continuous and/or fed-batch
bioprocesses is not a standard classic strategy and, ideally, the
methodology should be transferrable between fermentation
systems with different oxygen-transfer capacities and be scalable.
Thus, accurate monitoring and control of the respiratory quotient
(RQ) is needed to maintain a constant and reproducible hypoxic
state. Furthermore, selecting a suitable RQ set-point is equally
essential to ensure the desired results.

As previous works have shown (Gasset et al., 2022; Sales-
Vallverdú et al., 2024), the selection of the appropriate RQ set-
point can be summarised in the following two points: first, hypoxic
conditions can be assured if RQ > 1.2, so a higher set-point should be
selected. Secondly, the higher the RQ, the greater the ethanol
production and the lower the biomass-to-substrate yield (YX/S),
both factors affecting the efficiency of the bioprocess. Specifically,
the production of excessive amounts of ethanol can result in growth
and RPP inhibition (Ergün et al., 2019; Wehbe et al., 2020). Taking
into account these considerations, RQ should be maintained within
the range of 1.2–1.6, with 1.4 being a suitable value to be defined as
the set-point.

Pattern recognition and outlier detection mechanisms have also
been implemented to detect potential failures or unexpected
behaviour during the process. AI modelling based on supervised
random forest models was used for the prediction of the required
operator’s control actions to maintain the optimal set-point of the
RQ (Ondracka et al., 2023).

These previous works were suitable for conducting an
exploratory study to quantify the production increase working
under hypoxic versus normoxic conditions, and the effectiveness
of the application of DTs in upstream biomanufacturing operations
for bioindustries. However, further approaches will be required to
implement the concept of CPV in this bioprocess.

Thus, the objectives of this work were, in a first attempt, to
develop a manual-heuristic control (MHC) of RQ. This MHC was

subsequently improved by applying a Boolean-logic control strategy
(BLC). However, the main objective was to demonstrate the value of
AI in guiding an upstream process based on the RPP of the Pichia
pastoris cell factory. The autonomous control of the bioprocess in
real time orchestrated by several AI models and its comparison with
MHC and BLC strategies was evaluated. Additionally, a DT was
employed as a bridge between the microorganism and AI models, to
provide predictions from the edge and also from the cloud.

The experimental approach developed in this research aimed to
demonstrate how the cloud, the Internet of Things (IoT), edge
computing, and AI, considered key technologies in Industry 4.0, can
be successfully applied to improve bioprocesses based on innovative
control strategies. In this sense, by using AI to continuously monitor
and control in real-time, CPV would help to maintain optimal
conditions, ensuring robustness and reliability in the hypoxic
bioprocess of Pichia pastoris.

2 Materials and methods

2.1 Recombinant expressing strain

One single-copy producer clone of P. pastoris derived from
strain X-33 recombinantly expressing the C. rugosa lipase 1 (Crl1)
under the regulation of the GAP promoter (PGAP) was used in this
study. Details about strain constructions and clonal screening were
published previously (Nieto-Taype et al., 2020).

2.2 Fed-batch cultivations

Two independent replicates of fed-batch cultivations with each
of the three control strategies, Manual-Heuristic Control (MHC),
Boolean-Logic Control (BLC), and AI-aided Adaptive Proportional
Control (AI-APC), were performed using a 5 L Biostat B fermenter
(Sartorius Stedim, Göttingen, Germany). The inoculum preparation
for these fermentations is described in detail elsewhere (Sales-
Vallverdú et al., 2024).

The fermentations were initiated with a batch phase, using
glycerol as the carbon source. Batch media composition is
described in the literature (Garcia-Ortega et al., 2016).
Throughout the cultivations, temperature and pH were kept
constant at 25°C and 6.0, respectively. In the fed-batch phase, the
specific growth rate (μ) was fixed at 0.10 h-1 by applying an
exponential pre-programmed glucose feeding profile, thus
maintaining C-limiting conditions. The general operating
procedure and the fed-batch media composition are further
detailed in the literature (Garcia-Ortega et al., 2016; Gasset
et al., 2022).

Since the study aimed to compare the performance of different
control strategies for maintaining equivalent hypoxic conditions, the
duration of all fed-batch phases was quite similar, and the biomass
production was comparable. The desired level of oxygen limitation
was achieved by maintaining the RQ at a set-point value of around
1.4. To do so, the agitation rate was modified to increase or reduce
the oxygen transfer rate (OTR) and thus, the oxygen uptake rate
(OUR). This modification was implemented following different
strategies further detailed in the results section.
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In this work, Eve software from INFORS HT (Bottmingen,
Switzerland) was used as a “Supervisory Control And Data
Acquisition” or “SCADA” system to integrate all data from the
bioreactor and peripheral analysers. It allowed the implementation
of the RQ soft sensor used in the BLC and AI-APC strategies.

2.3 Biomass analysis

Biomass concentration was determined as dry cell weight
(DCW) in four independent replicates with the methodology
described previously (Cos et al., 2005). The relative standard
deviation (RSD) was always below 5%. Additionally, the
elemental composition of biomass was also analysed using an
established protocol (Cos et al., 2005).

2.4 Gas analysis

Using a BlueInOne FERM gas analyser (BlueSens, Herten,
Germany), CO2 and O2 molar fractions, as well as humidity, were
monitored online from the fermenter off-gas, and intermittently
measured from inlet gas. To ensure accurate measurements, a
recalibration of the gas analyser was conducted at each
fermentation. Furthermore, humidity was minimised using a silica
column before the analyser to enhance measurement precision. The
obtained data enabled the calculation of respirometric parameters:
oxygen uptake rate (OUR), carbon dioxide evolution rate (CER), and
respiratory quotient (RQ), along with their corresponding specific
rates (qO2 and qCO2). The RSD was estimated below 5%.

