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Introduction: Advancements in exercise science have highlighted the importance
of accurate muscular strength assessments for optimizing performance and
preventing injuries.

Methods: We propose a novel approach to measuring muscular strength in
young, healthy individuals using Bot Fit, a hip-joint exoskeleton, during resistance
exercises. In this study, we introduced performance metrics to evaluate exercise
performance during both short and extended durations of three resistance
exercises: squats, knee-ups, and reverse lunges. These metrics, derived from
the robot’s motor signals and sEMG data, include initial exercise speed, the
number of repetitions, and muscle engagement. We compared these metrics
against baseline muscular strength, measured using standard fitness equipment
such as one-repetition maximum (1RM) and isometric contraction tests,
conducted with 30 participants aged 23 to 30 years.

Results: Our results revealed that initial exercise speed and the number of
repetitions were significant predictors of baseline muscular strength. Using
statistical multivariable analysis, we developed a highly accurate model
(R � 0.884, adj. R2 � 0.753, p-value <0.001) and an efficient model (with all
models achieving R>0.87) with strong explanatory power.

Conclusion: This model, focusing on a single exercise (squat) and a key
performance metric (initial speed), accurately represents the muscular
strength of Bot Fit users across all three exercises. This study expands the
application of hip-joint exoskeleton robots, enabling efficient estimation of
lower limb muscle strength through resistance exercises with Bot Fit.
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1 Introduction

In recent years, progress in medical technology, digital healthcare,
and environmental innovations has significantly enhanced overall
wellbeing. These advances have resulted in tools that not only monitor
but also support health. Among these, exercise is essential for both
physical and mental wellness, serving a crucial role in preventing and
managing chronic diseases (Rippe and Hess, 1998).

To fully benefit from exercise, accurate assessment of an
individual’s physical capabilities, particularly muscular strength,
is essential. Muscular strength is a key indicator of overall fitness,
influencing daily functional abilities and athletic performance
(Garber et al., 2011). Accurate strength assessments enable
personalized exercise programs that maximize results while
minimizing injury risk, promoting optimal health outcomes
(Scott et al., 2019).

Traditional methods for assessing muscular strength, such as the
One-Repetition Maximum (1RM) test, external weight resistance
exercises (Verdijk et al., 2009), handheld dynamometry (O’Shea
et al., 2007), isokinetic dynamometers (Baltzopoulos, 2007), and
isometric strength tests (Essendrop et al., 2001), have been used for
decades. While effective for determining strength, these methods
often require specialized equipment and controlled environments,
limiting accessibility outside clinical or gym settings. Additionally,
they typically provide static measurements of strength, lacking real-
time feedback during dynamic exercises (Baltzopoulos, 2007;
Essendrop et al., 2001).

Recent technological advancements have introduced wearable
robots, such as exoskeletons, to address these limitations. Initially
developed for rehabilitation and mobility assistance, exoskeletons
have evolved to support resistance exercises, offering a portable and
versatile means of assessing and improving muscular strength
(Cornwall, 2015; Azimi et al., 2018). These devices can provide
real-time feedback, which is crucial for optimizing exercise
performance and ensuring safety. For instance, a sparse Gaussian
process (SGP) has been used to create a probabilistic model of knee
movement, enhancing stability by predicting the relationship
between knee and hip movements and setting boundary limits
Chen et al. (2023). Additionally, electromyography (EMG) signals
have been used to evaluate active movements, estimate joint torque,
and propose practical robotic motion control to improve
exoskeleton-based rehabilitation Gui et al. (2019). Central pattern
generators (CPGs) have also been utilized to adjust users’ gait
trajectories in real time, ensuring proper alignment between the
exoskeleton and the user’s gait Kou et al. (2024). Over the past
decade, there has been significant progress in lower-limb
rehabilitation exoskeleton research Wen et al. (2024); Shi
et al. (2019).

One such innovation is the Bot Fit exoskeleton, developed by Lee
et al. (Lee et al., 2023; Kim et al., 2018). This device provides both
resistance and assistance during exercises, making it suitable for a
wide range of users, including older adults and those undergoing
rehabilitation. Bot Fit enhances physical performance by offering
resistance, aiding in movement, and delivering real-time feedback,
such as voice guidance and posture alerts via a smartphone, thereby
improving exercise adherence.

With the growing use of wearable technologies, there is an
increasing demand for accurate and reliable metrics to estimate

muscular strength during resistance exercises. While traditional
strength assessments are valuable, they are often insufficient in
dynamic, real-time contexts. Surface electromyography (sEMG)
has proven effective for measuring muscle activity during exercise
(De Luca, 2002; Merletti and Farina, 2016). However, sEMG alone
cannot quantify muscular strength due to the nonlinearity between
muscle strength and sEMG signals Liu et al. (2022). Musculoskeletal
models Zhang et al. (2016) are often used to estimate strength from
sEMG data, but these models are complex and require careful
consideration of variables such as muscle length and contraction
velocity (Buchanan et al., 2004; Sartori et al., 2012).

Although some studies, such as those by Staudenmann et al.
(2010), have developed methods for estimating force from sEMG
signals, these approaches face challenges related to accuracy and
generalizability. Furthermore, many existing studies focus on
specific populations or exercise protocols Mokri et al. (2022),
limiting their broader applicability. This paper emphasizes the
need for more advanced methods to accurately estimate muscular
strength across diverse users and exercise types, particularly with the
integration of wearable technologies like exoskeleton robots.

In this paper, we propose a novel method for estimating lower
limb muscular strength during three different resistance exercises
using the Bot Fit exoskeleton. We conducted an experimental study
with thirty healthy participants, introducing performance metrics
based on motor signals from the device and sEMG signals from the
users’ movements, without relying on complex musculoskeletal
models. Through multivariable analysis, we investigated the most
effective metrics for representing muscle strength. Based on these
findings, we present a model for estimating users’muscular strength
through exercise performance while wearing the Bot Fit exoskeleton.

2 Methods

2.1 Experimental platform

2.1.1 Hip-joint exoskeleton & wireless sEMG sensor
As shown in Figures 1A, B, the Bot Fit, a hip-joint exoskeleton

developed by Samsung Electronics Co., Ltd. (Korea), applies
resistance torque to the hip joints during exercise. This
lightweight (2.9 kg), slim, and comfortable device includes
actuators for each hip joint, an adjustable fabric waist belt, and
thigh frames to transmit resistance torque. Equipped with BLDC
(Brushless Direct Current) motors near the hip joints, it generates
torque (Figure 1C) tailored to the exercise type, with sensors
measuring movement direction and angle. An IMU sensor on the
back monitors activity and adjusts torque based on speed and
rhythm. Bot Fit offers five resistance levels (1R–5R) and can
generate torque up to 10 Nm using its two high-speed BLDC
motors (Kim et al., 2018; Lee et al., 2023). Additionally, a time-
delayed self-feedback controller (DOFC) algorithm ensures safe and
adaptive resistance exercises tailored to the user’s movements (Lim
et al., 2019).

