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Introduction: This study aimed to identify differences in voice characteristics and
changes between patients with dysphagia-aspiration and healthy individuals
using a deep learning model, with a focus on under-researched areas of pre-
and post-swallowing voice changes in patients with dysphagia. We hypothesized
that these variations may be due to weakened muscles and blocked airways in
patients with dysphagia.

Methods: A prospective cohort study was conducted on 198 participants
aged >40 years at the Seoul National University Bundang Hospital from
October 2021 to February 2023. Pre- and post-swallowing voice data of the
participants were converted to a 64-kbps mp3 format, and all voice data were
trimmed to a length of 2 s. The data were divided for 10-fold cross-validation and
stored in HDF5 format with anonymized IDs and labels for the normal and
aspiration groups. During preprocessing, the data were converted to Mel
spectrograms, and the EfficientAT model was modified using the final layer of
MobileNetV3 to effectively detect voice changes and analyze pre- and post-
swallowing voices. This enabled the model to probabilistically categorize new
patient voices as normal or aspirated.

Results: In a study of the machine-learning model for aspiration detection, area
under the receiver operating characteristic curve (AUC) values were analyzed
across sexes under different configurations. The average AUC values for males
ranged from 0.8117 to 0.8319, with the best performance achieved at a learning
rate of 3.00e-5 and a batch size of 16. The average AUC values for females
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improved from 0.6975 to 0.7331, with the best performance observed at a learning
rate of 5.00e-5 and a batch size of 32. As there were fewer female participants, a
combined model was developed to maintain the sex balance. In the combined
model, the average AUC values ranged from 0.7746 to 0.7997, and optimal
performance was achieved at a learning rate of 3.00e-5 and a batch size of 16.

Conclusion: This study evaluated a voice analysis-based program to detect pre-
and post-swallowing changes in patients with dysphagia, potentially aiding in real-
time monitoring. Such a system can provide healthcare professionals with daily
insights into the conditions of patients, allowing for personalized interventions.

Clinical Trial Registration: ClinicalTrials.gov, identifier NCT05149976

KEYWORDS

dysphagia-aspiration, aspiration detection model, voice changes pre-and post-
swallowing, deep learning, voice-based non-face-to-face monitoring

1 Introduction

Dysphagia refers to a spectrum of abnormalities that occur
during the entire swallowing process, including the oral,
pharyngeal, and esophageal stages (Matsuo and Palmer, 2008;
Saitoh et al., 2018). Videofluoroscopic swallowing study (VFSS) is
regarded as the most standardized diagnostic method for assessing
dysphagia (Tohara et al., 2003; Clave et al., 2004; O’Horo et al.,
2015). Medical professionals utilize standardized protocols based on
VFSS images, such as the Penetration-Aspiration Scale (PAS)
(Rosenbek et al., 1996; Robbins et al., 1999; Borders and Brates,
2020), which is a widely accepted scale in clinical practice for
evaluating the presence of residues around the larynx and the
occurrence of aspiration by assigning grades based on the
severity of food penetration or aspiration into the airway or vocal
cords (Rosenbek et al., 1996; Robbins et al., 1999). Aside from VFSS,
other methods for diagnosing dysphagia include fiberoptic
endoscopic evaluation of swallowing, high-resolution manometry,
and tongue pressure measurement (Lind, 2003; Martin-Harris and
Jones, 2008; Vaiman and Eviatar, 2009; Abdel Jalil et al., 2015;
Jayatilake et al., 2015; Reynolds et al., 2016; Langmore, 2017; Saitoh
et al., 2018; O’Brien et al., 2021; Helliwell et al., 2023). However,
these diagnostic methods require patients to visit medical facilities
with the necessary equipment, carry the risk of radiation exposure,
and have limitations in periodically monitoring the constantly
changing condition of patients with swallowing disorders
(Martin-Harris and Jones, 2008; Vaiman and Eviatar, 2009;
Jayatilake et al., 2015; Reynolds et al., 2016; Langmore, 2017;
Saitoh et al., 2018; O’Brien et al., 2021; Helliwell et al., 2023).

To overcome these limitations, several studies have been
conducted to detect dysphagia using patients’ voices. Several
studies have explored wet phonation as a risk factor for
penetration and aspiration (Warms and Richards, 2000; Groves-
Wright et al., 2010; Santos et al., 2015). Additionally, previous
reports have investigated whether voice indicators, including
frequency and amplitude variability, noise-to-harmonics ratio,
voice intensity, and duration, change pre- and post-swallowing
substances by comparing patients with dysphagia, particularly
those experiencing aspiration, with healthy individuals and have
suggested that food accumulation affects vocal cords vibrations and
voice quality, potentially altering the voice patterns (Ryu et al., 2004;

Waito et al., 2011; Kang et al., 2018; Dos Santos et al., 2022; Song
et al., 2022). Nonetheless, there remains a paucity of studies
assessing pre- and post-swallowing changes owing to the need
for researchers to analyze voice indicators using speech analysis
software, which has limitations in developing medical devices for
monitoring patients’ daily lives in clinical settings.

Based on previous research on the relationship between
dysphagia and voice analysis, our research team previously
developed an algorithm for detecting aspiration in dysphagia
using only post-swallowing voice data. This algorithm was
developed using the MobileNetV3-based Efficient Pre-trained
CNNs for Audio Pattern Recognition (EfficientAT model, MIT
license). Using the best-performing mn30_as model (mn:
MobileNetV3, 30: width multiplier, mn30_as: pre-trained model),
it achieved an average AUC of 0.8010 for the male model, 0.7572 for
the female model, and 0.8361 for the combined male and female
model. (Schmid et al., 2023a; 2023b; Kim et al., 2024). However, the
previous study had several limitations. First, it could not detect
changes in voice before and after swallowing, limiting the
fundamental intervention and diagnosis of dysphagia. Second,
using only post-swallowing meals voice data restricted the
number of data samples, limiting the model’s generalization
ability. There were also issues with the research protocol. The 5-s
‘ah~’ vocalization was challenging for elderly dysphagia patients,
leading to reduced standardization of voice data length.
Additionally, noise removal between voice segments was
incomplete.