2.5 Substrate and by-product analysis

The carbon sources of the batch and fed-batch phases (glycerol
and glucose, respectively) and the fermentation by-products
(ethanol, arabitol, and succinate) were quantified using HPLC.
The column and software were described previously (Jordà et al.,
2014). The RSD of this analysis was below 2%.

2.6 Product analysis

Crl1 lipolytic activity was determined using the p-nitrophenyl
butyrate (pNPB) assay described in detail in the literature (Garrigós-
Martínez et al., 2019). One activity unit (AU) is defined as the
amount of enzyme necessary to generate 1 µmol of product per
minute under assay conditions. Crl1 titres in this work are given in
kilo-AU per litre (kAU·L-1). The RSD was below 1%.

2.7 Process parameters and data
consistency check

Through a combination of online and offline measurements, seven
key specific rates were determined in the black-box process model.
Notably, lipase production was considered negligible for the carbon and
redox balances. The specific rates determined included growth (μ),

substrate consumption (qS), oxygen uptake (qO2), carbon dioxide
production (qCO2), as well as ethanol, arabitol, and succinate
production as fermentation by-products (qEtOH, qAra, and qSuc,
respectively).

In all fed-batch cultivations, the data indicated that the closing of
the carbon balance generally deviated less than 5%. To ensure
consistency in the measurements, the experimental data was then
verified using previously described data consistency and
reconciliation protocols, applying the constraint that carbon and
electron balances must be fulfilled (Ponte et al., 2016; Wang and
Stephanopoulos, 1983). A confidence level of 95% was reached in all
statistical consistency tests, indicating that no significant
measurement errors were made.

3 Results and discussion

3.1 Selection of the manipulated variable for
hypoxic control

Carbon-limited fed-batch fermentations exhibit an exponential
increase in total biomass, product titre, and all other growth-related
components, and they are defined by an exponential increase in
oxygen consumption and carbon dioxide production. Then, any
control action performed over this process must be time-dependent
with a nonlinear behaviour.

A variable with a high impact on RQ should be used for control
strategy implementation. Some examples can be found in the
literature where respirometric parameters were used as measured
variables to implement advanced control strategies. Nonetheless, in
these studies, the modified variable was feeding addition, therefore,
not maintaining a constant μ value (Mesquita et al., 2019; Ranjan
and Gomes, 2009; Wang et al., 2007). If the objective also includes
keeping μ constant, then another manipulated variable or variables
should be selected for the RQ control strategy.

As shown in Equations 1–3, biological and operational variables
affecting RQ can be stated as qO2, qCO2, and X.

CER � qCO2 ·X (1)
OUR � qO2 ·X (2)
RQ � CER

OUR
(3)

Where CER andOUR are the Carbon Evolution Rate (mol CO2·L-1·h-1)
and Oxygen Uptake Rate (mol O2·L-1·h-1), respectively; qCO2 and qO2
are the specific carbon dioxide production rate (mol CO2·gDCW-1·h-1)
and the specific oxygen consumption rate (mol O2·gDCW-1·h-1),
respectively; X is biomass concentration (gDCW·L-1); and finally, RQ
stands for Respiratory Quotient (mol CO2·mol O2

−1, normally
expressed as a non-dimensional variable).

In an oxygen-limited system, all the oxygen transferred to the
culture is ideally supposed to be consumed immediately by the cells,
so theOTR is considered equal toOUR (mol O2·L-1·h-1) (Equation 4).

OTR � OUR (4)

Then, it may be possible to modify the RQ by altering the oxygen
availability described by OTR, although this can also have an
impact on CER.
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Equation 5 shows the variables involved in the OTR term:

OTR � kLa · O2
Sat − O2( ) (5)

where kLa is the volumetric mass transfer coefficient (h-1, or more
commonly s-1), O2

Sat is the saturation oxygen concentration in the
culture broth (mol O2·L-1), and O2 is the real oxygen concentration
(mol O2·L-1). Under hypoxic conditions, O2 ≈ 0, so two parameters
can be considered for OTR adjustment: kLa and O2

Sat.
Therefore, two different variables can be mainly proposed as

manipulated variables to implement RQ control: agitation rate
and oxygen molar fraction in the inlet gas. The former has a
significant impact on kLa since it affects both the turbulent
regime in the bioreactor (kL) and the interfacial area between
the gas and liquid phases (a); whereas the latter influences oxygen
saturation in the culture broth (O2

Sat) (Garcia-Ochoa et al., 2010).

Nevertheless, from an industrial perspective, the use of pure gases
is not very attractive as it entails additional transport and storage
costs, safety risks, etc. (Liu et al., 2016). For this reason, the
agitation rate was initially selected as the manipulated variable to
implement RQ control.

