
OA-MEN: a fusion deep learning
approach for enhanced accuracy
in knee osteoarthritis detection
and classification using X-Ray
imaging

Xiaolu Ren1,2†, Lingxuan Hou3†, Shan Liu1, Peng Wu4,
Siming Liang4, Haitian Fu5, Chengquan Li5, Ting Li1* and
Yongjing Cheng6*
1Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China, 2School of
Health Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia, 3College of Biomedical
Engineering, Sichuan University, Chengdu, Sichuan, China, 4Department of Orthopedics, General
Hospital of Ningxia Medical University, Yinchuan, China, 5School of Clinical Medicine, Tsinghua
University, Beijing, China, 6Department of Rheumatology and Immunology, Beijing Hospital, National
Centre of Gerontology, Beijing, China

Background: Knee osteoarthritis (KOA) constitutes the prevailing manifestation
of arthritis. Radiographs function as a common modality for primary screening;
however, traditional X-ray evaluation of osteoarthritis confronts challenges such
as reduced sensitivity, subjective interpretation, and heightened misdiagnosis
rates. The objective of this investigation is to enhance the validation and
optimization of accuracy and efficiency in KOA assessment by utilizing fusion
deep learning techniques.

Methods: This study aims to develop a highly accurate and lightweight model for
automatically predicting and classifying KOA through knee X-ray imaging. We
propose a deep learningmodel namedOA-MEN, which integrates a hybridmodel
combining ResNet and MobileNet feature extraction with multi-scale feature
fusion. This approach ensures enhanced extraction of semantic information
without losing the advantages of large feature maps provided by high image
resolution in lower layers of the network. This effectively expands the model’s
receptive field and strengthens its understanding capability. Additionally, we
conducted unseen-data tests and compared our model with widely used
baseline models to highlight its superiority over conventional approaches.

Results: The OA-MEN model demonstrated exceptional performance in tests. In
the unseen-data test, our model achieved an average accuracy (ACC) of 84.88%
and an Area Under the Curve (AUC) of 89.11%, marking improvements over the
best-performing baselinemodels. These results showcase its improved capability
in predicting KOA from X-ray images, making it a promising tool for assisting
radiologists in diagnosis and treatment selection in clinical settings.
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Conclusion: Leveraging deep learning for osteoarthritis classification guarantees
heightened efficiency and accuracy. The future goal is to seamlessly integrate deep
learning and advanced computational techniques with the expertise of medical
professionals.
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1 Introduction

The rising global prevalence of osteoarthritis (OA), especially in
the knee joint, poses a significant public health challenge (Latourte
et al., 2020). OA is typically triggered by a combination of subtle risk
factors present in daily life, including diet, hormonal levels, and
genetic predispositions. The incidence of OA significantly increases
with age (Jia et al., 2023). A recent Chinese meta-analysis involving
74,908 symptomatic patients revealed an overall Knee osteoarthritis
(KOA) prevalence of 14.6% between 2012 and 2016, with higher
rates among females (19.1%) compared to males (10.9%) (Li et al.,
2020). KOA varies in its progression, with the majority of patients
seeing gradual deterioration over decades, while some experience
rapid decline. Moreover, the onset of KOA often coincides with
other comorbidities, exacerbating its impact and ultimately leading
to the necessity for knee replacement surgery in some cases (Kotela
et al., 2019; Wojdasiewicz et al., 2020; Wu et al., 2022). Early and
accurate diagnosis is vital for effective management and timely
intervention in KOA cases (Wojdasiewicz et al., 2020).

X-ray imaging is indispensable for the diagnosis of KOA,
providing a non-invasive and cost-effective means to assess joint
damage and monitor disease progression (Hirvasniemi et al., 2019;
Jansen et al., 2021). In clinical practice, physicians rely on the
Kellgren-Lawrence (K-L) grading system (Kellgren and Lawrence,
1957), designed for visual inspection of X-ray images, to measure the
severity of KOA. The K-L system categorizes KOA severity into five
grades, ranging from grade 0 (normal) to grade 4 (severe). While
K-L grading methods are valuable tools for clinicians, the clinical
assessment of conditions like KOA faces inherent challenges marked
by subjectivity, the lack of quantitative data, and the absence of
standardization (Abdullah and Rajasekaran, 2022; Cueva et al.,
2022). This subjectivity leads to varying interpretations among
healthcare practitioners, resulting in inconsistent diagnoses and
treatment recommendations. The absence of quantitative data,
combined with the lack of standardization in assessment
techniques and protocols across healthcare providers, exacerbates
these disparities, making it difficult to effectively monitor changes
over time or evaluate the effectiveness of different treatment
approaches. Consequently, the development of a fully automatic
and efficient auxiliary classification method becomes imperative.