In this study, we aim to overcome these limitations. We utilized
both pre- and post-swallowing voice data to detect changes,
standardized voice data into 2-s units to improve data quality,
amplified learning data through combinations of pre- and post-
swallowing voices, and applied more sophisticated noise removal
methods. These improvements were expected to enhance the
accuracy of aspiration detection in dysphagia and improve the
model’s generalization ability. Clinically, detecting changes pre- and
post-swallowing will contribute more effectively to the early diagnosis
and intervention of dysphagia. This represents a significant
advancement in overcoming the limitations of existing research and
advancing the technology of dysphagia detection through voice analysis.

The hypotheses of this study were (i) that variations in patients’
voices pre- and post-swallowing might be indicative of the presence
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or absence of aspiration in the pharynx or larynx after eating and (ii)
that these patterns would differ from those in healthy individuals.
With these hypotheses in mind, the current study primarily aimed to
construct a machine-learning algorithm capable of detecting voice
alterations pre- and post-swallowing, which would enable
differentiation from healthy individuals and facilitate real-world
patient monitoring.

2 Materials and methods

2.1 Study design

This prospective cohort study was conducted from October
2021 to February 2023 at the Seoul National University Bundang
Hospital. This study was approved by the Seoul National University
Bundang Hospital Institutional Review Board (protocol ID: B-2109-
707-303, first approval date: 2021.09.01, actual study start date:
2021.10.07) and adhered to the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) guidelines. All
participants received a thorough explanation about the study and
subsequently provided informed consent. The study was registered
at ClinicalTrials.gov (ID: NCT05149976) and strictly followed the
approved research protocols and guidelines.

2.2 Participants

The study participants were selected from patients who were
scheduled to undergo VFSS at our hospital for symptoms and signs
of dysphagia and from healthy participants who were recruited through
hospital announcements and various media outlets. The inclusion

criteria for this study were as follows: (i) patients scheduled to
undergo VFSS, (ii) patients capable of recording their voice while
saying “ah~” for 5 s, and (iii) healthy participants (those without
signs of dysphagia) capable of voice recording. The exclusion criteria
were as follows: (i) patients who were unable to phonate; (ii) patients
who underwent VFSS re-examination; (iii) patients with voice-related
disorders (e.g., dysphonia, polyps, vocal cord paralysis); (iv) participants
who did not record their voice both pre- and post-swallowing; (v)
participants deemed unsuitable for the study by the researchers; (vi)
participants who had recordings with background noise or other
people’s voices louder than the participants; and (vii) participants
with poor-quality recordings. Only those who agreed to participate
in the study after seeing the recruitment notice were chosen as the study
participants. The suitability of all study participants was determined
through a survey conducted by three healthcare professionals (a clinical
dietitian, an occupational therapist, and a clinical physician) specializing
in dysphagia. For patients who underwent VFSS, interpretation was
performed by two clinical physicians. The reliability of the
interpretations of these two experts was determined using Cohen’s
kappa coefficient, which indicated a value of 0.87. Selectionwas based on
factors such as age, underlying medical conditions, sex, dysphagia-
related symptoms, andVFSS findings. The final eligibility of participants
was determined based on the judgment of two clinical physicians.

A total of 159 participants without dysphagia symptoms and
126 participants who underwent VFSS for such symptoms were
included in this study. The voices of these 285 participants were
recorded pre- and post-swallowing. Among these participants,
159 healthy participants and 53 VFSS examinees were assigned
to the normal group (PAS score of 1), whereas 73 participants were
classified as the aspiration group (PAS score of 5–7). Participants
below 40 years of age were excluded to avoid age-related bias,
resulting in the exclusion of 78 participants from the normal

FIGURE 1
Study flow for the participant selection.
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group and one participant from the aspiration group. Consequently,
the final cohort included 134 and 72 participants in the normal and
aspiration groups, respectively. However, owing to audio quality
issues, six more participants in the normal group and two
participants in the aspiration group were excluded, leaving
128 and 70 participants in the normal and aspiration groups,
respectively, for the final analysis. Figure 1 presents the study
flow of the participants in this study.

2.3 Data collection

After screening for eligibility and obtaining informed consent, the
participants vocalized “ah~” for 5 s pre- and post-swallowing various
substances. The VFSS examinees consumed water, yoplait yogurt
(YP), small fluid (SF), semi-blended diet (SBD), fluid thickening with
level 3 (FT3), and liquid food (LF), whereas the healthy participants
only consumed water. For the VFSS examinees, recordings were
performed in stereo using a Sony ICD-TX660 recorder at a 16-bit
depth and bit rate of 64 kbps, with sampling at 44.1 kHz and with a
microphone capturing a frequency range of 95–20,000 Hz. For the
healthy participants, recordings were carried out using personal
mobile phones. The intake of each substance was limited to 3 cc.
The researchers provided instructions to the VFSS examinees through
an intercom system in the VFSS room to maintain a noise-free
environment, with the recording device placed on the participants’
sleeves. Recordings for the healthy participants were also performed in
an isolated room with minimal noise under supervision.

Recordings for the same individual were conducted using
different devices (Samsung mobile phone, iPhone, and Sony
voice recorder) in the same environment to minimize recording
device-related bias between the healthy participants and the VFSS
examinees. Furthermore, the impact of device bias was determined
by measuring the cosine similarity after applying the preprocessing
steps, including the transformation of data into Mel spectrograms.
The results showed similarity scores of 0.9491 for the Samsung
mobile phone versus iPhone, 0.8683 for the Samsung mobile phone
versus Sony recorder, and 0.9531 for the iPhone versus Sony
recorder. Despite the challenges in recruiting a hospital-based
normal control group, bias was diligently addressed through
preprocessing to ensure data integrity. The normal group
recorded 133 files (pre: 69, post: 64) for males and 299 files (pre:
153, post: 146) for females, whereas the aspiration group contributed
242 files (pre: 95, post: 147) for males and 79 files (pre: 33, post: 46)
for females.