We used wireless sEMG sensors (Delsys Trigno System, Boston,
MA, United States) to measure thigh muscle activity at a sampling
rate of 2000 samples/s (Figures 1A, C). These sensors were attached
to four regions on each thigh: the rectus femoris, vastus lateralis,
biceps femoris, and semitendinosus muscles. The sensors were
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placed at the midpoint of the targeted muscles, aligned parallel to the
muscle fibers. To ensure accurate sEMG signal acquisition, the skin
was prepared by removing oil and sweat, with hair removal
performed if necessary, following standard guidelines (Hermens
et al., 1999).

2.2 Participants & experimental protocol

2.2.1 Participants
This study included 30 healthy adults (19 males, 11 females)

aged 23 to 30, recruited through promotional activities at a fitness
center operated by the research team. Participants were informed
about the study, provided written consent, and completed ethics
training in accordance with the Institutional Review Board (IRB)
protocol at Yonsei University (Registration number: 7001988-
202305-HR-1538-04).

Participants were selected based on the following criteria: 1)
They were young adults without significant medical conditions, such
as cardiovascular, musculoskeletal, or neurological disorders. 2)
They regularly engaged in light physical activity, such as jogging,
yoga, or light weightlifting, approximately 1–2 times per week. 3)
Their health was assessed through bodymass index (BMI) and blood
pressure measurements on Day 1 of pre-measurement, ensuring all
health metrics fell within a healthy range. 4) All participants were
capable of daily movement and walking without the need for
mobility aids or assistance.

Exclusion criteria were as follows: 1) Participants who were
uncomfortable wearing the robotic exoskeleton or attaching

wireless sEMG sensors for muscle activity monitoring were
excluded. 2) Individuals with severe communication impairments,
major medical conditions (e.g., heart disease or lower limb disorders),
or a BMI of 30 kg/2 or higher (the normal range is 18.5–24.9 kg/2

(Consultation, 2000)) were excluded due to safety concerns related to
the exoskeleton robot. 3) Additionally, participants could be excluded
at the researcher’s discretion if deemed unsuitable for the study.

Overall, the study group consisted of healthy individuals who
engaged in light to moderate exercise and maintained relatively
healthy lifestyles. Specific details about the participants’
demographics and health metrics are provided in Table 1.

FIGURE 1
Hip-joint Exoskeleton Robot (Bot Fit) for Resistance Exercise. (A) Images of the exoskeleton robot used to provide adaptive hip-joint resistance for
participants, along with the wireless sEMG sensors used to measure muscle activity during the exercises. (B) Schematic illustration of a participant
equipped with the exoskeleton robot and wireless sEMG sensors. (C) Joint torque (motor signal) and sEMG signals obtained during a squat exercise.

TABLE 1 Characteristics of the participants. SD standard Deviation.

Characteristic Values

Sex (male/female) 19/11

Age (mean±SD) 26.1 ± 2.8 [years]

Height (mean±SD) 170.93 ± 8.5 [cm]

Weight (mean±SD) 66.43 ± 9.8 [kg]

Resting HR (mean±SD) 81 ± 9.43 [BPM]

Blood pressure High (mean± SD) 109.4 ± 9.99 [mmHg]

Blood pressure Low (mean± SD) 70.67 ± 7.78 [mmHg]

ASM (mean± SD) 28.5 ± 5.91 [kg]

BMI (mean± SD) 22.6 ± 2.31 [kg/m2]

ASM, means appendicular skeletal muscle mass and BMI, means body mass index.
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FIGURE 2
Experimental protocol. During the pre-measurement phase, participants underwent assessments including a vertical jump test, a 1RM test using a
leg curl and extension fitness machine, and an isometric contraction test focusing on leg curls (LCs) and leg extensions (LEs) using a hand-held
dynamometer. These assessments were used to derive muscle parameters indicative of baseline muscular strength. During the exercise measurement
phase, participants performed three resistance exercises while wearing the exoskeleton robot, and sEMG signals were recorded simultaneously.
Each resistance exercise was performed under two different protocols: one with short bursts of repetitions at an uncontrolled speed, and another with a
relatively long duration at a fixed speed. Adequate rest periods were provided between exercises.

TABLE 2 Description of muscle parameters.

Parameters Description

Total performance Comprehensive muscular strength index; calculated as the sum of z-scores for VJ, RM (LE + LC, Weight), ISO (LE + LC, Weight) (p-value:
0.125)

VJ The Maximum Height of three trials (p-value: 0.923)

RM (LE + LC, Weight) Normalization values of sum of the measured values by leg extension (LE) and leg curl (LC) with fitness machine to the participant’s weight
(p-value: 0.079)

RM (LE, Weight) Normalization of the measured value of leg extension (LE) with fitness machine to the participant’s weight (p-value: 0.14)

RM (LC, Weight) Normalization of the measured value of leg curl (LC) with fitness machine to the participant’s weight (p-value: 0.216)

ISO (LE + LC, Weight) Normalization values of sum of the measured values by leg extension (LE) and leg curl (LC) with isometric contraction to the participant’s
weight (p-value: 0.552)

ISO (LE, Weight) Normalization of the measured value of leg extension (LE) with isometric contraction to the participant’s weight (p-value: 0.902)

ISO (LC, Weight) Normalization of the measured value of leg curl (LC) with isometric contraction to the participant’s weight (p-value: 0.072)

p-value denotes the significance probability of normality test (Shapiro-Wilk test).
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2.2.2 Experimental protocols: Pre-
measurement phase

The experimental protocol consisted of two phases of
measurement for each participant: a pre-measurement phase and
an exercise measurement phase using the maximum resistance
mode of Bot Fit (Figure 2).

In the pre-measurement phase, baseline muscular strength was
evaluated using standard fitness equipment without Bot Fit. Muscle
parameters reflecting each participant’s baseline strength were
collected (Table 2). Muscular power was assessed through a
vertical jump (VJ) test, where the highest score from three trials
was recorded. This test involved participants bending their knees
and jumping vertically (Wisløff et al., 2004; Iossifidou et al., 2005).

Muscular strength, assessed via 1RM, was measured using leg
extension (LE) and leg curl (LC) machines (Life Fitness, Franklin
Park, Illinois, United States). In the LE test, participants, while
seated, lifted the maximum weight by extending the knee and foot,
targeting the rectus femoris muscle (Krisnan et al., 2014). In the LC
test, participants lay prone and flexed the knee and foot to lift the
maximum weight, engaging the biceps femoris (Llurda-Almuzara
et al., 2021).