3.2 A first approach to RQ control: manual-
heuristic modification of the agitation
rate (MHC)

The first approach to RQ control was to performmanual control
actions on the agitation rate. Thus, two hypoxic fermentations were
carried out as biological replicates to assess the viability of using the
agitation rate as a modified variable to achieve precise and accurate

FIGURE 2
Flowchart of the manual-heuristic control strategy (MHC). The initial agitation rate was set at 600 rpm. RQ was calculated (online RQ calculation)
using O2 and CO2measurements, and every 15/30/60min (variable time) the agitation rate was increased by 25/50/100 rpm (variable Δrpm), only if RQ >
1.6. This control strategy was manually implemented step by step, using BlueVis software (BlueSens, Herten, Germany) to calculate the RQ and the
BiostatB interface (Sartorius, Göttingen, Germany) to increase the agitation rate.
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RQ control. The manual modification of the agitation rate followed
heuristic rules: increasing the agitation rate caused a reduction in
RQ, thus control actions were based on this principle. An
operational RQ range was defined as 1.2 < RQ < 1.6, and an
initial agitation rate was set by trial and error to achieve an
RQ = 1.4, being 600 rpm at the start of the fed-batch. Then,
approximately every 30 min after initiating the fed-batch, the RQ
was checked. If RQ > 1.6, then the agitation rate was increased by a
step (Δrpm) of either 50 or 100 rpm, depending on the researcher’s
expertise. Since the dynamics of the system was that the substrate
uptake rate (SUR) grew exponentially as substrate addition increased
and correspondingly total biomass, CER also increased
exponentially. To maintain a constant RQ, OTR should also
increase exponentially since OUR is coupled with biomass
growth. Accordingly, the agitation rate should follow a similar
nonlinear increasing trend. Reductions in the agitation rate
during the fed-batch phase were therefore not expected. A
flowchart of the MHC algorithm is shown in Figure 2.

The results of these hypoxic fermentations have been partially
reported together with the results of two replicates of fully aerobic
fermentations (DO>30%) (Gasset et al., 2022). This set of
fermentations was performed to evaluate the effect of hypoxic
conditions on RPP, which was fully demonstrated. However,
apart from these two aforementioned objectives, these
experiments also had a less apparent, yet equally relevant goal,
which was to generate sufficient data to subsequently build an RQ
control model using AI algorithms. This requires as much data as
possible, to be trained with the aim of achieving accurate and feasible
models (Das et al., 2015; Ondracka et al., 2023; Zhou et al., 2019).
This question will be further discussed in the following sections.

Biomass and ethanol concentrations, as well as Crl1 titres, are
plotted in Figure 3A, whereas RQ and agitation rate profiles are
plotted in Figure 3B. Each replicate is plotted separately to evaluate
the reproducibility between duplicates, which appears to be low.
Biomass concentrations increased from ≈ 25 gDCW·L-1 (value at the
end of the batch phase) to ≈ 90 gDCW·L-1 (R1) and ≈ 100 gDCW·L-1
(R2), showing some variability between replicates. Ethanol was not
detectable at the beginning of the fed-batch phase; at the end of the
fermentation, it reached values of ≈ 7.5 g.L-1 (R1) and ≈ 12 g.L-1 (R2),
respectively, for each biological replicate, thus also presenting
significant variability. Finally, among the other process
parameters, Crl1 titres exhibited the highest variability between
replicates, achieving values of 335 kAU·L-1 (R1) and
244 kAU·L-1 (R2).

As indicated in previous works (Garcia-Ortega et al., 2017;
Gasset et al., 2022; Sales-Vallverdú et al., 2024), the hypoxic level
had a significant impact on yeast physiology, causing relevant
changes in central carbon metabolism. Therefore, significant
differences in RQ due to a non-automated and non-accurate
controller led to significant differences in biomass, Crl1 titre,
ethanol production, and, ultimately, different process efficiencies
and low reproducibility. These variations in RQ can be appreciated
in Figure 3B. RQ was kept within the desired range (1.2 < RQ < 1.6),
however, large oscillations and numerous peaks corresponding to
each manual action on the stirring rate could be observed during the
process. Additionally, during the first hours of both biological
duplicates, RQ was not properly controlled at the desired set-
point. The reason is that during this period, both CO2

production and O2 consumption were very low, so small errors
in gas analysis led to high errors in RQ calculation. On the other
hand, in the second replicate (R2) the calibration of the gas analyser
was verified after finishing the fermentation. For this reason, the RQ
values shown in the graph and recalculated a posteriori are above the
range defined as the set-point. This highlighted a possible point for
improvement: the calibration of the gas analyser before the start of
fermentation, which is necessary for proper RQ calculation.

Interestingly, in some cases, control actions were performed
when deemed necessary rather than every hour; i.e., when RQ was >
1.6, even if agitation had been increased less than 1 hour earlier.
Moreover, during the most operationally demanding time, agitation
was increased stepwise by smaller but more frequent steps, aiming to
obtain RQ values within a narrow band around the desired set-point.
An example of this is the period from t = 10 h to t = 15 h in R1.
During this time, there seemed to be fewer oscillations in RQ. This
could indicate what was evident from the outset, namely, that
smoother and more frequent control actions lead to improved
controller performance. This indicates a potential advance in the
development of a more effective RQ control strategy if automated
strategies could be implemented.

3.3 Automation of RQ control: integration of
external signals and development of a
Boolean Logic Controller (BLC)

Having identified the main shortcomings of the manual control
strategy, the next step was the implementation of an automated
control strategy. In essence, the idea was to automate the same
control strategy. Ideally, the overall control system strategy had to be
capable of calculating the RQ with high precision before deciding
whether to increase agitation. This decision had to be fully
automated, allowing the performance of smoother and more
frequent control actions, resulting in a finer RQ control, thus
avoiding major fluctuations (Brignoli et al., 2020; Craven
et al., 2014).

Therefore, a software platform was required that could integrate
data from both the bioreactor and gas analysers, process this data to
accurately calculate the RQ, and subsequently execute control
actions based on a simple rule (i.e., if RQ > RQ set-point,
increase agitation).