2.4 Voice data cleaning and transformation

In our study, the patient voice data underwent a six-stage
transformation for machine learning: (1) The data of all
participants were initially denoised by removing any external
sounds, such as voices or equipment noises found before and after
the 5-s recording, by trimming the start and end of the recordings. (2)
The voice recording protocol set the recording time to 5 s; however,
there were instances in which the recordings were shorter or longer
than 5 s, depending on the condition of the participants. For
standardization and augmentation, all data were trimmed to 2-s

intervals. This process effectively removed any noise that was
present within the 5-s recording period. (3) The voice files were
recorded in various formats, such as mp3, m4a, and wav. With the
future development of medical devices and mobile platforms in mind,
all files were converted to the 64-kbps mp3 and mono format to
standardize the data format. The stereo files from the Sony recorder
were split into left and right channels and converted to mono to
facilitate model training, ensuring compatibility with machine
learning algorithms and standardizing recording formats across
different environments. After this conversion, the normal group
had 235 pre-recordings and 240 post-recordings for males and
531 pre-recordings and 553 post-recordings for females. The
aspiration group had 266 pre-recordings and 444 post-recordings
for males and 96 pre-recordings and 134 post-recordings for females.
(4) Based on the voice data obtained from the same individual
simultaneously pre- and post-swallowing, combinations were
created, resulting in 1,556 pairings for males in the normal group,
3,777 pairings for females in the normal group, 2,200 pairings for
males in the aspiration group, and 768 pairings for females in the
aspiration group. (5) Subsequently, the dataset was divided into ten
random segments based on individuals (anonymized identifiers) and
structured into training and test sets in hierarchical data format 5
(HDF5) format containing anonymized identifiers, labels, and pre-
and post-audio data. Bias was further mitigated by placing the voice
samples from the same individual (anonymized identifiers) in the
same fold. Due to group disparities among the participants and
limitations in sample size, a 10-fold cross-validation was employed.
(6) A significant imbalance in data combinations for females was
observed between the normal and aspiration groups. In order to
address this, random oversampling based on normal data was
performed for each fold, but only for the training dataset of the
female models. Additionally, in the combined model, oversampling
was applied exclusively to the female data.

2.5 Voice data preprocessing

Before training the machine-learning model with patient
voice data, preprocessing was performed based on the code
from the Efficient Pre-trained CNNs for Audio Pattern
Recognition (EfficientAT model, MIT license) (Schmid et al.,
2023a; 2023b). This process was implemented in PyTorch and
transformed the voice data into a visual feature format,
specifically Mel spectrograms, to be used as input data for the
machine-learning model. The integrity of the recorded audio
data was ensured by undertaking several measures to minimize
noise interference. Recordings were performed in a controlled,
soundproof environment and were manually reviewed to
eliminate sections with substantial background noise or
mechanical disturbances that could potentially hinder
subsequent analysis. Additionally, a series of preprocessing
steps was applied to convert the recorded audio from the
waveform to Mel spectrogram format; these steps included
pre-emphasis filtering, short-time Fourier transform, power
magnitude computation, and Mel frequency filter bank processing.
The default input parameters for this process were set as follows:
number of mels, 128; sampling rate, 32,000; window length, 640 (20m);
hop size, 320 (10 m), and number of fast Fourier transforms (640).
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Figure 2 shows the voice data collection, transformation, and
preprocessing process in this study.

2.6 Development of the voice-change
detection model

The preprocessed data were trained using a modified version of
the EfficientAT model (Schmid et al., 2023a; 2023b). The original
EfficientAT model was optimized for classification tasks on audio
data. However, our research model was designed to detect not only

normal and aspirated voices but also changes pre- and post-
swallowing. Our modifications to the MobileNetV3 architecture
focused on voice change detection, including (1) sequential data
handling for separate feature extraction from pre- and post-
swallowing audio data, (2) encoding for efficient audio feature
extraction from both states, (3) channel separation to process
audio data individually, (4) tensor transformation to create
distinct layers for each audio type, (5) a decoder for improved
voice change detection using the last convolution layers and
specialized blocks, (6) significant channel expansion (first 6x,
then 2x, resulting in a total 12x expansion) to increase model

FIGURE 2
Voice data transformation and preprocessing.

FIGURE 3
Development of the voice-change detection model and inference windows.
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expressiveness, (7) feature concatenation integrate information from
both pre- and post-swallowing states, and (8) enhanced training
with Mel spectrogram-formatted data. This adaptation created a
versatile MobileNetV3 implementation that emphasized voice
change detection and included a fully convolutional head type,
BatchNorm2d layers to normalization, 12 workers for data
processing, 150 training epochs, and a model width of 2.0,
aligning with the “width multiplier” parameter of EfficientAT
(Schmid et al., 2023a; 2023b). To improve the generalization
performance on the training dataset, dynamic audio sample
augmentation was applied by randomly selecting two out of the
following seven data augmentation methods: (1) adding the
Gaussian noise, (2) adding the Gaussian noise to adjust the
signal-to-noise ratio, (3) adjusting the audio volume, (4)
inverting the polarity of the audio signal, (5) distorting the audio
signal using the hyperbolic tangent function, (6) masking certain
time intervals, and (7) stretching or compressing the playback time
to introduce temporal distortion to the audio samples.

The learning rate was controlled using a ‘LamdaLR’ learning-
rate scheduler. It started at the specified learning rate (initial learning
rate: 5.00e-5 or 3.00e-5) with the Adam optimizer, remained
constant initially, and then began to decrease linearly from
epochs 100 to 105, ultimately reaching the final learning rate of
the initial learning rate multiplied by 0.01. A batch size of either
16 or 32 was used. For the loss function, we employed binary cross-
entropy with logits. This choice is particularly suitable for our binary
classification task, providing both numerical stability and
computational efficiency. Despite attempting L2 regularization
due to limited dataset size, the best performance was achieved
without regularization, likely due to constraints imposed by
dataset size. Therefore, regularization was not applied in this study.

2.7 Inference: detection of dysphagia-
aspiration

In this study, the trained model used inference to
probabilistically determine whether the pre- and post-swallowing
audio data of a new patient indicated normal or aspiration. This
process involved (i) decoding the mp3 files into waveform; (ii)
converting the audio into Mel spectrograms (mels, 128; sample rate,
32,000; window length, 640; hop size, 320); and (iii) loading with
trained weights. The model analyzed these spectrograms to predict
the likelihood of normal or aspiration risk, outputting the top
classification and corresponding probability scores for each audio
sample. Figure 3 shows the model structure, performance evaluation
and inference architecture of the voice change detection.