Lower limb muscle strength was also measured using a hand-
held dynamometer (EasyForce, GMT Ltd, Bury Saint Edmunds,
United Kingdom). The dynamometer was secured to the ankle while
participants, seated with knees at a 90-degree angle, exerted force for
5 s to measure the strength of the rectus femoris and biceps femoris
muscles (Gaudet and Handrigan, 2020; Sinacore et al., 2017).

Before the pre-measurement exercises, participants completed a
warm-up led by a researcher specializing in exercise physiology. For
explosive strength exercises such as the vertical jump and 1RM test,
participants used equipment like stretching bands to activate lower
body muscles through contraction and relaxation (Herrera and
Osorio-Fuentealba, 2024). A brief massage was also provided
prior to the experiment. For each exercise, participants
performed preliminary practice, including five practice jumps
before the vertical jump measurement, and five repetitions at
30% of their body weight before the 1RM test and isometric
exercises. The same warm-up and stretching routine was
followed before the exercise measurement phase on Day 2.

The pre-measurement phase took place on Day 1 of the
experiment. To avoid influencing the subsequent exercise
measurements, the exercise measurement phase was conducted
1–2 days later. This rest period was chosen because the exercises
on Day 1 were not of high intensity, and short rest intervals in low-
load resistance training typically do not interfere with muscle
recovery, ensuring performance in the following session remained
unaffected (Fink et al., 2017).

2.2.3 Experimental protocols: Exercise
measurement phase

On Day 2, during the exercise measurement phase, participants
performed three exercises using Bot Fit, as shown in Figure 2. These
exercises were chosen for their focus on movements involving
the pelvis and hip joints, which are compatible with Bot Fit’s
design. The exercises involved bilateral leg movements in the
sagittal plane, emphasizing flexion and extension without
abduction, and aligning with Bot Fit’s resistance application to
prevent lateral pelvic motion.

The muscles activated during these exercises were monitored
using sEMG signals, including the rectus femoris, vastus lateralis,
biceps femoris, and semitendinosus (Slater and Hart, 2017; Muyor
et al., 2020). These muscles were selected due to their critical
involvement in Bot Fit exercises (Cabral et al., 2023; Lee et al.,
2022). Additionally, the Day 1 pre-measurement tests, such as the
Vertical Jump and 1RM tests, also target the quadriceps (Krisnan
et al., 2014) and posterior thigh muscles (Llurda-Almuzara et al.,
2021), which are the same muscles engaged during the Day
2 exercises (Lee et al., 2022; Narici et al., 1989). This similarity in
muscle involvement was a key factor in selecting these exercises for
accurate strength assessment.

During the measurement phase, participants performed
resistance exercises under two distinct experimental conditions
aimed at assessing different physical performance aspects. In the
first condition, participants executed the exercises at maximum
speed without a time limit for short durations (60 or 45 s). This
condition, mimicking n-RM without speed constraints, allowed for
the measurement of peak strength and maximum effort under high-
intensity, short-duration circumstances (Willardson and
Bressel, 2004).

The second condition, known as the “constant speed” condition,
required participants to maintain a fixed speed for longer durations
(180, 120, or 90 s), with a metronome ensuring consistency. We
defined this speed as RPM (Repetitions per minute). This condition
focused on muscular endurance by identifying the point of muscle
fatigue, which occurred when participants could no longer sustain
the designated pace during exercises like squats (Figure 3). By
maintaining a constant speed for 30–45 s, this setup emphasized
endurance over pure strength, promoting sustained muscular effort.
The controlled speed also minimized variability, allowing for a more
objective assessment of endurance, fatigue, and efficiency. Previous
studies emphasize the importance of repetition speed in strength
development, with faster speeds leading to greater strength gains
(Westcott et al., 2001). Given the connection between strength and
endurance, this method provides an indirect estimation of
endurance through strength performance (Stone et al., 2006;
Vaara et al., 2012).

These two experimental conditions offer complementary
insights: the maximum speed condition assesses peak strength
and short-term performance under high-intensity conditions,
while the constant speed condition evaluates endurance, fatigue
management, and sustained effort over time. This combined
approach allows for a more comprehensive analysis of physical
performance, capturing both the limits of strength and the ability to
sustain exercise over longer periods, providing a well-rounded
evaluation of the Bot Fit resistance protocol (Lander et al., 2009).

All participants followed a specific exercise sequence consisting
of reverse lunges, knee-ups, and squats (Figure 2). First, a repetition
test lasting either 60 or 45 s without speed limits was conducted,
followed by a constant-speed repetition test lasting either 180, 120,
or 90 s for each exercise. This approach ensured reliable
measurement and consistency throughout the experiment. The
constant speed was determined by the duration of the test, with
speeds tailored to each exercise: 48 RPM for reverse lunges, 132 RPM
for knee-ups, and 60 RPM for squats. These values were chosen to
reflect the level of difficulty and muscle engagement required for
each movement.
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The main challenges in our exercise protocol were maintaining
proper posture, correct speed, and pre-exercise stability. Bot Fit
provided real-time alerts, and researchers monitored posture. In the
knee-up exercise at 132 RPM, participants maintained a knee angle
below 65°, which was also applied to the lunge and squat for
consistent control.

Resting heart rates were checked before each exercise in Table 1,
and if elevated above 100 BPM of heart rate, the experiment was
paused until the heart rate returned to normal to ensure stable
conditions. In addition, all protocols were performed 2 hours after
meals, a design choice made to account for the potential effects of
food intake on exercise performance (Farah and Gill, 2013).

2.3 Data acquisition and processing

2.3.1 Data acquisition
Comprehensive data were collected, including muscle activity,

vertical jump performance, 1RM test results, isometric contraction
data, and the number of repetitions for all exercises performed with
Bot Fit. Wireless sEMG sensors captured muscle signals during each
exercise, and Bot Fit’s motor data were used to validate the accuracy
of the sEMG signals. The alignment between the repetitions
recorded by researchers and those detected by the sEMG sensors
confirmed their synchronization, reinforcing the reliability of the
motor signals and the study’s conclusions.

FIGURE 3
Examples of sEMG and Bot Fit motor signal processing during a 90-s repetition test at a constant speed (60 RPM) for squats. (A) Joint torque from
Bot Fit and the raw sEMG signal recorded from lower limbmuscles during squats in maximum resistance mode. The time interval between peak values of
each signal represents the speed of exercise performance per repetition. (B) A graph of the time intervals from (A), where segments maintaining exercise
speed are designated as the constant speed zone, and those unable tomaintain speed aremarked as the variable speed zone. This analysis evaluates
how effectively each participant uses their muscular strength to maintain speed.
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Additionally, comparing the two signals confirmed that Bot Fit’s
motor data accurately reflected the muscle movements captured by
the sEMG sensors, further ensuring the reliability of the
motor signals.