Considering this, the implementation of so-called soft
sensors is crucial (Mandenius and Gustavsson, 2015). Simple/
basic soft sensors considering CER, OUR, and RQ based on first-
principle models are among the most widely used in
bioprocessing, being soft sensors to determine μ and qS are
frequently described (Barrigón et al., 2012; Luttmann et al.,
2012; Stanke and Hitzmann, 2013; Rathore et al., 2021).
Moreover, much literature is available on the use of soft
sensor measurements to implement control strategies
(Allampalli et al., 2022; Beiroti et al., 2019; Brunner et al.,
2021; Randek and Mandenius, 2018; Sagmeister et al., 2013).

Eve software from Infors (Bottmingen, Switzerland) was selected
for this purpose as it allows an easy implementation of soft sensors.
Thus, data coming from the bioreactor and also from external
devices (gas analyser, substrate addition pump, and ethanol
sensor) were integrated into Eve, which acted as a “Supervisory
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Control And Data Acquisition” or SCADA system (Brunner et al.,
2021; Ivarsson, 2017). Therefore, all data was available for the soft
sensors and controller implementation in the Eve interface
(Macdonald, 2018). In this current work, the calibration values of
the gas analysers and the humidity measurements could be
incorporated into the RQ calculation to improve its accuracy,
upon which bioprocess control was based. Table 1 includes a list
of all primary or direct variables and the derived or calculated
variables, together with the RQ soft sensor implemented.

The control strategy was built using the same principles as the
manual control strategy, with three key upgrades: 1) an increase in
control action frequency, 2) a reduction in Δrpm, and 3) the ability
to reduce the agitation rate if needed. However, in this case, the
control algorithm was designed to be as automated as possible. Thus,
the same control law as for the manual control (If RQ > RQ set-
point, increase the agitation) was used. In this case, however, the
control law was defined as a Boolean-logic controller (BLC), having
only TRUE or FALSE values. The term “Boolean-logic control” has

FIGURE 3
Key process parameters (Biomass, Ethanol, and Crl1), agitation rate, and RQ for the biological replicates (R1 and R2) with theManual Heuristic control
strategy (MHC). (A) Biomass concentration ( , gDCW·L-1); Crl1 Titre ( , kAU·L-1); EtOH, Ethanol concentration ( , g·L-1). (B) Off-line RQ calculation
(continuous lines); agitation rate (discontinuous lines, rpm).
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been used with similar control approaches (Premier et al., 2011).
When RQ > 1.4, the control law was TRUE and thus agitation
was increased.

The first improvement was the frequency of control actions,
which was increased from every hour to every 10 min. This
frequency was defined based on the response time of the system,
from the moment the action on agitation was performed until the
subsequent change was observed in off-gas composition, thus
avoiding an eventual overacting performance of the controller
(Simutis and Lübbert, 2015). The response time was estimated
empirically, ranging between 5 and 10 min based on the results
of manual control fermentations.

In line with the increase in frequency, the second improvement
of the automated controller was the increase in rpm. This was
drastically reduced to avoid big changes in OTR thus avoiding the
high peaks and fluctuations in RQ observed with the manual control
in Figure 3B. Additionally, to meet bioprocess requirements, the
increase in agitation (Δrpm) was variable over time and changed
from Δrpm = 10, at the beginning of the feeding phase where the
inertia of the system is slower, to Δrpm = 25 at the end of the
fermentation, where the dynamics were significantly faster.

The last improvement of the automated control strategy was the
addition of a new functionality allowing for a decrease in agitation if
the RQ was too low. For an RQ < 1.3, the controller applied an
agitation rate modification of Δrpm = −10. This upgrade contributed
to the controller achieving greater precision and accuracy in the
initial stages of the fed-batch because the arbitrarily selected initial
agitation rate of 550 rpm would not be appropriate. However, apart

from these initial hours, it should not be considered necessary since,
as previously indicated, the inertia of the system is that RQ
continuously increases as long as substrate addition, and thus the
amount of total biomass, continues to increase.

A flowchart of the Boolean-logic control algorithm can be seen
in Figure 4.

Once the controller had been tuned, two biological replicates of a
hypoxic fermentation were performed to test the efficiency of the
controller. The fermentation strategy was the same as in the previous
section (µ = 0.10 h-1), with the obvious exception of the RQ control
strategy upgrade.

The results of these fermentations are plotted in Figure 5.
Practically identical biomass concentration, Crl1 titre, and
ethanol concentration profiles can be observed in Figure 5A.
However, in the last hours of the second replicate R2, biomass
growth and Crl1 production were reduced, giving different biomass
and Crl1 production for both replicates at the end of the feeding
phase. Specifically, a final biomass and Crl1 titre of 89 g.L-1 and
332 KAU·mL-1, respectively, were achieved in R1, whereas the values
were 76 g.L-1 and 257 KAU·mL-1 in R2. In the last 2 hours of R2, the
specific growth rate could not be maintained at its set-point value, so
μ < 0.10 h-1. Glucose accumulation up to 7.5 g.L-1 and higher ethanol
concentrations were also observed in this second replicate. This
could indicate that at high biomass concentrations and substrate
addition, the process may become unstable.

Regarding controller efficiency, as can be observed in Figure 5B,
an important improvement was found in terms of RQ control
performance compared with the manual control results described

TABLE 1 Set of variables coming from the bioreactor and peripheral devices (primary variables) and calculations based on thesemeasured variables (derived
variables), available in the Eve interface, and soft sensor implemented using these variables as input data.