2.8 Statistical analysis

The characteristics of the study population are presented as
mean (SD) for continuous variables and as numbers (%) for nominal
variables. Due to non-normality (Shapiro–Wilk test) and sphericity
(Mauchly’s test), continuous and nominal variables were analyzed
using the Mann–Whitney U test and chi-square test, respectively,
with the significance set at p < 0.05 (Table 1). The primary metric

was the area under the receiver operating characteristic (ROC) curve
(AUC), supplemented by accuracy, sensitivity, specificity, F1-score,
positive predictive value (PPV), negative predictive value (NPV),
loss, training accuracy, and training loss, which were reported as
means with 95% confidence intervals (CIs) over 10-fold cross-
validation (Tables 2, 3). The AUC evaluated the overall model
performance under varying thresholds. Accuracy measured the
correct predictions among the total samples, as assessed on test
and training datasets for accuracy and training accuracy,
respectively. Sensitivity was the correct identification rate of
actual aspiration cases, whereas specificity was the correct
prediction rate of normal cases. The F1-score, calculated as the
harmonic mean of precision and sensitivity, was used to evaluate the
model’s accuracy. Additionally, the Positive Predictive Value (PPV,
same as precision) and Negative Predictive Value (NPV) were
calculated, indicating the likelihood of correctly predicted
aspiration and correct normal predictions, respectively. AUC,
accuracy, sensitivity, and F1-score were calculated using the
built-in function features of Python, whereas specificity, PPV,
and NPV were derived from the results obtained using a
confusion matrix. Loss, which indicated the model error on test
data, was computed using binary cross-entropy with logits; training
loss was determined similarly, but on the training dataset. Owing to
the insufficient amount of aspiration data from female participants,
a conservative approach was adopted during performance
evaluation by experimentally determining the threshold for
normal data to be classified as normal when exceeding 0.5,
considering both male and female models as well as the
combined model. Statistical analyses and modeling were
performed using Python and Google Colaboratory Pro + GPU
A100 between May 2023 and March 2024.

3 Results

3.1 Study population distribution

Table 1 shows the distribution of the study population in
each group.

3.2 Model performance

Separate models were constructed for each sex to address
individual and sex-related biases, as shown in Table 2. For males,
the average AUC values ranged from 0.8117 to 0.8319, peaking at a
learning rate of 3.00e-05 and a batch size of 16. For females, average
AUC values ranged from 0.6975 to 0.7331, optimized at a learning
rate of 5.00e-05 and batch size of 32.

Given the limitations in building a machine-learning model for
aspiration detection in females owing to the small number of female
participants with aspiration, a combined model was created by
maintaining sex proportions in each group (Table 3). The ROC
curves showed the parameter combinations of the learning rate and
batch size that achieved the highest performance for each of the
models according to sex (male, female, and combined) at the 150th
epoch (Figure 4).
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4 Discussion

This study aimed to develop a non-invasive, deep learning-based
detection system that allows for the periodic monitoring of
swallowing conditions in patients with dysphagia during their
daily activities. In our study, we modified the well-known
EfficientAT (Schmid et al., 2023a; 2023b), which is renowned for
solving sound classification problems, to create a newmodel capable
of detecting voice changes. When applied to voice changes pre- and
post-swallowing in patients with dysphagia-aspiration at our
hospital, the model attained an average AUC value of >0.80 for

males, with the best performing model achieving an AUC of 0.8319.
However, for females, the average AUC value was approximately
0.70, with the highest AUC value from the optimal parameter
combination being 0.7331 only. This lower performance could be
attributed to the limited number of female participants in the
aspiration group; nevertheless, the combined model designed to
encompass both male and female voices consistently achieved AUC
values exceeding 0.75, with the highest value reaching 0.7997. The
difference in performance between the male and female models is
primarily due to the limited number of female patients with
aspiration, totaling only 18, and the severe data imbalance

TABLE 1 Distribution of the study population.

Normal group Aspiration
group

p-valuea

N % N %

Sex Males 41 32.03 52 74.29 <.001b (χ2 = 30.76, df = 1)

Females 87 67.97 18 25.71

Age (years) Mean ± SD

All 61.16 ± 13.00 72.30 ± 12.03 <.001c

Males 63.27 ± 13.57 72.25 ± 11.68 .001c

Females 60.16 ± 12.66 72.44 ± 13.34 .001c

Comorbidities

Overall (Male + Female) Neurological disorders 17 (13.28%) 18 (25.71%) <.001d (χ2 = 36.10, df = 5)

Gastrointestinal tract and dental disorders 3 (2.34%) 12 (17.14%)

Respiratory disorders 4 (3.12%) 9 (12.86%)

Other site cancers 7 (5.47%) 3 (4.29%)

Aging-associated disorders 12 (9.38%) 8 (11.43%)

No medical conditions 85 (66.41%) 20 (28.57%)

Male Neurological disorders 5 (12.20%) 11 (21.15%) .002d (χ2 = 18.54, df = 5)

Gastrointestinal tract and dental disorders 1 (2.44%) 12 (23.08%)

Respiratory disorders 2 (4.88%) 8 (15.38%)

Other site cancers 2 (4.88%) 2 (3.85%)

Aging-associated disorders 5 (12.20%) 6 (11.54%)

No medical conditions 26 (63.41%) 13 (25.00%)

Female Neurological disorders 12 (13.79%) 7 (38.89%) .140d (χ2 = 8.31, df = 5)

Gastrointestinal tract and dental disorders 2 (2.30%) 0 (0.00%)

Respiratory disorders 2 (2.30%) 1 (5.56%)

Other site cancers 5 (5.75%) 1 (5.56%)

Aging-associated disorders 7 (8.05%) 2 (11.11%)

No medical conditions 59 (67.82%) 7 (38.89%)

aSex and comorbidities were analyzed using the chi-squared test, while age was analyzed using the Mann-Whitney U test.
bTo eliminate sex bias, male-only and female-only models were constructed.
cDysphagia is a condition commonly found in the elderly, and efforts were made to minimize age bias. Nevertheless, participants under the age of 40 were not included in order to remove as

much age bias as possible, despite the remaining age distribution difference between the control and aspiration groups.
dThe presented comorbidities show possible diseases that can come with dysphagia, revealing clear differences in disease characteristics between the normal and aspiration groups. This table is

added to clearly and briefly show these comorbidity profiles for analysis.
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TABLE 2 Performance of male and female models.