The rise of artificial intelligence technology has prompted
extensive research into the application of deep learning in
arthritis diagnosis. Deep learning, particularly convolutional
neural networks (CNNs), excels at automatic feature extraction
from intricate data, enabling the identification of subtle
differences that may challenge human perception. This capability
positions deep learning as a potent tool for tasks like image
recognition and classification (Panwar et al., 2020). Deep learning

has proven effective in various knee-related applications, including
the diagnosis of bone tumors (Do et al., 2021), identification of knee
joint injuries (Kim et al., 2022; Qu et al., 2022; Wang et al., 2023),
and the recognition and segmentation of anatomical structures (Gan
et al., 2021; Quinsten et al., 2022). Concurrently, numerous studies
concentrate on employing deep learning for knee grading,
showcasing diverse techniques for automated KOA severity
grading from X-ray images. Chen et al. (2019) utilized
YOLO2 and fine-tuned VGG-19, achieving 69.7% accuracy with
a Mean Absolute Error of 0.344. Thomas et al. (2020) developed a
DenseNet with an accuracy of 0.71 and an F1 score of 0.70 for KOA
grading. Wang et al. (2021) integrated YOLO with a visual
transformer, achieving 69.18% accuracy in diagnosis. Cueva et al.
(2022) present a CADx model employing Deep Siamese CNNs and
fine-tuned ResNet-34 for simultaneous detection of OA lesions in
both knees (KL scale), achieving 61% average multi-class accuracy.
Mohammed et al. (2023) attained peak classification accuracies of
69%, 83%, and 89%, respectively, utilizing the ResNet101 deep
neural network (DNN) model. However, the diagnosis of KOA
primarily relies on texture features, and general models exhibit
limited capability in recognizing these features, resulting in lower
accuracy rates that fail to meet clinical application standards. Hence,
there is a pressing need to develop a highly accurate model for the
automatic diagnosis and grading of KOA. Such a model would assist
radiologists in making more accurate diagnoses, reduce the rate of
misdiagnosis, and consequently minimize patient suffering.

In this study, we developed a deep learning model named OA-
MEN, which is a fusion model obtained by integrating multi-scale
feature fusion with parallel ResNet and MobileNet architectures.
Themulti-scale feature fusion within the ResNet structure effectively
increases the network depth, combining the high-level semantic
expression capabilities of the upper network layers with the
geometric information representation of the lower layers. This
integration expands the model’s receptive field and utilizes
residual blocks to prevent gradient vanishing, thereby avoiding
ineffective training. MobileNet enhances the model’s
comprehension ability by extracting more effective features
without significantly increasing model complexity. The final
prediction and output are conducted through a fully connected
layer. Tests with unseen data and comparisons with baseline models
demonstrate this method’s effectiveness in enhancing the model’s
performance and understanding ability for multi-classification of
osteoarthritis.

2 Materials and methods

The workflow of this study is shown in Figure 1.
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FIGURE 1
The workflow of this study. All original images undergo preprocessing steps such as denoising and detail enhancement before being divided into
training and testing datasets. The training set, after data augmentation, is fed into the OA-MEN model for model training. The trained model is then
evaluated using the test set.

TABLE 1 The knee K-L grading system.

Grade Description

0 Healthy knee image

1 (Doubtful) Doubtful joint narrowing with possible osteophytic lipping

2 (Minimal) Definite presence of osteophytes and possible joint space narrowing

3 (Moderate) Multiple osteophytes, definite joint space narrowing, with mild sclerosis

4 (Severe) Large osteophytes, significant joint narrowing, and severe sclerosis
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2.1 Database

