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Introduction: Assessing the olfactory preferences of drivers can help improve the
odor environment and enhance comfort during driving. However, the current
evaluation methods have limited availability, including subjective evaluation,
electroencephalogram, and behavioral action methods. Therefore, this study
explores the potential of autonomic response signals for assessing the olfactory
preferences.

Methods: This paper develops a machine learning model that classifies the
olfactory preferences of drivers based on physiological signals. The dataset
used for training in this study comprises 132 olfactory preference samples
collected from 33 drivers in real driving environments. The dataset includes
features related to heart rate variability, electrodermal activity, and respiratory
signals which are baseline processed to eliminate the effects of environmental
and individual differences. Six types of machine learning models (Logistic
Regression, Support Vector Machine, Decision Tree, Random Forest, K-
Nearest Neighbors, and Naive Bayes) are trained and evaluated on this dataset.

Results: The results demonstrate that all models can effectively classify driver
olfactory preferences, and the decision tree model achieves the highest
classification accuracy (88%) and F1-score (0.87). Additionally, compared with
the dataset without baseline processing, the model’s accuracy increases by
3.50%, and the F1-score increases by 6.33%on the dataset after baseline processing.

Conclusions: The combination of physiological signals and machine learning
models can effectively classify drivers’ olfactory preferences. Results of this study
can provide a comprehensive understanding on the olfactory preferences of
drivers, ultimately enhancing driving comfort.
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1 Introduction

Driving comfort was a critical consideration in automotive design, prompting
automakers to enhance driving comfort by using in-vehicle fragrances to improve the
odor environment (Mustafa et al., 2016; Gentner et al., 2021). However, the current
evaluation methods were unable to effectively assess the olfactory preferences of drivers,
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leading to a lack of sufficient consideration for driver olfactory
preferences in the design process of in-vehicle fragrances. This
resulted in existing in-vehicle fragrances struggling to achieve the
expected effects of improving the odor environment and enhancing
driving comfort. Therefore, it was crucial to find an effective
olfactory preferences evaluation method to provide an important
reference for in-vehicle fragrance designers and significantly
enhance the driver’s comfort during driving.

The previously available evaluation methods could not
effectively assess drivers’ olfactory preferences, indicating that the
adopted approaches were not suitable for assessing olfactory
preferences (Seok et al., 2017; Williams et al., 2023; Schacht
et al., 2009). For example, in subjective evaluation methods, a
large number of studies used rating scales to assess olfactory
perception preferences (Yang W. et al., 2024; Martínez-Pascual
et al., 2023), including evaluating the pleasantness of odors
(Sorokowska et al., 2022; Farahani et al., 2023; Klyuchnikova
et al., 2022) and the intensity of odors (Fjaeldstad et al., 2019;
Lesur et al., 2023). However, these evaluation methods were highly
subjective, and it often led to evaluation results being contrary to
reality since drivers lacked the professional olfactory training
(Hakyemez et al., 2013; Han et al., 2021; Seok et al., 2017). The
use of electroencephalogram (EEG) methods could accurately
determine the brain activity associated with drivers’ olfactory
preferences (Nakahara et al., 2020; Islam et al., 2018). However,
this method was difficult to apply (Abenna et al., 2023), demanding
significant time and economic resources (Williams et al., 2023),
which was the primary reason why electroencephalogram methods
had not been widely adopted. Additionally, olfactory perception
preferences could also be better evaluated through collecting
behavioral data (Naudon et al., 2020; Ryan et al., 2008), but
behavioral data could only reflect a part of physical indicators
and could not fully reflect olfactory feelings. Actually, there was a
correlation between physiological signals (such as electrodermal
activity, heart rate, and respiratory signal) and olfactory
preferences in the human body (Laureanti et al., 2022; Aurup,
2011). In the field of emotion research, physiological signals
could characterize feelings of pleasure and disgust (Khare et al.,
2023; Cai et al., 2023; Singh et al., 2023). Therefore, this provided a
potential approach for assessing olfactory perceptual preferences.
However, this finding had not yet been incorporated into olfactory
preference evaluation methods.