Sex Learning
rate

Batch
size

Results AUCa Accuracy Sensitivity Specificity F1 score PPVa NPVa Lossb Train
accuracyc

Train lossb,c

Male 5.00e-05 32 Mean 0.8117 84.72 91.40 70.95 0.8509 80.46 89.59 0.4042 100.00 0.2005

(95% CI) (0.7520, 0.8715) (80.27, 89.18) (82.61, 100.19) (58.78, 83.12) (0.7771, 0.9247) (72.74, 88.19) (82.94, 96.25) (0.3583, 0.4500) (100.00, 100.00) (0.1979, 0.2030)

Max 0.9654 96.30 100.00 95.71 0.9487 92.50 100.00 0.5386 100.00 0.2066

16 Mean 0.8238 85.66 92.42 72.35 0.8612 81.37 91.22 0.3724 100.00 0.1378

(95% CI) (0.7761, 0.8716) (81.86, 89.45) (85.63, 99.20) (61.37, 83.33) (0.8041, 0.9184) (74.50, 88.25) (85.07, 97.37) (0.3172, 0.4275) (100.00, 100.00) (0.1346, 0.1409)

Max 0.9224 93.06 100.00 95.00 0.9484 91.15 100.00 0.5356 100.00 0.1448

3.00e-05 32 Mean 0.8274 85.14 90.90 74.59 0.8519 80.93 90.59 0.4356 100.00 0.2433

(95% CI) (0.7576, 0.8973) (79.05, 91.24) (80.73, 101.06) (62.00, 87.18) (0.7673, 0.9365) (72.26, 89.61) (82.94, 98.25) (0.3822, 0.4889) (100.00, 100.00) (0.2415, 0.2451)

Max 0.9491 93.98 100.00 91.79 0.9467 93.02 100.00 0.5967 100.00 0.2468

16 Mean 0.8319 85.67 90.46 75.92 0.8533 81.12 89.97 0.3931 94.00 0.1954

(95% CI) (0.7828, 0.8811) (81.25, 90.09) (82.95, 97.96) (66.49, 85.36) (0.7796, 0.9270) (72.87, 89.38) (84.52, 95.42) (0.3397, 0.4465) (84.22, 103.78) (0.1924, 0.1983)

Max 0.9317 95.36 100.00 91.79 0.9673 94.71 100.00 0.5453 100.00 0.2029

Female 5.00e-05 32 Mean 0.7331 83.79 56.09 90.53 0.4972 56.48 88.80 0.4016 96.67 0.1299

(95% CI) (0.6244, 0.8418) (75.62, 91.95) (35.37, 76.81) (85.24, 95.81) (0.3102, 0.6843) (32.25, 80.71) (79.47, 98.13) (0.2821, 0.5211) (90.13, 103.20) (0.1268, 0.1331)

Max 0.9688 99.43 100.00 100.00 0.9677 100.00 100.00 0.7487 100.00 0.1421

16 Mean 0.7128 83.26 51.31 91.25 0.4584 50.07 87.92 0.4215 95.00 0.0612

(95% CI) (0.6053, 0.8204) (74.81, 91.70) (30.81, 71.81) (86.71, 95.79) (0.2930, 0.6237) (29.91, 70.23) (78.17, 97.67) (0.2464, 0.5967) (85.20, 104.80) (0.0584, 0.0640)

Max 0.9375 98.86 100.00 100.00 0.9333 100.00 100.00 0.9755 100.00 0.0719

3.00e-05 32 Mean 0.7294 83.77 56.53 89.34 0.4607 44.36 89.77 0.4165 100.00 0.1856

(95% CI) (0.6164, 0.8424) (76.35, 91.20) (33.88, 79.19) (84.17, 94.51) (0.2740, 0.6473) (26.56, 62.15) (81.50, 98.03) (0.3065, 0.5265) (100.00, 100.00) (0.1828, 0.1884)

Max 0.9188 95.45 87.50 96.51 0.7778 84.38 98.72 0.7717 100.00 0.1965

16 Mean 0.6975 82.00 47.99 91.51 0.3860 44.49 87.21 0.4316 100.00 0.1172

(95% CI) (0.5844, 0.8105) (72.88, 91.13) (23.71, 72.27) (87.95, 95.06) (0.2389, 0.5331) (30.39, 58.60) (75.79, 98.64) (0.2708, 0.5925) (100.00, 100.00) (0.1139, 0.1204)

Max 0.9192 93.92 100.00 97.80 0.7179 74.39 100.00 1.0260 100.00 0.1301

aAUC (Area Under the ROC Curve), PPV (Positive Predictive Value), NPV (Negative Predictive Value).
bLoss function: Binary cross entropy with logits loss function.
cExcept for ‘Train Accuracy’ and ‘Train Loss’, all the parameters represent the test datasets for the 10-fold cross-validation. Additionally, all metrics, excluding AUC, F1 score, Loss, and Train Loss, were calculated and expressed as percentages.
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TABLE 3 Combined model (male + female).