Primary variable Origin Description Primary variable Origin Description

TEMP Biostat B Broth temperature Microburette Flowrate Microburette Substrate flowrate

JTEMP Biostat B Jacket temperature EtOH Valuea Volatile (MetOH) sensor Ethanol signal value

STIRR Biostat B Agitation rate CO2 Gas analyser %CO2 (internal calibration)

pH Biostat B pH O2 Gas analyser %O2 (internal calibration)

pO2 Biostat B Dissolved oxygen (DO) Humidity Gas analyser % Humidity

BASET Biostat B NH4OH 15% Added EXT A Gas analyser CO2 sensor signal

GF_AIR Biostat B Air flowrate EXT B Gas analyser O2 sensor signal

GF_O2 Biostat B Pure oxygen flowrate

Derived variable Inputs Outputs Description

ExitCO2 EXT A Off-gas %CO2 Concentration of CO2 in the off-gas. Sensor signal multiplied by
external calibration values

ExitO2 EXT B Off-gas %O2 Concentration of O2 in the off-gas. Sensor signal multiplied by external
calibration values

Volume Microburette flowrate Volume Volume estimation considering substrate addition (for OUR and CER calculation)

Ethanol EtOH Value* Ethanol concentration Ethanol concentration calculation using MetOH sensor with mean calibration values

Soft sensor Inputs Outputs Description

RQ Exit CO2, Exit O2, Humidity, GF_AIR, GF_O2, Volume CER, OUR, RQ CER, OUR, and RQ calculation

aAlthough a methanol sensor was used for ethanol measurement, the process variable was named “EtOH Value”.
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in the previous section. In both replicates, the RQ was kept constant,
within a narrow band around 1.4, with only small deviations of
approximately ± 0.05. The only exception occurred within the first
1–2 h when the optimal agitation rate had to be found by the
controller, having an initial input of 550 rpm. However, since the
controller could increase and reduce the agitation rate, this optimal
agitation was rapidly found.

The results of these experiments demonstrate that the
process is highly reproducible in terms of RQ control.
Moreover, discarding the last hours of R2, results also
indicate that Crl1 production is more reproducible when
implementing the automated rather than the manual
controller, and suggest that the lack of RQ oscillations
provides a better environment for cell growth and RPP (Xia
et al., 2015). In fact, RQ oscillations could generate instability in
terms of glucose metabolisation since fluxes through the
oxidative and fermentative pathways are highly dependent on

the level of oxygen limitation (Baumann et al., 2010). RQ
oscillations can thus be considered as harmful as fluctuations
in substrate concentration, which have been reported to affect
production yields with P. pastoris as well as with other microbial
cell factories (Junne et al., 2011; Lorantfy et al., 2013; Neubauer
et al., 1995; Wang et al., 2020).

Thus, a very efficient RQ controller has been satisfactorily
implemented, leading to a far more reproducible process that is
slightly more efficient in terms of production and substrate
utilisation. Based on the same heuristic rules as the manual
control strategy, automation led to a more refined and more
accurate RQ control and a much less labour-intensive production
bioprocess. Nonetheless, there is still some room for improvement,
namely developing a strategy with a variable Δrpm (scheduled or
even adaptive), so that it can be adjusted according to process
requirements. The last control strategy implemented, presented in
the next section, focuses on this point.

FIGURE 4
Flowchart of the Boolean-logic control (BLC) strategy. The initial agitation rate was set at 550 rpm, and every 10 min RQ was calculated by the RQ
soft sensor, using O2 and CO2 measurements (including the calibration data of the analysers and the humidity in the inlet and off-gas streams). Then, if
RQ > 1.4, the agitation rate was increased by 10/15/25 rpm (variable Δrpm1) and if RQ < 1.3, it was decreased by 10 rpm (Δrpm2). This control strategy was
automated using Eve software, being necessary to only manually modify Δrpm1.
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3.4 Implementing an Adaptive-Proportional
Control (APC) using Artificial Intelligence (AI)
algorithms: a foundation for industry 4.0

As the main goal and final step in designing and
implementing the most efficient and reliable control strategy,

aiming to achieve accurate and robust results, an innovative RQ
controller based on AI algorithms was developed and
successfully tested. The AI model for agitation rate prediction
was trained using data obtained from all the hypoxic
fermentation experiments previously described. In addition,
fermentations conducted under hypoxic conditions at

FIGURE 5
Key process parameters (Biomass, Ethanol, and Crl1), agitation rate, and RQ for the biological replicates (R1 and R2) with the Boolean-logic control
strategy (BLC). (A) Biomass concentration ( , gDCW·L-1); Crl1 Titre ( , kAU·L-1); EtOH, Ethanol concentration ( , g·L-1). (B) Off-line RQ calculation
(continuous lines); agitation rate (discontinuous lines, rpm).
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different µ were also used for the training process (Sales-
Vallverdú et al., 2024).

As stated in the previous section, having a variable and adaptive
Δrpm was the next and final step in the development of an optimal
control strategy to maintain the desired hypoxic conditions
throughout the fed-batch hypoxic phase. It was previously
determined that this parameter should increase throughout the
process in accordance with exponential biomass growth. Strictly
speaking, for a fully automated control strategy, the controller
should be able to define the correct Δrpm at any time during the
process. Thus, for its relative simplicity and adjustability, an
adaptive proportional (Adaptive-P) control was implemented.

As in the previous cases, the controlled variable was RQ, with a
set-point of 1.4. It was calculated in the Eve environment using the
same “RQ” soft sensor implemented for the BLC, such that the
calibration values of the gas analysers could also be incorporated
into the RQ determination. However, in this case the control of RQ
was applied using the DT system.