The physiological signals of the human body were
spontaneous responses used to assess physiological and
psychological states (Li et al., 2023; Saha et al., 2024).
Research had shown that the autonomic nervous system of the
human body underwent changes after olfactory training,
allowing for the identification of individual preferences for
specific odors by observing different autonomic responses
(Parreira et al., 2023). In addition, researchers had also found
that experiencing different fragrances could alter skin-related
physiological signals (Jiao et al., 2023). These results had
potential practical value. However, single-modal physiological
signals cannot comprehensively reflect an individual’s
physiological changes and are easily influenced by external
factors. Therefore, multimodal signals offer greater advantages
in physiological monitoring (Garcia-Ceja et al., 2018; Debie
et al., 2019).

To achieve a better recognition accuracy and a more stable
recognition model, researchers explored physiological state
recognition methods that integrated multimodal physiological
signals. Chen et al. (2022) integrated electroencephalogram, heart
rate variability, and electromyography signals into a convolutional
neural network model, achieving alertness detection of drivers.
Gong et al. (2024) designed a multimodal fusion method that
simultaneously considered heterogeneity and correlation and
explored the optimal combination of various physiological
signals. Kose et al. (2021) used a fusion of horizontal eye
movement, vertical eye movement, zygomatic muscle electrical
activity, and trapezius muscle electrical activity to improve
existing emotion recognition methods. Jia et al. (2022) proposed
a domain adversarial learning squeeze and excitation network based
on multimodal physiological signals to capture the characteristics of
electroencephalogram (EEG) and electrooculogram (EOG) during
sleep staging. The results showed that multimodal signals were
effective for sleep staging tasks. For further research and
convenience. This study chose to integrate electrodermal activity
(EDA) (Shehu et al., 2023), heart rate variability (HRV) (Martis
et al., 2014), and respiration (RESP) (Shin et al., 2022) features as
indicators to assess drivers’ olfactory preferences.

This study aims to develop a machine learning model that using
multiple physiological signals to evaluate drivers’ olfactory
preferences. The ultimate goal is to assist automotive designers in
creating in-vehicle fragrances that aligned with drivers’ olfactory
preferences, enhancing driver comfort during driving. The
contribution of this study could be summarized as the following:

(1) The experimental setting of this study is conducted in a real
road environment, which allows the physiological response of
drivers when experiencing in-vehicle fragrances to be closer to
the real situation. To eliminate the influence of driving on
physiological signals, a calm driving phase is implemented.

(2) To eliminate the influence of individual physiological
differences, baseline processing is applied to collect
physiological signal features. Additionally, to maxim-ize
the retention of information from the original features,
feature concatenation is employed for feature fusion.

(3) Six machine learning models are evaluated in this study.
Results show that the decision tree model performed a
better accuracy than the other models. In addition, the
predicted results also show that models used in the work
performed better in predicting the “disgust” preferences than
that of the “like” preferences.

2 Materials and methods

The dataset used for training in this study comprises
132 olfactory preference samples collected from 33 drivers. To
assess olfactory preferences, the participating drivers (Section 2.1)
are strictly screened. This paper uses the ErgoLAB multichannel
physiological instrument to collect physiological signals from these
candidates and uses a 9-point hedonic scale to collect olfactory
preference data from drivers (Section 2.2). In addition, the time
domain and frequency domain analysis on the collected
physiological data are conducted to obtain a feature set (Section
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2.3). Finally, this study uses the driver’s olfactory preference data
and the driver’s physiological signal feature set as the target label and
the input feature, respectively. The performance of six machine
learning models is trained (Section 2.4) and evaluated (Section 2.5)
to predict the driver’s olfactory preference. The identification
framework of drivers’ olfactory preferences is shown in Figure 1.

2.1 Participant

This study selects 33 drivers (16 males and 17 females) as
participants through three rounds of screening. All participants
are between 21 and 32 years of age (mean = 26.7 years; standard
deviation = 2.6 years), with an average driving experience of
3.7 years (standard deviation = 2.1; range = 8–1 years). The
experimental content and procedures of this experiment are
approved by the Ethics Committee of Chongqing University of
Arts and Sciences (approval no. CQWL202403). Firstly, the first
round of screening eliminates drivers with central nervous system
diseases and rhinitis. Secondly, subjective judgment tests are
conducted in the second round of screening to ensure that
participants can accurately judge their preferences. Finally, the
third round of screening eliminates participants whose vital signs
such as heart rate and breathing are not within the normal range
before the experiment, as well as participants who have eaten heavy
flavored foods before the experiment. After obtaining the
participant’s consent, an informed consent form is signed with
the participants, and they are informed on the experiment
content and tasks to be completed during the experiment.