Learning
rate

Batch
size

Results AUC Accuracy Sensitivity Specificity F1 score PPV NPV Loss Train
accuracy

Train loss

5.00e-05 32 Mean 0.7874 81.31 72.65 84.82 0.7235 74.59 85.37 0.4550 95.00 0.0819

(95% CI) (0.7233, 0.8514) (74.94, 87.69) (60.90, 84.40) (77.08, 92.56) (0.6322, 0.8148) (63.94, 85.24) (79.59, 91.14) (0.3442, 0.5657) (85.20, 104.80) (0.0797, 0.0841)

Max 0.8920 91.82 91.89 97.73 0.8819 94.49 96.42 0.7721 100.00 0.0889

16 Mean 0.7746 81.25 67.87 87.06 0.7006 76.56 84.40 0.5323 72.50 0.0285

(95% CI) (0.7046, 0.8447) (74.51, 87.98) (53.58, 82.16) (80.70, 93.42) (0.5836, 0.8176) (64.48, 88.65) (78.38, 90.43) (0.3726, 0.6919) (48.89, 96.11) (0.0269, 0.0302)

Max 0.8895 92.45 92.69 99.68 0.9097 98.37 92.07 1.0099 100.00 0.0348

3.00e-05 32 Mean 0.7971 81.61 76.51 82.92 0.7401 72.90 86.84 0.4309 100.00 0.1404

(95% CI) (0.7303, 0.8640) (74.60, 88.62) (66.93, 86.08) (74.81, 91.02) (0.6505, 0.8298) (62.16, 83.64) (81.40, 92.29) (0.3553, 0.5064) (100.00, 100.00) (0.1382, 0.1425)

Max 0.9360 92.41 98.40 95.97 0.9069 88.99 98.92 0.6822 100.00 0.1479

16 Mean 0.7997 82.64 73.26 86.67 0.7486 78.27 85.24 0.4328 85.00 0.0715

(95% CI) (0.7450, 0.8543) (76.57, 88.72) (65.19, 81.34) (79.61, 93.72) (0.6731, 0.8241) (67.40, 89.13) (80.09, 90.38) (0.3369, 0.5287) (64.08, 105.92) (0.0691, 0.0740)

Max 0.8982 94.51 84.62 99.36 0.8889 95.77 94.46 0.7302 100.00 0.0795

aThis model also used the loss function (Binary cross-entropy with logits) and all parameters, except ‘Train Accuracy’ and ‘Train Loss,’ refer to the test datasets in the 10-fold cross-validation.
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between the normal and aspiration groups. This imbalance implies
that even with oversampling, there were limitations to adequate
learning about aspiration. Therefore, the lower AUC performance in
females can be attributed to the limitations of sample sampling and
the characteristics of the voice data.

The process of swallowing involves several phases, and
disruptions during the pharyngeal phase can lead to serious
complications, such as aspiration pneumonia, due to food
entering the airway (Lundy et al., 1999; Matsuo and Palmer,
2008; Sasegbon and Hamdy, 2017). Protective reflexes, such as
the tilting of the epiglottis and closure of the vocal cords, are
crucial in preventing potentially life-threatening aspiration
(Shaker et al., 1990; Shaker, 1995; Van Daele et al., 2005; Matsuo

and Palmer, 2008). Reflecting these mechanisms, the PAS is
commonly used as a diagnostic criterion for dysphagia. It
classifies the extent of penetration and aspiration based on how
the bolus interacts with the vocal cords and enters the airways
(Rosenbek et al., 1996). In addition, a study reported a significant
positive correlation between the degree of airway penetration and
the occurrence of airway protective responses such as coughing and
throat clearing (aspiration amounts (%) - odds ratio: 1.12, 95% CI:
1.09–1.16, p < 0.001) (Curtis et al., 2023). In a study examining the
relationship between swallowing and respiratory and phonatory
functions, individuals with airway penetration showed
significantly reduced laryngeal elevation, shorter Maximum
Phonation Time (MPT), and lower chest expansion scores at the

FIGURE 4
ROC analysis results for all models. (A) Male Models. (B) Female Models. (C) Combined (Male + Female) Models. The ROC curve shown represents
the average ROC curve for the 10 folds under the parameter combination (learning rate, batch size) that resulted in the highest AUC value for models
according to sex (male, female, combined). For the male model, the highest AUC value was 0.8319, achieved with a learning rate of 3.00e-5 and a batch
size of 16. For the femalemodel, the highest AUC valuewas 0.7331, achieved with a learning rate of 5.00e-5 and a batch size of 32. For the combined
model, the highest AUC valuewas 0.7997, achievedwith a learning rate of 3.00e-5 and a batch size of 16. Among the sex-specificmodels, themalemodel
showed the highest overall AUC value, as it had themost even distribution of data across groups. Although the femalemodel displayed an accuracy similar
to that of the male model, a significant imbalance between the normal group and the aspiration group led to the relatively lowest AUC value.
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10th rib level, indicating compromised respiration. These findings
suggest a clear link between swallowing difficulties and respiratory
and vocal function impairment (Yamaguchi et al., 2018). Based on
this, the study hypothesized that aspiration after swallowing meals
leads to changes in the airway and respiration, affecting the vocal
cords. Consequently, we predicted that there would be more
noticeable changes in the vocal characteristics pre- and post-
swallowing meals in the aspiration group than in healthy
individuals.

From this perspective, voice analysis programs have been
explored to identify vocal characteristics as biomarkers for
dysphagia monitoring (Ryu et al., 2004; Waito et al., 2011; Santos
et al., 2015; Kang et al., 2018; Dos Santos et al., 2022; Park et al., 2022;
Song et al., 2022). Studies have found significant changes in vocal
parameters like Relative Average Perturbation (RAP) Jitter, Shimmer
Percentage (SHIM), Noise-to-Harmonics Ratio (NHR), and Voice
Turbulence Index (VTI) in individuals at high risk for aspiration,
with these parameters showing high sensitivity in predicting
aspiration risk (Ryu et al., 2004; Song et al., 2022). A notable study
using ANOVA found a significant interaction in RAP values pre-
and post-swallowing between groups at risk and not at risk for
aspiration (Kang et al., 2018). Furthermore, correlations between
various scales like Grade, Roughness, Breathiness, Asthenia, Strain
scale (GRBAS scale), PAS, Videofluoroscopic Dysphagia Scale (VDS),
American Speech Language Hearing Association-National Outcome
Measurement System (ASHA-NOMS), and vocal parameters have
been reported (Waito et al., 2011; Song et al., 2022). Advanced
analytical techniques like logistic regression, decision trees, random
forests, and support vector machines, particularly XGBoost using
vocal parameters, showed the best performance (Park et al., 2022).
However, these studies have practical limitations in clinical settings
because of the need tomanually extract numerical data from the vocal
parameters for analysis.