2.3.2 Bot Fit motor signal processing
For Bot Fit’s motor signal processing, Figure 3A shows the joint

torque measured from Bot Fit’s motor during a squat exercise at
60 RPM. The torque peaks during the flexion and extension phases
of the squat. We measure the time intervals between these peaks, as
shown in Figure 3B. The interval where the 60 RPM speed is
maintained is defined as the “constant speed zone,” while
intervals where the speed deviates are labeled the “variable speed
zone.” The same method was applied to determine time intervals for
reverse lunges and knee-ups using Bot Fit’s motor signals.

2.3.3 sEMG signal processing
All sEMG signals underwent thorough preprocessing in each

measurement phase, including the application of a notch filter to
eliminate power line interference, a high-pass filter to remove
mechanical noise, and a band-pass filter (20 Hz–500 Hz) to
retain the relevant sEMG signal frequencies.

In the pre-measurement phase, peak muscle activation signals
from the 1RM and isometric contraction tests were used to
normalize the sEMG signals. This normalization, based on
maximum voluntary isometric contraction (MVIC), enables
objective comparisons by expressing EMG signal intensity as a
percentage of the highest RMS value from the MVIC (Soderberg,
1992; Winter 2009; Lawrence and De Luca, 1983). The MVIC of the
sEMG signal (MVICex) is calculated using the formula:

MVICex � sEMGex − sEMGrest

sEMGmax − sEMGrest
(1)

In Equation 1, sEMGmax represents the maximum sEMG signal
obtained during the 1RM and isometric contraction tests. sEMGex

denotes the sEMG signals recorded during resistance exercises such
as reverse lunges, knee-ups, and squats, as shown in the MVIC of
Figure 3B, while sEMGrest denotes the resting sEMG signals.

2.4 Evaluation metrics for
multivariable analysis

2.4.1 Dependent variables: Muscle parameters
Our model focuses on a muscle parameter that serves as an

indicator of participants’ baseline muscular strength. This
parameter includes metrics such as VJ, RM (LE + LC, weight),
ISO(LE + LC, weight), and total performance. Measured in the pre-
measurement phase and detailed in Table 2, these metrics provide
insights into lower-limb muscular power (VJ) and strength relative
to body weight (RM and ISO) and act as an overall measure of
baseline muscular strength (total performance). Weight
normalization for RM (LE + LC, weight) and ISO (LE + LC,
weight) ensures an unbiased comparison among participants
Bohannon (2009). The total performance is a composite
indicator calculated by summing the z scores of VJ, RM (LE +
LC, weight), and ISO (LE + LC, weight) Legarra-Gorgoñon
et al. (2023).

2.4.2 Independent variables: Performance metrics
We developed performance metrics as independent

variables for the regression model. These metrics were derived
from motor and sEMG signals measured during three
resistance exercises (squats, knee-ups, and lunges) performed
while wearing Bot Fit under two experimental conditions
(detailed in Table 3).

The first metric, Number of Repetitions (NR), measures strength
by counting the total repetitions performed. It is represented as
Squat NR Max, Kneeup NR Max, and Lunge NR Max for the first
experimental condition, and Squat NR Const, Kneeup NR Const,
and Lunge NR Const for the second condition.

The second metric, Initial Speed (IS), assesses participants’
ability to sustain the initial speed guided by a metronome. It is
calculated by averaging the speed of the initial 10 repetitions for
squats or 30 repetitions for knee-ups and lunges. This metric is also
categorized as Squat IS Max, Kneeup IS Max, and Lunge IS Max for
the first condition, and Squat IS Const, Kneeup IS Const, and Lunge
IS Const for the second.

The third metric, Constant Speed Zone (CZ), evaluates the
ability to maintain a constant speed during repetitions until
fatigue. CZ is calculated at the 18-s mark based on a threshold
of speed change (Figure 3B) and is labeled as Squat CZ, Kneeup
CZ, and Lunge CZ.

These three metrics are derived from Bot Fit’s joint torque,
capturing the user’s movement, and can also be extracted using
peak sEMG values. Unlike previous studies using machine learning
to predict movement from sEMG signals Mokri et al. (2022);
Kyeong et al. (2022), our approach relies on peak values
directly tied to user movement (Figure 3A). Since motor and
sEMG signals are synchronized, we used Bot Fit’s motor signals
for these metrics in the analysis.

The fourth metric, sEMG Amplitude, measures the change in
sEMG signal amplitude between the initial and final 10 s of
exercise. This reflects muscle activation intensity and
contraction strength (Ryu et al., 2016). It is represented as
Squat sEMG amp Max, Kneeup sEMG amp Max, and Lunge
sEMG amp Max for the first condition, and Squat sEMG amp
Const, Kneeup sEMG amp Const, and Lunge sEMG amp Const for
the second.

The fifth metric, iEMG (integrated EMG), calculates the
difference in iEMG between the initial and final 10 s of exercise.
This metric reflects total muscle activation over time (Phinyomark
et al., 2014). It is labeled similarly to the fourth metric and can be
obtained only from sEMG signals.

2.5 Statistical analysis

For the statistical analysis, we first performed the Shapiro-Wilk
test on the muscle parameter data and performance metrics. The
results showed p-values greater than 0.05 for all muscle
parameters, confirming normal distribution, as seen in Tables 2,
3. We then calculated Cohen’s f2 value (Selya et al., 2012) and
conducted a power analysis to ensure the sample size was adequate
(Myors et al., 2010).

We also tested the normality of each performance metric, used
as independent variables in the multivariable regression analysis
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(Tabachnick et al., 2013), using the Shapiro-Wilk test. Additionally,
we checked the normality of residuals and homoscedasticity to verify
that the selected independent variables met the assumptions
required to explain the dependent variable, which was the
muscle parameter.

Next, we examined the correlation between muscle parameters
and performance metrics using Pearson’s correlation coefficient.
To ensure the independence of the performance metrics, we
analyzed inter-variable correlations, interpreting the strength of
these correlations as negligible ( < 0.1), weak (0.1–0.39), moderate
(0.4–0.69), strong (0.7–0.79), and very strong ( > 0.8) (Schober
et al., 2018).

These analyses were crucial in identifying the key factors
influencing muscle strength. Variables that did not meet the
selection criteria were excluded from the final regression model.
All statistical analyses were conducted using SPSS version 26.0
(IBM, Armonk, NY) and MATLAB R2020a (MathWorks, Natick,
MA, United States).

3 Results

3.1 Association with muscle parameters and
performance metrics

As shown in Figure 4, there is a clear linear association
between muscle parameters (Table 2), and certain performance
metrics used to evaluate exercise performance with Bot Fit.
Brighter colors in the figure indicate a stronger correlation with
muscle parameters. However, it is important to note that a high
linear correlation alone does not guarantee that a variable is
suitable as an independent predictor in the regression model.
To ensure the robustness of the model, we performed tests
for homoscedasticity and normality of residuals, as depicted
in Figure 5.