2.2 Equipment and procedure

In this study, peppermint essential oil, jasmine essential oil,
sweet orange essential oil, and lavender essential oil are used as
odor sources (the essential oil reagents are obtained from Refined
Aroma and are non-toxic and harmless to humans). These odors
are widely used in experiments and life (El Hachlafi et al., 2023;

Karimi et al., 2024; Diass et al., 2021). The generation of odors is
achieved through olfactory testing experience instruments (Tang
et al., 2019; Tang et al., 2022). The ErgoLAB signal acquisition
module is used to collect and record the physiological signals of
participants (Zheng et al., 2021; Qu and Xie, 2023). The program
for the experimental process is written through the ErgoLAB
human-computer interaction platform (Liu et al., 2019).
Specifications of the physiological signal data acquisition
equipment are as follows:

(1) ErgoLAB EDA wireless electrodermal sensor (sampling rate:
64 Hz, acquisition range: 0–30 μS). The two electrodes of the
EDA sensor are fixed at the fingertips of the index finger and
middle finger (as shown in Figure 2A).

(2) ErgoLAB RESP wireless respiratory sensor (sampling rate:
64 Hz; acquisition range: 0–140 rpm). The belt of the RESP
sensor is fixed between the chest and abdomen of the subject
(as shown in Figure 2B).

(3) ErgoLAB PPG wireless blood volume pulse sensor (sampling
rate: 64 Hz; acquisition range: 0–240 bpm). The ear clip
electrodes of the PPG sensor are fixed on the earlobe (as
shown in Figure 2C).

In addition, this paper obtains the olfactory preference data of
drivers through a 9-point hedonic scale (Xia et al., 2020). The 9-
point hedonic scale is used to evaluate “like”, but it is often used to
measure preferences (Barnett et al., 2019; English et al., 2019). It
consists of nine different categories of semantic components,
ranging from ‘extreme dislike’ to ‘extreme like’.

The experimental scenario is a closed two-lane highway, which
is a straight road (speed limit of 30 km/h). The starting point and
ending point of the experiment are about 800 m apart. The
experimental vehicle is an automatic transmission vehicle without
any odor. The experimental road is divided into four areas
(preparation stage, calm stage, stimulation stage, and evaluation
stage). The area 200 m forward from the starting point is the calm
stage, the area 300 m forward from the end of the calm stage is the
fragrance stimulation stage, and the area 300 m forward from the

FIGURE 1
A framework for identifying driver olfactory preferences based on multiple physiological signals.”
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end of the stimulation stage is the olfactory preference collection
stage. This experimental scenario is diagramed in Figure 3.

Each driver needs to complete four rounds of driving tasks, which
means completing the experiments in the mint group, jasmine group,
sweet orange group, and lavender group. The four groups of
experiments are conducted randomly. The driving task for each lap
includes four stages (preparation stage, calm stage, stimulation stage, and
evaluation stage). Before each round of the experiment, the participants
need to complete the preparation stage tasks in the waiting area. During
the preparation stage, the experimenter needs to deodorize the car to
ensure that there is no odor affecting the subsequent experiment. The
participant needs to drive the vehicle andmaintain a stable state of mind
in the calm stage.When the vehicle enters the stimulating stage area, the
fragrance begins to be released. After completing all the experimental
tasks, the vehicle turns around and return to the waiting area to repeat
the above experimental tasks. The scoring table was completed during
the evaluation stage (as shown in Table 1).

2.3 Feature extraction

Feature extraction refers to extracting representative and
distinguishable features from raw data to describe the attributes
and characteristics of the data. Feature extraction plays a crucial role
in machine learning (Escobar-Linero et al., 2022). This study
extracts electrodermal activity (EDA), heart rate variability
(HRV), and respiratory signal-related features from 132 olfactory
preference samples as the basis for evaluating olfactory preference.
Table 2 shows the features extracted from three
physiological signals.

In addition, this paper uses changes in physiological signals as
the input features of the model, meaning that all the input features of
the model undergo baseline processing (Maithri et al., 2022).
Specifically, the final feature is the difference of the physiological
signal feature values extracted during the stimulation phase and the
calm phase (Feature = FeatureStimulation − FeatureCalm).

FIGURE 2
The wearing diagram of physiological signal sensor. (A) The wearing Diagram of EDA sensor; (B) The wearing Diagram of RESP sensor; (C) The
wearing Diagram of PPG sensor.