In this study, we utilized the KOA Severity Grading Dataset
from Kaggle (Chen, 2018) as our training and testing data source.
This dataset comprises 9786 high-quality knee X-ray images, each
labeled by clinical experts according to the knee Kellgren-Lawrence
(KL) grading standards (Kellgren and Lawrence, 1957). The KL
grading system is a widely used radiological classification system for
assessing the severity of KOA. Initially proposed by Kellgren and
Lawrence in 1957, it primarily focuses on X-ray features to evaluate
the progression and severity of KOA. The KL grading system
categorizes KOA into levels as outlined in Table 1. The diagram
of KOA Severity Grading Dataset is shown in Figure 2, which
illustrates the progression of knee osteoarthritis through the KL
grading system. Grade 0 shows no signs of osteoarthritis with a
normal joint appearance. Grade 1 reveals slight narrowing of the
joint space and possible osteophytic lipping. Grade 2 displays
definite osteophytes and possible narrowing of the joint space.
Grade 3 shows moderate multiple osteophytes, definite narrowing
of the joint space, some sclerosis, and possible deformity of bone
contour. Grade 4 exhibits large osteophytes, marked narrowing of
the joint space, severe sclerosis, and definite deformity of
bone contour.

2.2 Data preprocessing

In the initial stages of the experiment, we conducted
preprocessing operations on all training images. Firstly, we
applied a Gaussian filter to the training set images to remove
high-frequency noise, followed by edge detection using the
Laplacian operator for edge feature extraction, which was then
combined with the original images to enhance the representation
of texture features. Additionally, histogram equalization was
performed in the brightness space to augment the display of
image brightness and details. Moreover, the original dataset was
divided into training and testing sets in an 8:2 ratio for conducting
unseen-data tests.

Given the presence of data imbalance in the original dataset and
to enhance the model’s ability to recognize anomalous inputs, we
employed data augmentation techniques for the training set. For
each category, we increased the number of images through cropping,
flipping, and translation, equalizing the image quantity across
categories to prevent model overfitting due to data imbalance.

For fair comparison, all baseline models used datasets that had
undergone similar data augmentation and preprocessing. Tests
showed that such preprocessing successfully improved the
model’s predictive performance.

2.3 Model construction

2.3.1 OA-MEN model
In our preliminary experiments, it was observed that most deep

learning models lacked the capability to effectively extract texture
information in KOA recognition, thereby limiting their
performance. To address this issue, we propose the OA-MEN
model, a fusion of multi-scale feature-integrated ResNet and
MobileNet. ResNet, introduced by He et al. (2016) in 2015,
achieves this goal through the incorporation of “residual blocks.”
Within these blocks, the input is not only passed to the next layer but
also directly through skip connections to deeper layers. This
architecture allows the network to learn residuals between inputs
and outputs, rather than learning the outputs directly, facilitating the
construction of deeper models without encountering the problem of
gradient vanishing. MobileNet, developed by Howard et al. (2017)
from Google in 2017, is centered around depthwise separable
convolutions, which decompose traditional convolution into
depthwise and pointwise convolutions. Depthwise convolution
applies individual filters to each input channel, while pointwise
convolution, a 1 × 1 convolution, combines the output of depthwise
convolutions. This approach significantly reduces the model’s
complexity and computational demands while maintaining robust
performance. As another branch of our model, MobileNet enhances
the extraction of detailed features without substantially increasing
computational load. To enhance the recognition of critical texture
features in KOA, the model utilizes multi-scale feature fusion,
capturing fine surface details (acquired in shallower network
layers) and more abstract texture patterns (captured in
deeper layers).

In summary, the ResNet module in the OA-MEN model allows
for the construction of deeper learning architectures and avoids
gradient vanishing, laying the groundwork for multi-scale feature
fusion to extract information at various levels. The multi-scale
feature fusion module effectively extracts both fine surface details
and elusive texture features across different layers and scales.
Furthermore, MobileNet, as a complementary branch, captures
detailed features without significantly increasing computational

FIGURE 2
The diagram of KOA Severity Grading Dataset. The image demonstrates increasing severity from left to right, starting with a normal joint in Grade
0 and advancing through slight changes in Grade 1, evident osteophytes in Grade 2, significant joint space narrowing and sclerosis in Grade 3, to severe
joint space loss and bone deformity in Grade 4.
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load. These modules work in synergy to not only extract surface
details from Knee Joint X-ray images but also effectively capture
texture features, enhancing the model’s ability to diagnose and
classify KOA. The model construction of OA-MEN is shown
in Figure 3.