The DT system for controlling the bioreactor consisted of several
interconnected components that worked together to optimise the

bioreactor process. At the core of the system was the cloud
platform, known as the Aizon platform, which served as the
central hub for data management, processing, and AI-driven
analysis. The Aizon platform received data from the physical
sensors and from the Eve soft sensor of the bioprocess via the on-
premise element, called the BeDataFeeder. Communication with Eve
software was facilitated through API REST calls, ensuring seamless
integration and data exchange between the physical and digital
components of the system. Once the data reached the Aizon
platform, it underwent comprehensive processing and analysis by
various AI models specifically designed for bioprocess control.
Additionally, the platform hosted AI models for anomaly detection,
which continuously monitored the bioreactor data for any deviations
from normal operation. To enable communication between the
BeDataFeeder and the Aizon platform, the MQTT protocol was
utilised. This lightweight messaging protocol ensured efficient and
reliable data transmission between the on-premise component and the
cloud platform, facilitating real-time updates and control actions.
Based on the inputs provided by the sensors, the adaptive control
AI models on the Aizon platform dynamically adjusted the agitation

FIGURE 6
Global scheme of the AI-managed adaptiveness implementation managed in the hypoxic bioprocess of the Pichia pastoris cell factory.
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rate to maintain the process within the desired parameters. These
adaptive control algorithms leveraged machine learning techniques to
continuously improve their accuracy and effectiveness over time.

Overall, the DT system combined on-premise data collection
with cloud-based AI processing on the Aizon platform to provide

real-time monitoring, predictive analysis, and adaptive control of
the bioreactor process. By integrating advanced technologies and
leveraging data-driven insights, the system aimed to optimise
bioreactor operations and achieve consistent, high-quality batch
outcomes. Moreover, the BeDataFeeder was equipped with a copy of

FIGURE 7
Flowchart of the AI-aided Adaptive Proportional Control (AI-APC) strategy. The initial agitation rate was set at 550 rpm, and RQwas calculated every
min. Next, ε was calculated in parallel to KP, which was calculated through an AI model (random forest regression algorithm) using all data coming from
the bioreactor and peripherals. Finally, Δrpm (positive or negative) was calculated using ε and KP and agitation was modified every 7 min only if Δrpm ≥ 2.
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the AI model and could store the data and upload it all at once if the
connection to the cloud ever faltered. A scheme of the overall system
is presented in Figure 6.

Overall, the controller applied Equation 6 to calculate Δrpm,
multiplying an adaptive P gain “K p” by the error between the RQ
and the RQ set-point or “ε”, and sent this information to Eve to
modify the agitation rate. All these steps were implemented in
Python, using REST API calls to communicate with the Eve system.

Δrpm � RQ − RQset−point( ) · Adaptive PGain � ε · KP (6)

Interestingly, Equation 6 enabled the controller to lower the
agitation if RQ < RQset-point, Δrpm becomes negative.

A new agitation rate was predicted every minute, however, its
modification was only carried out with the minimum time interval
between subsequent control actions of 7 min to account for the
system’s time response, as detailed in the previous section.

Also, to avoid small but constant oscillations of the agitation
rate, if the difference between the current and predicted agitation
was less than 2 rpm (Δrpm < 2), this modification was not
implemented, and the controller repeated this procedure in the
following minute. Therefore, the frequency of control actions was
variable, with intervals from at least 7 min to intervals of
approximately half an hour, depending on the requirements of
the process. The result was that both adaptive Δrpm and
frequency in control actions could be applied, thereby
overcoming the main weaknesses of the BLC strategy. A
simplified flowchart of the AI-aided Adaptive-P Control (AI-
APC) algorithm is shown in Figure 7.

The calculation of the “Adaptive-P Gain” parameter or “KP” was
achieved through the application of AI algorithms. Specifically, a
random forest algorithm was applied. The random forest algorithm
is a machine-learning technique that seeks to make accurate
predictions by leveraging the power of multiple decision trees.
During training, each decision tree divides the dataset and saves

the rule used to make the division as a node. When a subset of data is
compact enough depending on the task at hand (that all samples
belong to the same class for classification and that all samples have
the target variable within a relatively small range for regression
tasks), a leaf node is created, and the prediction related to this node is
saved. To avoid having the exact same tree N times, the training
algorithm passes only a subset of features to each tree, forcing them
to choose different division rules. The mechanism of operation of
the algorithm is schematically represented in Figure 8.

The random forest algorithm was selected due to its robustness
when presented with scenarios not present in the training, thanks to
the ensemble nature of the model. Also, because each decision tree is
slightly different, it is harder to overfit the data. Furthermore, it is
excellent for modelling nonlinear correlations such as those
encountered in bioprocesses, and it has already been used in
bioprocess engineering applications (Mowbray et al., 2021; Singh
and Singhal, 2022).

In this case, 100 decision trees were implemented. Thus, when
making a prediction, the algorithm passed the input through each
decision tree, and the results from all decision trees were combined
to form a final prediction. Concretely, when the algorithmwas trying
to predict a numerical value, such as the optimal agitation rate, the
average of the predicted values from all decision trees was taken
(Breiman, 2001).

Additionally, to further evaluate the performance of the AI-APC
controller towards a disturbance in the system, the inlet gas
composition was modified at t = 13.3 h of the feeding phase in
both replicates. At that point, the airflow rate was automatically
modified from 2.0 L.min-1 to 1.8 L.min-1, and a flow rate of
0.2 L.min-1 of pure oxygen was added, giving an inlet gas oxygen
concentration of 28.87%. A reduction in the agitation rate was
therefore expected at this point, although the nature of the
response was still unknown.