To overcome these limitations and develop programs that aremore
suitable for clinical environments or medical devices, attempts have
been made to convert patients’ voices into Mel spectrograms and train
deep learning models to minimize manual work and analyze the voice
signals themselves (Kim et al., 2023; Kim et al., 2024). One study
focused on creating a dysphagia predictive model using four
vocalizations: prolonged vowel phonation, voluntary cough, pitch
elevation, and counting (Kim et al., 2023). Based on previous
research on post-swallowing voice indicators, our research team
constructed a machine-learning model using the EfficientAT model
to detect the occurrence of aspiration based on the post-swallowing
voices of patients. The model with the best performance was “mn30_
as,” built using transfer learning from a pre-trained model and
evaluated using 10-fold cross-validation. Based on the AUC metric,
the results showed the following performances: 0.8010 (95% CI:
0.6598–0.9432; max: 1.0000) for the male model, 0.7572 (95% CI:
0.6578–0.8567; max: 0.9779) for the femalemodel, and 0.8361 (95%CI:
0.7667–0.9056; max: 0.9541) for the combined male and female model.
With respect to accuracy, the male, female, and combined models
averaged 85.13% (95% CI: 78.07–92.19; max: 100.00), 69.16% (95% CI:
61.76–76.57; max: 88.00), and 77.98% (95% CI: 70.07–85.89; max:
92.45), respectively. (Schmid et al., 2023a; 2023b; Kim et al., 2024).
Overall, the pre- and post-swallowing voice change detection model
presented in this paper exhibited higher accuracy performance.
However, in terms of the AUC, although an improvement was

observed in the male model, it deteriorated in the female model.
The factors contributing to these differences are as follows. First,
cutting both pre- and post-data into 2-s segments and combining
them, which amplified the data count, resulted inmale data achieving a
similar or better balance between the normal and aspiration groups
compared to the post-model, thus showing higher or similar AUC
values. In contrast, the gap in the amount of female data between the
normal and aspiration groups widened, leading to higher accuracy but
lower AUC values. Second, the process of cutting into 2-s segments
served to filter out noise present across the entire voice recording,
especially normal data. Third, Mel spectrogram analysis revealed clear
vocal pattern distinctions between the normal and aspiration groups in
females, although the swallowing effects were subtle. Conversely, males
showed stark voice data contrasts between the groups, with
pronounced swallowing effects. These factors likely affected
performance; however, limited data on female patients with
aspiration prevent accurate representation. Fourth, the model size
may also have influenced the performance; for the pre- and post-
swallowing voice change detection model, only version 2.0, which
could be used owing to CUDA memory issues, whereas for the post
model, version 3.0 was feasible. Although there were factors affecting
performance compared to previous studies, we sought to improve the
model by considering the following points. Age-related lung capacity
limitations among dysphagia patients often resulted in incomplete 5-s
recordings, affecting data uniformity. (Bowdish, 2019; Tong and
Sataloff, 2022). Standardizing segment length to 2 s improved
analysis consistency. Lastly, dysphagia is influenced significantly by
changes such as aspiration after swallowing, highlighting its
importance in the pathophysiology of this condition. The post-
swallowing model has limitations in adequately reflecting these
pathophysiological aspects of the disease. (Matsuo and Palmer,
2008; Saitoh et al., 2018).

Therefore, the significance of this study lies in its ability to detect
the differences in voice changes pre- and post-swallowing. To
achieve this, a combination of voice data from patients pre- and
post-swallowing was used to extract voice features and identify
variations. This suggests that changes in voice characteristics pre-
and post-swallowing can serve as significant indicators for detecting
dysphagia-aspiration, in addition to factors such as underlying
muscle weakness in the throat and aspiration due to saliva,
which are common among patients with dysphagia (Jang et al.,
2013; Sasegbon and Hamdy, 2017; Yamaguchi et al., 2019). To
enable integration into mobile or medical devices, pre- and post-
audio data, patient-anonymized identifiers, and normal or
aspiration status were organized hierarchically and stored in a
compact file format known as HDF5. This approach aims to
lighten the data (The-HDF-Group, 2006; Ji et al., 2020).
Additionally, to minimize the size and capacity of the model
while maximizing the efficiency for implementation in mobile
and medical device environments, the MobileNetV3 model was
utilized (Howard et al., 2019). Furthermore, to minimize
information loss within voice files and to standardize the audio
data and lightweight format for medical devices, all voice files were
converted and saved in mp3 format at 64 kbps with two mono-
channel configurations (Pollak and Behunek, 2011; Fuchs and
Maxwell, 2016; Sun, 2021). While it is known that compressing
audio files to MP3 can result in a significant loss of quality, previous
research has shown that when the compression rate for
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f0 measurements is between 56 and 320 kbps, the average error is
less than 2%, with median errors as low as 0.5%. In addition, errors
in measuring the pitch range and level have been reported to be
below 1%. Therefore, considering these findings, along with the
medical device environment and compression rates, we
standardized the use to 64 kbps (Fuchs and Maxwell, 2016).

In addition to studies that utilize the patients’ voice for diagnosing
and monitoring dysphagia, attempts have been made to use various
non-invasive methods (Daniels et al., 1997; Mari et al., 1997;
Nishiwaki et al., 2005; Groher et al., 2006; Clave et al., 2008; Rofes
et al., 2012; Somasundaram et al., 2014; Brodsky et al., 2016; Festic
et al., 2016; Zuniga et al., 2018; Riera et al., 2021). In studies where
patients consumed boluses of varying viscosities (ranging from 5 to
20 mL) at the bedside, the sensitivity ranged from 88.2% to 100.0%,
and the specificity ranged from 28.8% to 81.39% for aspiration (Clave
et al., 2008; Rofes et al., 2012; Riera et al., 2021). Other methods such
as the assessment of dysphonia, dysarthria, gag reflex, volitional
cough, and voice changes after swallowing demonstrated a
sensitivity of 30.8%–92.3% and a specificity of 60.6%–87.9%
(Daniels et al., 1997). The Eating Assessment Tool-10 (EAT-10)
showed a sensitivity of 77.8% and specificity of 73.1% (Zuniga
et al., 2018). In a meta-analysis of the Bedside Water Swallow
Test, the overall sensitivity for airway response or voice change in
relation to volume was reported to be 63% or higher (Brodsky et al.,
2016). Additionally, various studies have reported the correlation
between indicators of aspiration and dysphagia using methods and
measures such as the 3-oz water swallow test (Mari et al., 1997;
Nishiwaki et al., 2005; Groher et al., 2006; Somasundaram et al., 2014;
Festic et al., 2016). These methods require specialized knowledge to
monitor the patients’ swallowing status in daily life, making it difficult
to apply them in practical settings. Furthermore, the study results
indicate that these findings are comparable to those obtained using
non-invasive diagnostic methods.