FIGURE 3
The experimental process and schematic diagram of experimental scenarios.
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2.3.1 Time domain feature extraction
In time domain analysis, this paper calculates the mean (M),

standard deviation (SD), and range-related features of three
physiological signals. Due to the importance of R-wave
detection in the time domain analysis of HRV (Gupta et al.,
2020), the following extracting features are focused: standard
deviation of normal and normal intervals (SDNN), root mean
square of successive differences in adjacent intervals (RMSSD),
standard deviation of successive differences in adjacent intervals
(SDSD), standard deviation of instantaneous heartbeat interval
R-R variability (SD1), standard deviation of continuous long-
term R-R variability (SD2), and heart rate (HR).

By taking the first-order difference of the R-wave time
point, all R-R intervals of the HRV signal are obtained and
thus the SDNNs are calculated (Yang et al., 2024b). The
calculation process of SDNN is as follows (as shown in
Equation 1).

SDNN �
������������������
1

N − 1
∑N
j�1

ΔRj − μΔR( )2√√
(1)

where N is the total number of R-R intervals, ΔRj is the jth R-R
interval, and μΔR is the average of all R-R intervals. RMSSD and
SDSD can be obtained by second-order differentiation of the R-wave
(as shown in Equations 2, 3).

RMSSD �
�������������������
1

N − 1
∑N
j�2

ΔRj − ΔRj−1( )2√√
(2)

SDSD �
�������������������������
1

N − 1
∑N
j�2

ΔRj − ΔRj−1( ) − μ[ ]2√√
(3)

where ΔRj − ΔRj−1 is the time interval between adjacent R-R
intervals, μ is the average value of the time interval between
adjacent R-R intervals. The nonlinear dynamic characteristics of
HRV signals can be analyzed through the Poincare plot of HRV
signals. Therefore, SD1 and SD2 are calculated (as shown in
Equations 4, 5).

SD1 �
����������������������������

1
2 N − 2( )∑Nj�2 ΔRj − ΔRj−1( ) − μ1[ ]2√√

(4)

SD2 �
����������������������������

1
2 N − 2( )∑Nj�2 ΔRj + ΔRj−1( ) − μ2[ ]2√√

(5)

where ΔRj − ΔRj−1 is the time interval between adjacent R-R
intervals, μ1 represents the average value of the time interval
between adjacent R-R intervals, μ2 is the average of the sum of
the time between adjacent R-R intervals. Finally, a Poincare plot of
HRV signals with different preferences is drawn (as shown
in Figure 4).

2.3.2 Frequency domain feature extraction
The frequency domain analysis of physiological signals refers

to converting physiological signals into the frequency domain for
analysis to understand the frequency components and frequency
characteristics in the signals (Chudasama et al., 2022). This study
uses Fourier transform and power spectral density analysis
methods for frequency domain analysis. For a continuous
physiological signal x(t), its Fourier transform X(f) is
defined as:

X f( ) � ∫∞
−∞

x t( )e−j2πftdt (6)

where f is the frequency and j is the imaginary unit. The power
spectral density Sxx(f) and the physiological signal x(t) can be
calculated using the autocorrelation function.

TABLE 1 The 9-point hedonic scale.

The semantics of preferences The value of
preference

I extremely like the odor of this experiment 9

I like the odor of this experiment very much 8

I moderately like the odor of this experiment 7

I slightly like the odor of this experiment 6

I neither like nor dislike the odor of this
experiment

5

I slightly dislike the odor of this experiment 4

I moderately dislike the odor of this experiment 3

I dislike the odor of this experiment very much 2

I extremely dislike the odor of this experiment 1

TABLE 2 The physiological signal features extracted from heart rate variability (HRV), electrodermal activity (EDA), and respiratory signals (RESP), alongwith
their corresponding symbols.

Psychophysiology signals Feature extraction method Characteristic symbol Number of features

HRV Time domain HR, SDNN, RMSSD, SDSD, SD1, SD2 6

Frequency domain HF, LF 2

RESP Time domain RESP_Mean, Std 2

Frequency domain Power 1

EDA Time domain SC_Mean, SC_Max, SC_Min, Std 4

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Tang et al. 10.3389/fbioe.2024.1433861

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1433861


Sxx f( ) � lim
T→∞

1
T

∫T/2
−T/2

x t( )e−j2πftdt
∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
2

(7)

This study focuses on extracting frequency domain features of
HRV and RESP signals. For HRV signals, high-frequency (HF) and
low-frequency (LF) features are extracted. For RESP signals, the
average power frequency is extracted. The discrete versions of
Equations 6 and 7 were used.