2.3.2 Comparison models
To objectively evaluate the performance of the OA-MEN model

proposed in this study, we employed traditional deep learning
models (Xception, MobileNet, ResNet, DenseNet, and NasNet)
for comparison. These models have been widely applied by
researchers and have demonstrated their superior performance
and reliability, serving as benchmarks and future directions for
our research. The Xception model, an evolution of the Inception
(Szegedy et al., 2015) architecture, was introduced by Chollet in
2016. It utilizes depthwise separable convolutions within the
Inception module, enabling the network to learn spatial
hierarchies of features more efficiently while reducing the
model’s parameters and computational complexity. Xception has
shown excellent performance in various image recognition tasks and
has been increasingly applied in KOA recognition in recent years
(Sindhu et al., 2022; Abd El-Ghany et al., 2023).

DenseNet, proposed by Huang et al., in 2016, features a densely
connected pattern where each layer is directly connected to all
preceding layers, effectively improving information and gradient
flow and enhancing parameter efficiency. DenseNet has been
extensively proven effective in various image classification and
recognition tasks, including medical imaging and KOA recognition
(Chaugule and Malemath, 2022; Alexopoulos et al., 2023).

NASNet, a neural network architecture designed using
automated machine learning techniques, was introduced by

Google Brain researchers Zoph et al. (2018) in 2018. NASNet is
a product of Neural Architecture Search (NAS), wherein machine
learning autonomously discovers high-performance network
architectures. Exhibiting outstanding performance in multiple
standard image recognition benchmarks, NASNet represents a
trend in discovering neural network architectures through
automated methods and has also been applied in medical
imaging and KOA recognition (Sultan et al., 2021; Yoon
et al., 2023).

2.4 Model evaluation

To evaluate our OA-MEN model, we used several key
performance metrics: Accuracy (ACC), Precision (PRE), Recall
(REC), and Area Under the ROC Curve (AUC). These metrics
are derived from the counts of True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN), which reflect
correct or incorrect predictions by the model. The formulas for
calculating ACC, PRE, REC, and F1 are as follows (Equations 1–4):

ACC � TP + TN

TP + FP + TN + FN
(1)

PRE � TP

TP + FP
(2)

REC � TP

TP + FN
(3)

F1 � 2 × PRE × REC

PRE + REC
(4)

The ROC curve plots the trade-off between the True Positive
Rate (TPR) and False Positive Rate (FPR) at various thresholds, with

FIGURE 3
The construction of OA-MENmodel. The model integrates a ResNet-based structure with multi-scale feature fusion, enhancing the network depth
and combining rich semantic information with larger feature maps. In parallel, MobileNet is employed to further extract and complete feature
representations, significantly enhancing the model’s interpretative capability.

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Ren et al. 10.3389/fbioe.2024.1437188

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1437188


the AUC indicating the model’s ability to distinguish between
classes. An AUC close to 1 suggests high effectiveness, while an
AUC near 0.5 implies random performance.

3 Results

3.1 Experimental setup

In this study, we implemented uniform parameter optimization
across all models to ensure an objective evaluation. We employed
the gradient threshold method for tuning all parameters. After
extensive experimentation and testing, we chose the suitable
number of epochs to make the models to fully converge without
exhibiting signs of overfitting. The learning rate was set correctly to
facilitate appropriate convergence speed and mitigated the risk of
settling at local optima.

The experiments in this study were conducted on a system
operating with Windows 11 Professional, utilizing Python
3.10.9 as the programming environment. In terms of software
libraries, we employed Pytorch 2.0.1 + cu117, Scikit-learn,
Sklearn 0.0.post1, and scipy 1.10.0, along with other

mathematical libraries, to facilitate the development of the
model’s architecture and the validation of its results. The
hardware setup encompassed an Intel Core i7 10750H
processor, featuring a base frequency of 2.6 GHz and a turbo
frequency of up to 5 GHz, with 6 cores and 12 threads.
Additionally, the system was equipped with an NVIDIA
GeForce GTX 1080Ti graphics card, which has an 8 GB
memory capacity and a 128-bit memory bus width.

3.2 Model results

To conduct a more comprehensive and objective evaluation of
the predictive performance of the model proposed in this paper, we
divided the dataset into training and testing sets in an 8:2 ratio. The
testing set, serving as unseen data, was utilized to assess the model’s
predictive capabilities on datasets it had not previously encountered.
Through experimental validation, we ultimately determined that
training the model for 50 epochs with a learning rate of
0.00001 allowed for complete convergence without signs of
overfitting. The iteration graph of the OA-MEN model is
depicted in Figure 4A.