In contrast to the aforementioned studies utilizing various non-
invasive methods for diagnosing dysphagia, which often require
expert judgment and controlled examination settings, our research
uniquely employs only the patients’ voice, specifically the simple
vocalization ‘ah~‘. (Daniels et al., 1997; Mari et al., 1997; Nishiwaki
et al., 2005; Groher et al., 2006; Clave et al., 2008; Rofes et al., 2012;
Somasundaram et al., 2014; Brodsky et al., 2016; Festic et al., 2016;
Zuniga et al., 2018; Riera et al., 2021). This approach enables broad
applicability across different populations, leveraging global
considerations and disease characteristics. Our model processes
voice recordings within approximately 2–5 s, providing a rapid
and straightforward assessment of swallowing function, as
demonstrated in our inference implementation. Above all,
dysphagia is a condition occurring during the intake of food and
liquids in daily life, where its management is crucial not only for the
condition itself but also to minimize aspiration events and ensure
adequate nutrition intake. (Matsuo and Palmer, 2008; Saitoh et al.,
2018). In this sense, the state of dysphagia necessitates continuous
monitoring of changes in the patient’s daily life and immediate
intervention based on its status. Our research model is significant
as it can assess dysphagia status in daily life without specialist
intervention. We plan to anonymize and manage these diagnostic
results in a database accessible to clinical practitioners with patient
consent, offering a supplementary means to diagnose dysphagia-
aspiration within routine clinical parameters.

Also, in this study, we used the PAS scale from VFSS
examinations as the gold standard to distinguish between normal
and aspiration cases. (Lind, 2003; Saitoh et al., 2018). Therefore,
integrating our aspiration detection algorithm based on patient voice
with the PAS scale allows comprehensive assessment of daily
pharyngeal conditions. (Rosenbek et al., 1996). This integrated
approach enhances diagnostic accuracy by combining voice-based
assessments with visual examination results. Additionally, linking
with tools like the Functional Oral Intake Scale (FOIS) for
assessing oral intake function and the Mini Nutrition Assessment
(MNA) for evaluating nutritional deficiencies will provide insights
into dysphagia’s impact on nutrition. (Nordio et al., 2020; Ueshima
et al., 2021). This comprehensive approach establishes a foundation
for personalized interventions tailored to individual patient
conditions in clinical settings.

This deep learning-based study was developed to detect aspiration
during swallowing by detecting changes in voice pre- and post-
swallowing. The expected effects of this research are as follows:
First, patients will be able to monitor their daily swallowing status
and receive personalized guidance for dysphagia-related meals and
rehabilitation training through this detection algorithm. Second,
clinical doctors will be able to monitor daily data on changing
dysphagia status in patients’ dietary habits, enabling a more
accurate diagnosis and reducing the time required for diagnosis.
Third, it is expected to lay the foundation for the development of
an integrated rehabilitation training system that combines diagnosis,
treatment, monitoring, and management through integration with
mobile platforms and medical devices.

5 Limitations

This study had several limitations. First, owing to the limited
number of patients, we were unable to create a separate validation set
and therefore employed 10-fold cross-validation at a 9:1 train-test
ratio. Second, the small sample size of 18 female patients with
aspiration resulted in lower performance compared to the male and
combined models. Additionally, the data for women in the
aspiration group were limited to 18 individuals, making it
difficult to consider this as representative of dysphagia. Data
imbalance between the normal and aspiration groups was also an
issue. Third, the process of recording voices in hospitals is not
included in standard examination procedures, and there are
limitations to data collection because most patients with
dysphagia are older. In particular, collecting data from healthy
individuals poses challenges owing to difficulties in visiting
hospitals, and a process to extend and collect data from the
general population is necessary, considering the future
commercialization of medical devices. There were limitations to
this process because of the lack of uniformity in the type of food
consumed by the research participants and the recording devices
used. To overcome these limitations, all collected data were
standardized to the mp3 format at 64 kbps for analysis, and a
high similarity (>0.85) was observed in the homogeneity evaluation
calculated by cosine similarity according to each device. Fourth, we
adjusted various threshold values to determine if samples from the
current study population were normal or aspiration. We identified a
threshold where our model consistently showed high performance

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Kim et al. 10.3389/fbioe.2024.1433087

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1433087


across all metrics, especially AUC, accuracy, sensitivity, and
specificity. Specifically, we set the criterion that voice samples
with a probability of normal exceeding 0.5 are classified as
normal; otherwise, they are classified as aspiration. However,
these thresholds are based on potentially insufficient data. Future
plans include expanding the study across multiple institutions and
using a larger dataset of patients with dysphagia. This expansion
aims to not only enhance the model performance, establish
comprehensive datasets, and validate the generalization
performance in various settings but also to refine and optimize
threshold settings. Ultimately, these efforts aim to improve the
reliability of medical and mobile applications, providing a more
robust foundation for clinical use.

6 Conclusion

This study suggests the possibility of developing a supplemental
program that can detect pre- and post-swallowing changes andmonitor
dysphagia status using an uncomplicated voice analysis in patients with
dysphagia. Through a real-time monitoring system for patients with
dysphagia using this analysis, clinicians and experts in the field can be
provided with the parameters of patients’ daily indicators of their
conditions, enabling appropriate interventions tailored to the
patients’ current state. This innovative approach may minimize
patient burden, maximize treatment effectiveness, and overcome
language barriers by utilizing simple vocalizations such as “ah~” for
monitoring swallowing status. Monitoring the aspiration status in the
daily life of patients with dysphagia is expected to improve their quality
of life, reduce the incidence of secondary diseases caused by dysphagia,
and enhance the treatment effectiveness for comorbidities.
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