Once the controller had been implemented and tested with
simulated hypoxic conditions, two hypoxic fermentations were

FIGURE 8
Scheme of a random forest regressor algorithm. One hundred decision trees, each one trained with a different subset of data, predict the necessary
agitation rate tomaintain RQ= 1.4, and the final value is obtained by averaging all predictions. In addition, each decision treemay assign different priorities
to each parameter or process variable, depending on the subset of data used in its training process. x, y, and z represent different variables or process
parameters.
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conducted to check whether the AI-based controller could provide
better results than the BLC. As in the previous control strategy, both
fed-batches were conducted with a pre-programmed exponential
feeding profile of glucose with μ = 0.10 h-1 and an RQ set-point = 1.4.

Figure 9 illustrates the results of these two AI-controlled
fermentations. Regarding biomass concentration, the Crl1 titre

and ethanol production of both replicates, shown in Figure 9A,
were very similar to those obtained with the BLC. They were
particularly comparable between them, reaching values of
79 gDCW·L-1 (R1) and 80 gDCW·L-1 (R2) of biomass,
257 kAU·L-1 (R1) and 270 kAU·L-1 (R2) of Crl1 titre, and
15 g.L-1 (R1 and R2) of ethanol at the end of fermentation.

FIGURE 9
Key process parameters (Biomass, Ethanol, and Crl1), agitation rate, and RQ for the biological replicates (R1 and R2) with the AI-aided Adaptive
Proportional Control (AI-APC) strategy. (A) Biomass concentration ( , gDCW·L-1); Crl1 Titre ( , kAU·L-1); EtOH, Ethanol concentration ( , g·L-1). (B)Off-line
RQ calculation (continuous lines); agitation rate (discontinuous lines, rpm).
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This highlights the good reproducibility achieved with this
control strategy. However, in both replicates the biomass
production decreased slightly in the last hours compared with
the previous set of fermentations with the BLC. This could be
explained by a small increase in RQ in the last hours, which led to
a reduction in YX/S and, thereby, a lower biomass generation as
higher ethanol profiles were also observed.

In Figure 9B, which plots the agitation and RQ profiles, a very
precise RQ control can be observed, which is very close to the set-
point and exhibits very small oscillations. This strategy performed at
least as well as the BLC in terms of controller efficiency, but it
required significantly less time commitment than with the BLC and
demanded far less effort than with the MHC. Since Δrpm was
automatically predicted every minute and agitation was
automatically modified every seven (or more) minutes, it was not
necessary to assess whether the Δrpm was appropriate at each point
in the process, and the researcher only had to be in the laboratory for
sampling and supervising.

It is noteworthy that all data sets used to train the model
included the results from the fermentations performed with the
MHC and BLC, included in this work, and some previously
mentioned fermentations performed with different μ and
detailed in the bibliography, where pure oxygen was not used
(Sales-Vallverdú et al., 2024). Thus, it makes sense that during
the last third of the cultivations controlled with the AI-APC,
when inlet air was enriched with pure oxygen, the controller did
not regulate the RQ as efficiently as during the rest of the feeding
phase. Even so, the RQ deviation was very slight, only about

0.1 RQ units above the set-point. On the other hand, the
controller’s response towards a disturbance was very fast,
being able to return the RQ to the set-point in less than 1 h
for R2 and less than 30 min for R1.

As commented in the previous section, the high RQ stability led
to a more reproducible bioprocess performance, including
Crl1 production as well as lower byproduct generation, including
ethanol, arabitol, and succinate, compared with the manual
control strategy.

3.5 Performance comparison between the
control strategies implemented

To evaluate the correct performance of each RQ controller and
the improvement when applying novel AI-based strategies, a
comparison of the three control strategies implemented in terms
of bioprocess performance and reproducibility was conducted.

Table 2 shows the numerical values of key process parameters
obtained in each hypoxic fermentation. Additionally, the mean
value and standard deviation (SD) are shown. Similar values for
key process parameters were observed for all strategies, although
an undesired reduction in biomass production and thus a
reduction in μ was detected with the third strategy, as
mentioned in the previous section. This could be explained by
the increase in RQ observed in the last third of the feeding phase,
which led to an inversely proportional decrease in YX/S. As
mentioned, ethanol production was also higher, reflected in
the qEtOH values in Table 2.

It is worth noting that RQ values from Table 2 are the mean RQ
values throughout each fermentation. As a result, the mean and SD
values shown in bold are indicative of the variability between
replicates.

Thereby, in terms of bioprocess reproducibility, the application
of two more sophisticated RQ controllers led to a reduction in
variability between replicates, particularly concerning
Crl1 production, since the SD was smaller for BLC and AI-APC.

However, to assess the controller’s efficiency, its autonomy,
accuracy, and precision should also be considered. Regarding
autonomy, the manual control strategy was clearly the least
efficient. When comparing BLC and AI-APC, in the former,
several Δrpm updates were required during cultivation, whereas
in the latter, this change was applied automatically in accordance
with the prediction of an AI model, therefore making it the most
autonomous.

In addition, the RQ deviation from its set-point highlights
the controller’s accuracy, whereas the deviation from the mean
RQ can be considered an estimator of the controller’s precision.
With this aim, two independent statistical performance
indicators were calculated to assess this accuracy and
precision: Mean Relative Error (MRE) and Root Mean Square
Deviation (RMSD), which are defined by Equations 7, 8. MRE
can be considered as a relative value of a mean RQ error through
the fed-batch phases, having values between 0 (good
performance) and 1 (bad performance), and it was used to
assess the accuracy of the controllers. On the other hand,
RMSD could be seen as a mean SD between RQ values
throughout the fed-batch phases and the mean RQ value of

TABLE 2 Value of key process parameters obtained in fed-batch hypoxic
fermentations with the three control strategies tested. Specific growth
rate, µ (h-1); specific substrate consumption rate, qS (gS·gDCW

-1·h-1);
biomass-to-substrate yield, YX/S (gDCW·gS-1); specific ethanol production
rate, qEtOH (gEtOH·gDCW-1·h-1); respiratory quotient, RQ; specific
Crl1 production rate, qP (AU·gDCW

-1·h-1); and product-to-biomass yield, YP/X
(kAU·gDCW-1). Values in bold represent the mean and SD (±) between
biological replicates (R1 and R2).