Among the common variables across the three types of
exercises, we observed a strong correlation between the
number-based performance metric NR and the initial exercise

TABLE 3 Proposed sEMG signal analysis-based performance metrics with Bot Fit at exercise measurement phase.

Metrics Explanation & Remarks

Number of repetition (NR) Number of repetitions of exercise

Squat NR Max: NR of squat with no speed limits in 45 s [p-value: 0.22]
Kneeup NR Max: NR of knee-up with no speed limits in 60 s [p-value: 0.67]
Lunge NR Max: NR of reverse lunge with no speed limits in 60 s [p-value: 0.602]

Squat NR Const: NR of squat with 60 RPM in 90 s [p-value: 0.32]
Kneeup NR Const: NR of knee-up with 132 RPM in 180 s [< 0.001]
Lunge NR Const: NR of reverse lunge with 48 RPM in 120 s [p-value: 0.065]

Initial speed (IS) Average exercise speed during the initial repetitions of the exercise

Squat IS Max: IS of squat with no speed limits for 10 repetitions [p-value: 0.211]
Kneeup IS Max: IS of knee-up with no speed limits for 30 repetitions [p-value: 0.34]
Lunge IS Max: IS of reverse lunge with no speed limits for 10 repetitions [p-value: 0.13]

Squat IS Const: IS of squat with 60 RPM for 10 repetitions [p-value: 0.004]
Kneeup IS Const: IS of knee-up with 132 RPM for 30 repetitions [< 0.001]
Lunge IS Const: IS of reverse lunge with 48 RPM for 10 repetitions [p-value: 0.53

Constant speed zone (CZ) Number of exercise repetitions during the zone that adheres the constant speed (Figure 3B)

Squat CZ: CZ of squat with 60 RPM in 90 s [p-value: 0.001]
Kneeup CZ: CZ of knee-up with 132 RPM in 180 s [p-value: 0.032]
Lunge CZ: CZ of reverse lunge with 48 RPM in 180 s [p-value: 0.085]

sEMG amp Difference in amplitude of the sEMG signal between the initial 10 s and the final 10 s (Figure 3A)

Squat sEMG amp Max: sEMG amp of squat with no speed limits in 45 s [< 0.001]
Kneeup sEMG amp Max: sEMG amp of knee-up with no speed limits in 60 s [p-value: 0.012]
Lunge sEMG amp Max: sEMG amp of reverse lunge with no speed limits in 60 s [< 0.001]

Squat sEMG amp Const: sEMG amp of squat with 60 RPM in 60 s [p-value: 0.031]
Kneeup sEMG amp Const: sEMG amp of knee-up with 132 RPM in 180 s [p-value: 0.033]
Lunge sEMG amp Const: sEMG amp of reverse lunge with 48 RPM in 180 s [p-value: 0.627]

sEMG iEMG Difference in iEMG of the sEMG signal between the initial 10 s
and the final 10 s (Figure 3A)

Squat sEMG iEMG Max: sEMG iEMG of squat with no speed limits in 45 s [p-value: 0.01]
Kneeup sEMG iEMG Max: sEMG iEMG of knee-up with no speed limits in 60 s [< 0.001]
Lunge sEMG iEMG Max: sEMG iEMG of reverse lunge with no speed limits in 60 s [p-value: 0.001]

Squat sEMG iEMG Const: sEMG iEMG of squat with 60 RPM in 60 s [p-value: 0.774]
Kneeup sEMG iEMG Const: sEMG iEMG of knee-up with 132 RPM in 180 s [p-value: 0.403]
Lunge sEMG iEMG Const: sEMG iEMG of reverse lunge with 48 RPM in 180 s [p-value: 0.627]

p-value denotes the significance probability of normality test (Shapiro-Wilk test).
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FIGURE 4
Absolute values of Pearson’s correlation coefficients between performance metrics and muscle parameters were analyzed to assess the linearity of
the correlations. Asterisks (*) indicate p-values less than 0.05, signifying that the assumption of normality was violated in the residuals’ Shapiro-Wilk test.
Red indicates a stronger correlation, while blue represents a weaker correlation.

FIGURE 5
Results of linear regression analysis. (A) and (D): Scatter plots showing the relationship between dependent variables ((A) for VJ, (D) for ISO (LE,
Weight)) and the independent variable (Squat NR Max). Pearson’s correlation coefficient values are indicated in red. (B) and (E): Residual plots displaying
the differences between the model and the independent variable to assess heteroscedasticity. (C) and (F): QQ plots comparing the model with the
independent variable, assessing heteroscedasticity and normality.
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speed IS. Additionally, among the different types of exercises,
squats consistently showed stronger correlations with muscle
parameters compared to the other exercises. The scatter plots in
Figures 5A, D illustrate the correlations between these variables,
each exhibiting a high degree of linearity, with correlation
coefficients of 0.5 or higher. However, the residuals reveal
varying levels of heteroskedasticity and normality across the
models. In Figure 5B, the residuals are evenly distributed,
indicating homoscedasticity. In contrast, the models in
Figure 5E display unevenly distributed residuals, suggesting the
presence of heteroskedasticity. Similarly, while the residuals in
Figure 5C follow a normal distribution, those in Figure 5F deviate
from normality, as confirmed by the QQ-plots that visualize
normality and heteroskedasticity.

Through these analyses, we identified that specific
performance metrics, particularly those related to initial
exercise speed, serve as statistically significant predictors of
muscular strength. When validated through appropriate
statistical checks, as outlined in Table 3, these metrics
can be reliably used in regression models to predict muscle
parameters.

3.2 Multivariable analysis

3.2.1 Association between multivariable
As illustrated in Figure 6, the correlation matrix provides critical

insights into the relationships among all variables, including both
the independent performance metrics and the dependent muscle
parameters. This matrix not only highlights how various
performance metrics are associated with muscle parameters but
also reveals the interrelationships among the performance metrics
themselves. This dual insight is essential for refining our
understanding of how different aspects of exercise performance,
measured through Bot Fit, relate to overall muscle strength.

By analyzing these correlation patterns, we can identify clusters
of performance metrics that exhibit strong correlations. For
example, certain metrics consistently show high correlations with
muscle parameters, suggesting they play a central role in predicting
muscle strength. Conversely, metrics that are highly correlated with
each other might indicate redundancy, implying that not all need to
be included in our regression model. Identifying such clusters helps
narrow down the set of independent variables, leading to a more
streamlined and efficient model.

FIGURE 6
Absolute correlationmatrix withmuscle parameters and performancemetrics is presented in Tables 2, 3. The larger the size and the redder the color
of the circle, the stronger the correlation, while the smaller the size and the bluer the color, the weaker the correlation.
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This refined selection process is not merely a technical
optimization—it has practical implications. By focusing on
fewer, yet highly representative metrics, we reduce complexity
while maintaining the model’s predictive power. This allows
us to make more accurate assessments of muscle strength
using Bot Fit without overcomplicating the model with
redundant variables.