2.3.3 Feature fusion
Principal Component Analysis (PCA) was employed to reduce the

dimensionality of the features. The feature connection to perform
feature fusion is utilized. The method of feature connection retains
the information of the original features to the greatest extent while
combining the characteristics of different physiological signals,
providing us with more comprehensive information for subsequent
processing and analysis. Specifically, it splices physiological signal
features of different types and sources according to feature
dimensions to obtain a new feature vector (as shown in Equation 8).

X � X1, X2, X3[ ] (8)
where X1 represents the features of the first physiological signal, X2

represents the features of the second physiological signal, and X3

represents the features of the third physiological signal.

2.4 Model development

This study divides the nine levels of preferences into two
categories, where those with a preference level greater than 5-
point are referred to as the ‘like’ group, and those with a
preference level less than or equal to 5-point are referred to as
the ‘disgust’ group (as shown in Figure 5).

The machine learning models we select include Logistic
Regression (LR), Support Vector Machine (SVM), Decision Tree

(DT), Random Forest (RF), K-Nearest Neighbor (KNN), and Naive
Bayes (NB). This paper uses 6-fold cross-validation and evaluate a
wide range of machine learning models and hyperparameters.

2.5 Model evaluation

This study evaluates the performance of the olfactory preference
prediction model, and the model with the highest overall score is set
as the final model. 70% of the samples were used as the training set
for the model, while 30% were used as the test set. Four indicators of
the evaluation metrics are considered, including accuracy, precision,
recall, and F1-score. The process of calculating these indicators is as
follows (as shown in Equations 9–12):

FIGURE 4
The Poincare plot of HRV. (A) The poincare plot of “like” preferences; (B) The Poincare plot of “disgust” preference.

FIGURE 5
The statistics chart of preference sample. The first row of abscissa
is the preference level, and the second row of abscissa is the number
of samples under that preference level.
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Accuracy � TP + TN

TP + TN + FP + FN
(9)

Precision � TP

TP + FP
(10)

Recall � TP

TP + FN
(11)

F1 − score � 2 × TP

2 × TP + FP + FN
(12)

where TP is the number of true positives, TN is the number of true
negatives, FP is the number of false positives, and FN is the number
of false negatives. The calculation process of the true positive rates
TPR%, false negative rates FNR%, true negative rates TNR%, and
false positive rates FPR% are calculated as follows (as shown in
Equations 13–16):

TPR% � TP

TP + FN
× 100% (13)

FNR% � FN

TP + FN
× 100% (14)

TNR% � TN

TN + FP
× 100% (15)

FPR% � FP

TN + FP
× 100% (16)

Furthermore, this study calculates the confusion matrix of the
model and the area under the ROC curve (AUC).

3 Results

Using Principal Component Analysis (PCA), the dimensionality
of the features was reduced from 15 to 6, resulting in the model
achieving optimal accuracy. Under 6-fold cross-validation and
hyperparameter tuning, the model did not exhibit significant
overfitting. Results of the accuracy, precision, recall, and F1-score
of all models are summarized in Table 3. Among them, the decision
tree model shows the highest prediction accuracy and achieves the
highest scores in precision and F1-score. Although the decision tree
model performs worse than the support vector machine model in
terms of recall, the gap between them is very small. Therefore, the
decision tree model is chosen as the final model after a
comprehensive consideration.

The confusion matrix of all models is shown in Figure 6. The
highlighted red part indicates the number of samples that the model
incorrectly classifies in the “disgust” class as the “like” class. This is

the worst error scenario, meaning that the predicted in-vehicle
fragrance preference will increase. Among all models, the Naive
Bayes model has the largest proportion of FP, reaching 27.8%. In
contrast, the decision tree model has the lowest FP rate, with only
one sample being incorrectly predicted out of 20 “disgust” samples.
The highlighted green part indicates the number of samples that the
model incorrectly classifies in the “like” class as the “disgust” class.
Among them, the KNNmodel accounts for the largest proportion of
FN, reaching 29.4%, while the decision tree model still
performs the best.