FIGURE 4
The result of all models. (A) The training flow of OA-MENmodel. As illustrated by the curve, the model converges and achieves optimal results after
50 training epochs. (B) The confusion matrix of OA-MENmodel. The model accurately predicts most categories; however, the classification of Kellgren-
Lawrence Grade 1 (doubtful osteoarthritis) poses challenges, making it difficult to distinguish between Grades 0 and 2. (C–H) The ROC of OA-MEN,
DenseNet, Xception, MobileNet, NasNet and ResNet. The ROC curve for the OA-MEN model is the closest to the top-left corner, indicating the
highest AUC across all categories compared to the other models, thereby demonstrating superior predictive performance.
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In the unseen-data test, the OA-MEN model exhibited
outstanding performance. Specifically, for mild KOA (class 1),
the model proposed in this study achieved a classification
accuracy of 75.87%, the highest compared to all traditional
models. In terms of average ACC and AUC, the OA-MEN model
reached 84.88% and 89.11%, respectively, as shown in Table 2. Such
high-performance metrics position the OA-MEN model as a
promising tool for deployment in clinical settings, assisting
radiologists in diagnosis. The confusion matrix and ROC curve
of the OA-MEN model are illustrated in Figures 4B, C.

Among the comparison models, ResNet demonstrated the best
performance, with an average ACC and AUC of 83.86% and 83.23%,
respectively. However, there was a significant gap between ResNet
and the OA-MEN model, particularly in the classification accuracy
for mild KOA, where ResNet achieved only 73.88%. This
discrepancy could potentially mislead radiologists in selecting
appropriate treatment methods and impose unnecessary burdens
on patients. The ROC curves for the comparison models are
depicted in Figures 4D–H.

3.3 Model visualization and clinical
interpretability

Most grade 0 Grad-CAM heatmaps do not exhibit a distinct
gradient color heatmap compared to cases of higher-grade
osteoarthritis, suggesting that the model’s focus may not be
primarily on specific areas associated with pathological features
in this non-osteoarthritis category. Instead, accurate predictions
of grade 0 may be attributed to a more extensive and precise
assessment of normal anatomy, aligning with clinical
expectations of a lack of significant pathological manifestations.
The gradient color heatmaps detected in a limited number of level
0 images suggest subtle changes or features capturing the model’s
attention. This prompts the intriguing hypothesis that these images
may not be genuinely normal and could potentially exhibit some
pathological alterations. The distribution of most heatmaps for
grades 1 to 4 aligns with the distribution of narrow joint spaces.
However, the eye-catching appearance of the gradient color
heatmaps of the subarticular area, combined with previous
studies, leads to the proposal of a second interesting hypothesis
that altered remodeling of subchondral trabecular bone may attract
the attention of deep learning models. All of this necessitates future

research to incorporate this potential hypothesis into the study
design for further investigation and validation.

Visualization of heat maps enhances the interpretability of deep
learning models but also presents certain challenges, especially
compared to traditional imaging biomarkers. The heat map of
five categories is shown in Figure 5. Heat maps capture static
snapshots of decisions made at a given moment, providing a
partial view of the model’s attention and visualizing the features
the model learns. Grade 0 displays minimal color variation,
indicating an absence of significant osteoarthritic changes, which
corroborates with the absence of OA. Grade 1 shows slight color
changes around the joint space, suggesting the model’s early
detection of potential osteoarthritic alterations. Grade 2 is
characterized by increased color intensity near the joint edges,
highlighting early degenerative changes such as minor joint space
narrowing and possible osteophyte formation. Grade 3 exhibits
pronounced warm colors in the joint space and surrounding
bone, signifying moderate reductions in joint space, osteophyte
growth, and potential sclerosis. Grade 4 focuses on the bone
itself, where the model pays particular attention to changes in
bone morphology and density as well as the formation of
osteophytes. However, their display may not be consistent with
conventional imaging biomarkers that clinicians are familiar with.
Deep learning models, including those that use heat maps, often
have black-box properties, making the internal decision-making
process not completely transparent. Additionally, these models may
be inherently uncertain, and heat maps may not clearly convey the
confidence or uncertainty of the model’s predictions. These
limitations may affect the interpretation process and results,
necessitating increased adoption of these novel visualization
techniques by radiologists and clinicians and further exploration
of interpretability.