MHC BLC AI-APC

R1 R2 R1 R2 R1 R2

μ (h-1) 0.105 0.096 0.103 0.097 0.095 0.091

0.101 ± 0.006 0.100 ± 0.004 0.093 ± 0.003

qS (gS·gDCW-1·h-1) 0.21 0.22 0.22 0.21 0.22 0.21

0.21 ± 0.01 0.22 ± 0.01 0.22 ± 0.01

YX/S (gDCW·gS-1) 0.50 0.45 0.47 0.45 0.43 0.43

0.47 ± 0.04 0.46 ± 0.01 0.43 ± 0.01

qEtOH (gEtOH·gDCW-1·h-1) 0.020 0.034 0.027 0.030 0.040 0.037

0.027 ± 0.010 0.029 ± 0.002 0.038 ± 0.002

RQ 1.41 1.53 1.38 1.38 1.40 1.44

1.47 ± 0.09 1.38 ± 0.01 1.42 ± 0.02

qP (AU·gDCW-1·h-1) 348 310 335 358 317 311

329 ± 27 347 ± 16 314 ± 4

YP/X 3.60 3.42 3.83 3.92 3.67 3.83

(kAU·gDCW-1) 3.51 ± 0.12 3.88 ± 0.06 3.75 ± 0.12
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each fermentation, shown in Table 2, and it was used to
determine the precision of the controller.

MRE � 1
n
∑n

i�1
yi−ysp

∣∣∣∣ ∣∣∣∣
ysp

(7)

RMSD �
������������
∑n

i�1
yi − �y( )2

n

√
(8)

Where yi is the value of the variable (RQ) at each time-point (i), ysp is
the RQ set-point, since the scope is to evaluate the accuracy of the
controller (MRE), and �y is the mean RQ, for the analysis of the
controller’s precision (RMSD). They can afford redundant
information, however, the analysis of two different statistics can
help avoid data artefacts.

The values obtained using all data points from each pair of
biological replicates are shown in Table 3.

Based on the analysis of these statistics, in terms of accuracy, the
last two strategies outperformed the manual control strategy, having
lower MRE values. These numbers indicate that the mean error was
about 5% (R1) and 14% (R2) with the MHC, about 4.5% with the
BLC, and <4% with the AI-APC strategy. On the other hand, in
terms of precision, the same trend was observed when comparing
RMSD values. As mentioned previously, RMSD could be considered
a mean SD from the mean RQ value, becoming lower as the
complexity of the controller increases.

In addition, as mentioned before, during the last third of the AI-
APC fermentations, the RQ was constantly above the set-point,
suggesting that RQ control during the rest of the fed-batch was more
effective. This point added to the fact that in those fermentations
there was a disturbance in the inlet gas composition, which had a
direct impact on RQ and, therefore, also on MRE and RMSD,
making the AI-APC strategy the most efficient.

In summary, the application of AI in CPV for monitoring and
controlling the fermentation process of Pichia pastoris is invaluable.
By leveraging AI, we can detect anomalies in real-time and ensure
that every batch meets the highest quality standards under the
established conditions (Ondracka et al., 2023), ultimately
enhancing the reliability and efficiency of the biomanufacturing
process by integrating Critical Process Parameters (CPP) as input
variables to the AImodel, the optimal agitation speed of the stirrer in
the bioreactor is continuously adjusted as the target variable, 24/
7 during all batches, ensuring a high yield.

4 Conclusion

This work presents the implementation of advanced control
strategies in microbial fermentation fed-batch cultures to enhance

bioprocess performance, increasing the robustness and
reproducibility of the cultivations. When implementing the
innovative physiological control based on RQ, initially, a
Boolean-Logic Controller (BLC) was implemented to address
deviations observed with the Manual-Heuristic Control strategy
(MHC), resulting in improved reproducibility. Subsequently, an
innovative AI-aided Adaptive-Proportional Control strategy (AI-
APC) was developed using a random forest algorithm, delivering
highly satisfactory results. Both strategies significantly improved
control accuracy, with AI-APC showing greater promise. The
integration of measurement devices into a SCADA system,
coupled with a cloud-stored DT of the fermenter, facilitated these
advancements.

Overall, these two strategies mark notable progress in enhancing
bioprocess control efficiency and reliability. However, in terms of
adaptability and automation, the AI-APC clearly outperformed the
previous ones since the performance towards a disturbance was
extremely rapid and precise, proving AI to be a tool that can be
efficiently used in bioprocess control, representing a successful
application of AI in a field where such technologies are
underutilised.

The content and successfully fulfilled goal of this article, not
only showcase the pivotal role of DT systems such as Process
Analytical Technologies (PAT) during the CPV phase of drug
manufacturing but also serve as a compelling demonstration of
the potent capabilities of AI at the helm of autonomous DT. By
seamlessly integrating with manufacturing processes, these AI-
driven DTs offer real-time insights and predictive analytics,
ensuring precision, efficiency, and compliance in bioprocesses.
This convergence of cutting-edge technologies underscores the
transformative potential of AI-powered solutions in
biotechnology manufacturing, pointing towards a new era of
innovation and optimisation in the bioindustry.
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