Figure 7 shows the ROC curve and statistical AUC area of the
model. SVM shows the highest AUC value (0.86), while KNN has
the lowest AUC value (0.77). However, the observed values show
little difference between the several models.

4 Discussion

In this study, a machine learning model effectively classifying
olfactory preferences based on physiological signals of drivers
during in-vehicle fragrance experience is developed. Three
physiological signals are adopted as inputs for the model,
including heart rate variability, electrodermal activity, and
respiratory. In addition, six machine learning models are
compared. Finally, the decision tree model is selected as the final
model. Therefore, the results of this study are summarized
as follows.

4.1 Acquisition and processing of
physiological signals

It is crucial to consider the physiological state of drivers during
driving. In real driving environments, drivers may encounter
various situations and pressures, all of which can affect their
physiological signals. Through this real driving process, the
physiological response of the driver during the experience of in-
vehicle fragrance is more closely aligned with the real situation,
allowing for more realistic and accurate olfactory preference data to
be obtained. Therefore, we set up four experimental stages in the
experiment, including the preparation stage, the calm stage, the
stimulation stage, and the evaluation stage. Through the driving task
in the calm stage, the drivers can maintain a stable state of mind, and
their physiological signals show a relatively stable state, with various
indicators being controlled within the normal range.

TABLE 3 The prediction results of six models. The accuracy of the training set is the average value from 6-fold cross-validation.

Model name Training set Accuracy Precision Recall F1-score

Logistic Regression 0.88 0.85 0.88 0.78 0.82

Support Vector Machine 0.86 0.82 0.79 0.83 0.81

Decision Tree 0.89 0.88 0.94 0.81 0.87

Random Forest 0.87 0.85 0.88 0.78 0.82

K-Nearest Neighbor 0.83 0.78 0.75 0.71 0.73

Naive Bayes 0.80 0.78 0.78 0.82 0.80
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Methods for preference assessment based on physiological
signals have been gradually implemented. However, the current
lack of standardized evaluation protocols and application guidelines
has resulted in assessment outcomes being easily influenced by
confounding factors. Ohira and Hirao (2015) selects preferred
products by pressing a button, which results in physiological
signals being affected. To mitigate the impact of physical
movements on physiological signals, a separate stimulation stage
was incorporated into our study. Additionally, the implementation
of a calm period and baseline processing can effectively mitigate the
impact of the placebo effect (Laureanti et al., 2020). However, the
duration of the calm period varies across individuals. In this study,
the end of the calm period is marked by the participants being fully
prepared and the stabilization of their physiological signals, which to
some extent reduces the impact of the placebo effect.

In addition, the baseline processing on physiological signal
features is performed, which can eliminate the impact of driving.
Moreover, the interference of individual physiological differences
can be eliminated by calculating the difference between the
physiological signal feature values during the stimulation and
calm stages. Through the feature difference, the prediction results
of the model are more comparable and accurate. Figure 8 shows the
accuracy and F1-score of six models with two different feature sets as
inputs (the feature sets without and with baseline processing).

As expected, the performance of the model on the dataset with
baseline processing increases, and the F1-score also increases. The
average accuracy and the average F1-score of the models on the
feature set after baseline processing respectively increases by 3.50%
and 6.33% compared to the feature set without baseline processing.

The comparison of accuracy rates between single-signal and
multi-signal approaches is presented in Table 4. The single-signal
models were trained with the same parameter controls as the multi-
signal models. The multimodal approach achieved an average
accuracy of 82% across the six models, which represents an
improvement of 7.7% compared to the HRV signal, 12.7%
compared to the RESP signal, and 16.8% compared to the EDA
signal. The comparison results indicate that the multimodal
approach outperforms the single-signal approach in terms of
prediction accuracy.

4.2 Discussion of prediction results

Artificial intelligence has the potential to significantly enhance
the utilization of physiological signals (Autthasan et al., 2023). In
this study, a high-accuracy model was developed, enhancing the
potential applications of our method. In terms of prediction
accuracy, the decision tree model (88%) shows the highest

FIGURE 6
The confusion matrix of six models. (A) The confusion matrix of LR; (B) The confusion matrix of SVM; (C) The confusion matrix of DT; (D) The
confusion matrix of RF; (E) The confusion matrix of KNN; (F) The confusion matrix of NB; The red highlighted part is the FP and FPR of the model. The
green highlighted part is the FN and FNR of the model.
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prediction accuracy compared to the other five models (LR: 85%,
SVM: 82%, RF: 85%, KNN: 78%, GB: 78%). It is attributed to the
following reasons. Firstly, the decision tree models can capture

nonlinear relationships between features and can handle features
with complex correlations. Therefore, the decision tree models may
be more effective than linear models when processing datasets of