3.3 Clustering between multivariable

In the multivariable analysis, we confirmed associations
among independent variables and performance metrics, as
demonstrated in Figure 6. Through hierarchical clustering in
Figure 7, we performed the process of selecting variables with
high correlations, indicating lower independence as independent

FIGURE 7
Correlation matrix with dendrogram among the independent variables of performance metrics in Table 3. (A) Correlation matrix of all performance
metrics. (B) Correlation matrix clustered by highly correlated variables from (A). Red indicates a stronger correlation, while blue indicates a weaker
correlation.
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variables. This allows for the simplification of the predictive
model. In Figure 7A, variables with high correlations were
clustered together, and in Figure 7B, the clustering was
made clearer.

In particular, through this dendrogram analysis, we observed
that the IS, NR, and CZ metrics related to muscle parameters had a
high correlation with Squat, Knee-up, and Lunge, and that these
metrics also exhibited a high correlation among themselves.
Additionally, Squat and Lunge metrics were classified within the
same cluster, while Knee-up was classified independently. This
suggests that the metrics for Squat and Lunge could sufficiently
represent each other.

Based on this, we identified meaningful relationships between
variables, particularly the strong correlation between Squat and
Lunge, as shown in Figure 8. Among the performance metrics,
we confirmed that NR and IS showed high correlations between
these two exercises.

Specifically, we identified linear relationships between Squat NR
Max and Lunge NR Max (Figure 8A), Squat NR Const and Lunge
NR Max (Figure 8B), Squat IS Max and Lunge NRMax (Figure 8C),
and similarly for Lunge NR Const and Squat NR Max (Figure 8D),
Squat NR Const (Figure 8E), and Squat IS (Figure 8F).

Additionally, we compared the performance metrics within
Squat and Lunge in Figure 9. Figure 9A illustrates the

FIGURE 8
Linear correlation between performance metrics for squat and lunge exercises. (A) Correlation between Squat NR Max and Lunge NR Max. (B)
Correlation between Squat NR Const and Lunge NR Max. (C) Correlation between Squat IS Max and Lunge NR Max. (D) Correlation between Squat NR
Max and Lunge NR Const. (E) Correlation between Squat NR Const and Lunge NR Const. (F) Correlation between Squat IS Max and Lunge NR Const.

FIGURE 9
Linear correlation between performancemetrics related squat. (A)Correlation with Squat NRMax and Squat NRConst. (B)Correlation with Squat NR
Max and Squat IS Max. (C) Correlation with Lunge NR Max and Lunge NR Const. (D) Correlation with Lunge NR Max and Lunge IS Max.
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relationship between Squat NR Max and Squat NR Const, while
Figure 9B shows the relationship between Squat NR Max and Squat
IS Max. This confirms that the metrics in the Squat protocol are
correlated with each other, indicating that one of these metrics could
be selected to explain the dependent variable in the regression
model, rather than using all of them. Similarly, within the Lunge
protocol, Figure 9C represents the relationship between Lunge NR
Max and Lunge NR Const, and Figure 9D shows the relationship
between Lunge NR Max and Lunge IS Max. As with the Squat
protocol, it is also possible to select one metric within the Lunge
protocol to explain the dependent variable, as confirmed by the
results.The hierarchical clustering of correlated variables, such as
Squat and Lunge, allows us to streamline the regression model by
selecting only the most relevant metrics. This reduces complexity
without compromising accuracy. Strong correlations between NR

and IS metrics in both Squat and Lunge indicate that these metrics
are strong predictors of muscle performance. Therefore, selecting
one representative metric from correlated groups prevents
multicollinearity and enhances the model’s robustness.
Ultimately, this method optimizes the model, improving both
efficiency and interpretability, making it more applicable for
systems like Bot Fit.

3.4 Regression analysis

3.4.1 Multivariable model
To develop the final multivariable model, we selected the most

relevant indicators based on prior statistical analyses. The chosen
independent variables are listed in Table 4, which were derived from

TABLE 4 Selection of independent variables (performance metrics) for a regression model targeting muscle parameters through statistical validation.

Model target; muscle parameters

Total performance VJ RM (LE + LC,
Weight)

ISO (LE + LC,
Weight)

Independent variables
Selected performance metrics

(Criteria: normality test;
p> 0.05, residual normality
and homoscedasticity test,

independence test; linearity: < 0.7)

Squat IS Max Squat IS Max Squat IS Max Squat IS Max

Kneeup IS Max Kneeup NR Max Kneeup CZ Kneeup CZ

Kneeup CZ Lunge IS Max Lunge IS Max Lunge CZ

Lunge IS Const Lunge CZ

Lunge CZ

FIGURE 10
Performance of each regressionmodel for Total performance, VJ, RM (LE + LC, Weight), and ISO (LE + LC, Weight). Solid bars represent the model’s
explanatory power (R), while hatched bars represent the adjusted R2. (A) “All metrics” includes metrics from Squat, Knee-up, and Lunge; “Squat only” uses
squat-relatedmetrics; “Knee-up only” uses knee-up-relatedmetrics; and “Lunge only” uses lunge-related metrics. (B) “Reps only” represents a traditional
strength assessment method using metrics related to the number of repetitions (NR) (Schoenfeld et al., 2019). “Squat & Lunge,” “Squat & Knee-up,”
and “Knee-up & Lunge” include metrics from the respective combinations of exercises. This figure showsmodel performance based on high correlations
and statistically significant metrics for each target, categorized by resistance exercise type. Asterisks indicate significance levels: * p < .05, ** p < .01, and
*** p < .005.
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the performance metrics in Table 3. These variables were selected
based on normality (p-value > 0.005) (Tabachnick et al., 2013),
homoscedasticity, and normality of residuals (Figures 4, 5). To
minimize multicollinearity, only variables with linearity below 0.7
(Murray and Conner, 2009) were included (Figures 7–9).

The model’s performance is illustrated in Figure 10. In
Figure 10A, the explanatory power for each target is shown using
metrics from all three exercises (All metrics) and from individual
exercises (Squat-only, Knee-up-only, and Lunge-only). The results
indicate that using all three exercise metrics produced similar
performance to using Squat metrics alone, whereas models based
solely on Knee-up or Lunge metrics had lower performance.

Figure 10B compares the model’s performance across different
exercise combinations. Models incorporating Squat metrics
consistently performed the best, with the Squat and Knee-up
combination yielding the highest accuracy. This confirms that
Squat-related metrics are the strongest predictors of muscle
strength. Interestingly, the combination of Squat and Lunge
metrics performed similarly to the Squat-only model, likely due
to the similarities in movement patterns between these exercises.
Conversely, Knee-up metrics were more distinct, and combining
Squat and Knee-up metrics resulted in more efficient muscle
strength predictions than using all three exercises together.