4 Discussion

Aiming to enhance the detection accuracy of KOA and reduce
the misdiagnosis and underdiagnosis of mild cases, this paper
introduces a novel deep learning model, named the OA-MEN
model. It is a fusion model, combining ResNet with multi-scale
feature integration and MobileNet in parallel. This model achieves
accurate detection of KOA by synthesizing surface information and
detailed texture features from feature maps of various network
depths, thus increasing the detection accuracy for mild KOA
and overall.

The OA-MEN model leverages the ResNet architecture to
increase network depth without encountering issues like gradient
vanishing. It integrates the semantic expressiveness of higher-level
network structures with the geometric representational ability of
lower-level structures through multi-scale feature fusion, thereby
expanding themodel’s receptive field. In parallel, MobileNet extracts
more effective features without significantly increasing the model’s
complexity, enhancing its understanding capability. The model
culminates in a fully connected layer for prediction and output.
Therefore, it effectively captures texture features and surface details
of KOA, enhancing the model’s performance and understanding of
the multi-classification of osteoarthritis.

TABLE 2 The performance of all models.

Mean
ACC

Mean
PRE

Mean
REC

Mean
AUC

OA-MEN 84.88 63.57 64.03 89.11

MobileNet 83.50 65.07 61.60 87.00

Xception 80.69 51.66 60.52 83.47

ResNet 83.86 60.13 62.71 83.23

DenseNet 83.62 59.09 60.68 87.56

NasNet 64.78 40.09 24.33 67.27
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Despite positive outcomes in existing studies, this investigation
in the field of precise and automatic osteoarthritis grading aims to
enhance, validate, and extend the applicability of findings.
Acknowledging positive outcomes from previous studies, the
research maintains a rigorous approach, emphasizing the
necessity for validation across diverse datasets and external test
data. This work not only advances the current understanding of
osteoarthritis grading but also sets the stage for future refinements,
multi-center validations, and the development of a deployable
clinical tool, demonstrating an ongoing innovation in automated
medical grading systems.

Despite the promising implications of our study, our grading
system has limitations. Limited external test data from a specific
cohort impacts generalizability. Future research should include
diverse data from multiple centers. Furthermore, the KL grading
system presents difficulties in differentiating between KL grade 1
(doubtful OA) and other grades due to its definition and the limited
data available, an issue our model has not yet resolved. Future
research should aim to increase the training samples and enhance
the model to address this challenge (Zhao et al., 2024). Also, our
system is not yet deployable for clinical use, it necessitates additional
development. Moreover, our study lacks external validation, which
is critical for ensuring the robustness and generalizability of our
proposed model. It is essential to conduct further testing on more
diverse datasets and to acquire clinical samples of KOA to
demonstrate the superiority and clinical applicability of our
model. Future research can refine our findings, contributing to a
sophisticated and clinically applicable osteoarthritis grading system.

5 Conclusion

This study aims to precisely predict and grade KOA, introducing
the OA-MEN model, a hybrid deep learning model that leverages
ResNet and a multi-scale feature fusion strategy. This approach

enhances the model’s ability to extract texture features while
capturing rich information from high-resolution feature maps.
Additionally, the integration of a parallel MobileNet allows the
model to extract more effective features without substantially
increasing its complexity, thus augmenting the model’s overall
understanding of KOA characteristics. Through unseen-data
testing and comparison with traditional models, the OA-MEN
model has demonstrated superior performance. Using the Knee
KL grading system for classification and grading, the model achieved
average ACC and AUC of 84.88% and 89.11%, respectively, fulfilling
the objective of accurately predicting KOA. Further validation and
optimization of this study will enhance the translation of these
promising results into practical applications. Future research should
encompass a more diverse array of external test data, employ more
sophisticated methodologies, undergo further development and
validation, and transition from a research setting to a clinically
applicable tool. Looking forward, this study is expected to be
deployed in clinical settings to assist physicians in diagnosis,
reduce misdiagnosis rates, and minimize the patient harm caused
by misdiagnoses and underdiagnoses.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: P. J. M. D. Chen, Knee osteoarthritis severity
grading dataset, 1 (2018) 21-23.
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FIGURE 5
The heatmap of different categories. These heatmaps use color intensity to indicate regions of significant degenerative change, with warmer colors
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