FIGURE 7
The ROC curves and AUC values of the six models. (A) The ROC curves and AUC values of LR; (B) The ROC curves and AUC values of SVM; (C) The
ROC curves and AUC values of DT; (D) The ROC curves and AUC values of RF; (E) The ROC curves and AUC values of KNN; (F) The ROC curves and AUC
values of NB.

FIGURE 8
The accuracy and F1-score of sixmodels with two different feature sets as inputs. (A) The comparison of accuracy between feature sets with baseline
processing and without baseline processing. (B) The comparison of F1-score between feature sets with baseline processing and without baseline
processing.
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physiological signals. Secondly, there may be more noise data in the
physiological signal dataset due to individual differences and
experimental environmental factors. However, decision tree
models are insensitive to outliers and can handle imbalanced
datasets (Campbell et al., 2022).

Compared to the prediction accuracy, other noteworthy factors
are the TP and TPR. For the application scenario of this research, the
model with low TPR is closely concerned. The purpose of this study
is to help designers design in-vehicle fragrances that meet the
olfactory preferences of drivers. The high TPR means that in-
vehicle fragrances with low preference are used by drivers, which
seriously affects their comfort level. In addition, FN and FNR also
have an impact on the practical application of the model. The high
FNR is disadvantageous for fragrance designers, reduces the
preference level of in-vehicle fragrances, challenging to market
such products to consumers and resulting in wastage of
resources. Setting a classification threshold can effectively reduce
TPR. However, it should be noted that while reducing TPR, FNR will
increase accordingly. Therefore, it is necessary to adjust the balance
between TP and FN in practical situations to obtain the best
classification model.

In addition, an interesting phenomenon is observed. The
average TPR of the six models is 14.75%, while the average FNR
is 20.60%. Only the TPR of SVM and NB is higher than the FNR.
This indicates that the performance of the six models in predicting
“disgust” samples is better than that of “like” samples. The reason for
the above results may be that emotions dominate the olfactory
preferences of drivers without considering external factors (such as
the brand and color of the fragrance) (Kim et al., 2020; Liu et al.,
2021). In the field of emotion research, negative emotions usually
have a more significant impact on physiological signals. Bad
emotions are accompanied by more pronounced and sustained
physiological changes, which are easier to detect and quantify,
while the physiological responses to pleasant emotions are more
diverse (Domínguez-Jiménez et al., 2020), which can also affect the
accuracy of predictions.

4.3 Limitations and future work

Some limitations of this study should be acknowledged. Firstly,
the age range of the drivers and the sample size in this study may
limit the generalizability of the model. However, it is important to
note that the current study serves as a preliminary investigation into
the field. In future research, collecting data from a more diverse
range of drivers to enhance the accuracy and robustness of our
prediction model is planned. Secondly, a limited set of physiological

signals, including heart rate variability is collected, electrodermal
signals, and respiratory signals, to evaluate driver olfactory
preferences. While these signals yield promising results, it is
essential to consider individual differences and environmental
factors to enhance the generalization and stability of the model.
In future studies, it aims to incorporate additional peripheral
physiological signals to further evaluate driver olfactory
preferences and explore the predictive power of different signal
combinations. Finally, improving the model is a feasible method to
improve the accuracy of prediction. In our future work, the better
pattern frameworks and model optimization methods will be
explored to improve the prediction accuracy.

5 Conclusion

In summary, this study develops a machine learning model that
uses the physiological signals (heart rate variability, electrodermal
activity, and respiratory signals) of drivers to predict their olfactory
preferences. The results of this study have significant practical
implications for the design of vehicle comfort, especially for
those who are engaged in designing in-vehicle fragrances. Using
an olfactory preference prediction model can help manufacturers
better understand the needs and preferences of drivers in the early
design of in-vehicle fragrances and save more time and costs. In
addition, personalized olfactory experiences can be provided for
different types of drivers through customized design of in-vehicle
fragrances, enhancing the competitiveness and attractiveness of the
product. Ultimately, this will widely improve the comfort of drivers
during driving.
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