Additionally, we compared our models to a traditional method
(Schoenfeld et al., 2019) that assesses strength based on repetition
counts (NR) from the three exercises. Our proposed
models—whether using Squat alone or combined with Knee-
up—performed slightly better than the traditional approach, as
shown in Figure 10B. This demonstrates that our method can
accurately estimate muscular strength without the need for all
exercises to be performed.

Based on these results, we finalized the multivariable regression
models, presented in Table 5. The “All metrics”model includes data
from all three exercises, the “Squat, Knee-up” model uses only two
exercises, and the “Squat-only”model relies solely on Squat metrics.
Notably, the performance of the “Squat-only” model was
comparable to that of the “All metrics”model, as shown in Figure 10.

To determine the appropriate sample size for the final model, we
conducted a statistical power analysis, including p-values and effect
sizes, ensuring that the model is reliable and can generalize
effectively.

Among the various models, the “Squat-only” model using the
Squat IS MAX metric, which measures speed over a 10-s interval,
showed the best performance. This confirms that Squat IS MAX is a
highly reliable and efficient predictor of muscle strength. Statistical
analysis further validated the model’s applicability, making it
suitable for scenarios with limited resources or smaller sample sizes.

3.4.2 Multivariable model validation
To assess the impact of sample size, age, and gender on the

model, we employed a bootstrapping technique (Wang, 2019).
Additionally, we introduced Gaussian noise into the bootstrapped
datasets (Gu et al., 2019) to evaluate the influence of factors such as
gender, age, and participant condition. As outlined in Table 6,
bootstrapping was performed using data from the original
30 participants, generating 100 and 300 samples, with 10% and
30% Gaussian noise added to each model. We then evaluated the
performance of each regression model.

To compute the total performance of the bootstrapped data, the
mean and standard deviation of the muscle parameter from the
original 30 participants were used as the model target. This
methodology allowed us to evaluate the generalizability of the

TABLE 5Multiple linear regressionmodels for total performancewith squat, knee-up and reverse lunge. Beta coefficients (B) signify the estimated change in
the dependent variable for a one-unit change in the predictor variable, holding all other variables constant. Standard errors (SE) gauge the precision of the
estimated coefficients. Standardized coefficients (Standardised coeff. Beta) indicate the change in standard deviations of the dependent variable for a one-
standard-deviation change in the predictor variable. Cohen’s f2 (Selya et al., 2012) is ameasure of effect size in regressionmodels, used to assess howmuch
an independent variable explains the variance of the dependent variable. Statistical power (Myors et al., 2010) refers to the probability that the test correctly
rejects the null hypothesis when a true effect exists, with a value of 1.0 indicating that the sample size and effect size are sufficient to detect a statistically
significant result.

Type of
independent
variables

Independent
variables

Unstandardised
coeff

Standardised
coeff

R
(adjust R2)

Effect size;
Cohens’s f2

(Statistical
power)B SE Beta

All metrics
(Squat, Knee-up, Lunge)

(Constant) −5.203 1.374 — 0.884
(0.753***)

Large; f2 = 3.57
Power ≈ 1.0

Squat IS Max 0.626 0.131 0.829

Kneeup IS Max 0.046 0.042 0.142

Kneeup CZ −0.001 0.002 −0.111

Lunge IS Const −0.022 0.023 −0.128

Lunge CZ −0.003 0.007 −0.057

Squat
Knee-up

(Constant) −5.803 0.706 0.879
(0.734***)

Large; f2 = 3.26
Power ≈ 1.0

Squat IS Max 0.632 0.082 0.837

Kneeup IS Max 0.022 0.036 0.068

Squat only (Constant) −5.58 0.602 0.873
(0.721***)

Large; f2 = 3.2
Power ≈ 1.0

Squat IS Max 0.659 0.07 0.873

** p < 0.01; *** p < 0.005. f2: < 0.02 (small effect), f2: 0.02–0.15 (medium effect), and f2 > 0.35 (large effect).
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model to the broader population and assess the sample’s
representativeness.

As presented in Table 6, model performance decreased slightly
as the number of bootstrapped samples increased, with further
reductions observed when higher levels of noise were introduced.
However, despite these declines, the changes were not statistically
significant, suggesting that the proposed model remains robust and
applicable across various data distributions. The effects of gender
and age were also apparent, but they did not significantly impact the
overall model performance.

Our analysis demonstrates that incorporating all three exercise
types (Squat, Knee-up, and Lunge) yields a highly accurate
prediction model for muscle strength estimation, as shown in
Table 5. However, this approach requires performing all
exercises, which may not always be practical. To develop a more
efficient model, we identified Squat metrics as the strongest
independent predictors of muscle strength. Combining Squat and
Knee-up metrics offered the highest explanatory power, while using
Squat metrics alone provided a simpler yet highly effective
alternative.

The validation results using bootstrapping confirm that the
model is robust and generalizable, as shown in Table 6. Although
the introduction of noise and an increase in sample size slightly
reduced performance, the declines were not statistically significant.
This indicates that our final model, particularly the “Squat-only” and
“Squat, Knee-up” configurations, can be applied effectively across
diverse data sets and conditions. Therefore, the model not only
demonstrates strong predictive accuracy but also maintains
reliability in scenarios with varied sample sizes and external
factors such as age and gender.

4 Discussion

Our study explored methods for estimating users’ physical
strength through exercises provided by Bot Fit. We found that
strength could be effectively estimated using statistically
significant prediction models derived from performance metrics
in resistance exercises such as squats, knee-ups, and reverse lunges
performed with Bot Fit. Notably, even a single exercise—the
squat—produced a model with predictive accuracy comparable to
models incorporating all three exercises, highlighting Bot Fit’s
capability to generate accurate and efficient strength estimation
models based on user performance.

Assessing muscle strength is critical for health management and
exercise planning, as it helps individuals understand their capabilities
and address deficits. Muscle strength is also recognized as a clinical
indicator of overall health status (Momma et al., 2022). Our study
successfully developed statistically robust models through resistance
exercises facilitated by the Bot Fit system, suggesting that Bot Fit not
only supports exercise but also serves as a valuable tool in health
monitoring and fitness optimization.

Traditional methods of measuring muscle strength through
resistance include the N-RM method, which estimates the 1RM by
assessing the maximum weight a person can lift in a single repetition
(Willardson and Bressel, 2004), and isokinetic dynamometry, which
evaluates strength by maintaining a constant movement speed using
specialized equipment (Gleeson and Mercer, 1996; Schoenfeld et al.,T
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2019). Functional strength tests using resistance exercises, like squats,
offer alternatives without specialized equipment by analyzing
performance metrics such as oxygen consumption and aerobic
energy expenditure (Fujita et al., 2016; Nakagata et al., 2022).
However, these approaches often require specific equipment,
designated exercise locations, and supervision, and they lack the
ability to monitor real-time performance data.

Exoskeleton robots offer a promising solution to these
limitations. They enable users to perform resistance exercises
without the need for specific equipment or locations, and their
motor data can be used to monitor movements. While previous
studies have focused on using exoskeletons to assist movement and
guide exercises (Lee et al., 2023; Kim et al., 2023), tracking users’ gait
trajectories and providing walking adaptability for the robot (Kou
et al., 2024), research on utilizing exoskeletons to estimate strength
in healthy individuals remains limited.

We introduced Bot Fit, an exoskeleton designed to assess users’
functionality through safe and adaptive resistance exercises (Lim
et al., 2019; Kim et al., 2018). Previous research has used
electromyographic fatigue threshold (EMGFT), biomechanical
assessments, and subjective ratings to evaluate muscle strength
and ankle-joint stability (Byeon et al., 2024). Technologies like
lower-limb wearable robots (LEEX) have also been developed to
analyze gait based on biomechanical patterns and movement
intentions (Qiu et al., 2023). Our study demonstrated the
feasibility of estimating muscle strength in healthy individuals
using Bot Fit, offering more challenging resistance exercises
compared to bodyweight exercises.

We designed an exercise protocol using Bot Fit under two
conditions. The first simulates estimating 1RM through repeated
n-RM sets without a fixed speed over a short period, allowing
participants to exert maximum effort (Willardson and Bressel,
2004). The second focuses on endurance by maintaining a
constant speed over a longer period, encouraging sustained use
of strength and endurance. Research shows that faster repetition
speeds lead to greater strength gains (Westcott et al., 2001), and
speed endurance training improves overall performance (Iaia et al.,
2015). Based on the relationship between strength and endurance
(Vaara et al., 2012), we used this protocol to estimate individuals’
overall muscular strength.

Results suggest that Bot Fit can efficiently estimate lower body
strength, with squats and knee-ups being the most effective exercises.
In protocols requiring rapid movement, initial speed-based
performance metrics were statistically significant predictors in the
strength estimation model. The importance of early speed in
representing strength aligns with research highlighting that
overcoming inertia to generate fast, powerful movements is closely
related to muscle hypertrophy and muscle length (Wilk et al., 2021).

To obtain these performance metrics, we used real-time motor
signals from Bot Fit supplemented with data from sEMG sensors,
accurately assessing the relationship between initial movement
speed and muscle strength. We demonstrated that movement-
based metrics such as IS, NR, and CZ can be derived from both
sEMG signals and Bot Fit’s motor signals, yielding identical results.
This confirms the reliability of Bot Fit’s motor signals in
representing actual muscle movement. Simplifying sEMG signal
processing by using peak values allowed more efficient extraction of
these key metrics.

sEMG signal analysis has significant advantages for evaluating
muscle movement and activity. It has been applied to systems
predicting wrist joint strength based on musculoskeletal models
(Zhang et al., 2016), and methods for estimating lower limb strength
using machine learning techniques with sEMG signals have been
developed (Mokri et al., 2022). Additionally, EMG-based
musculoskeletal models have been used to predict joint moments
under various dynamic contraction conditions (Lloyd and Besier, 2003).

However, these studies require complex data processing and
parameter calibration, increasing overall complexity (Zhang et al.,
2016; Buchanan et al., 2004). Machine learning-based methods,
while achieving high prediction accuracy, require large datasets
(Mokri et al., 2022). They often use limited parameters and may
not account for physiological phenomena like nonlinear changes in
muscle strength, reducing predictive power (Lloyd and Besier, 2003).
In contrast, we found that amplitude and iEMG values from sEMG
showed lower correlation with muscle strength, supporting previous
research indicating a nonlinear relationship between sEMG signals
and muscle strength (Sartori et al., 2012; Buchanan et al., 2004).

Our findings indicate that a simple approach based on peak
movement signals, rather than complex musculoskeletal models
(Jiang et al., 2020), suffices for calculating IS, NR, and CZ. These
movement-based metrics strongly correlate with muscle strength
and are key variables in strength estimation models, aligning with
prior studies that use movement speed and repetition counts as
indicators of strength (Nakagata et al., 2022).

The regression model developed demonstrates that Bot Fit can
effectively estimate lower body strength. Based on resistance
exercises like squats, knee-ups, and reverse lunges, the model
provided reliable strength predictions. Notably, using data from
the squat exercise alone achieved prediction accuracy comparable to
models using multiple exercises, highlighting Bot Fit’s potential as a
simple and efficient tool for assessing strength.

Our model aligns with previous research exploring the correlation
between strength and exercise performance. For example, Rodrigues
et al. found a strong relationship between lower body strength,
measured by a sit-to-stand test, and dynamic balance assessed via
the Timed-Up and Go test (Rodrigues et al., 2023). Similarly,
Monteiro et al. developed strength estimation models based on
walking parameters, comparable to the knee-up exercise in our
study (Monteiro et al., 2021).

Moreover, our model relates to widely used strength assessments
like vertical jump performance (Carlock et al., 2004), 1RM tests for
leg extensions and curls (Grgic et al., 2020; Kanada et al., 2018), and
isometric tests (Bandinelli et al., 1999). Unlike traditional methods
that do not incorporate real-time performance data from wearable
exoskeletons, our study introduces a more comprehensive
performance metric by combining motor signals and sEMG data
from the Bot Fit exoskeleton. Real-time signals such as initial
exercise speed and the number of repetitions provide a dynamic
and precise understanding of muscular strength during resistance
exercises. We also compared a model based solely on repetition
count with our multivariable model, confirming that our model had
superior explanatory power. This further validates our regression
model as an effective tool for strength evaluation and exercise
planning using Bot Fit.

The multivariable analysis in our study goes beyond simple
correlation or regression commonly employed in previous research.
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By systematically considering multicollinearity and avoiding
redundancy, we selected the most critical performance metrics
(e.g., initial speed during squats), ensuring that the final model
efficiently and accurately predicts lower limb strength across
various exercises.

Our study has several limitations. First, the sample population
was limited to healthy adults aged 23 to 30, which restricts the
generalizability of the model to broader populations, such as older
adults or individuals with musculoskeletal conditions. While this
limitation narrows the scope of application, the high statistical
power of our data indicates that our methods and findings are
robust for this specific demographic. Additionally, based on the
consistent results across diverse data distributions using our
proposed analysis method, we have confirmed the potential
generalizability of our approach.

Second, although we aimed to minimize the influence of external
variables, we could not fully control the participants’ daily activity levels
outside the experimental sessions. While daily physical activity may have
had some influence on the results, we believe its impact wasminimal.We
monitored participants’ baseline heart rates and conducted preliminary
exercises to ensure consistent conditions at the start of each session.

Lastly, the study’s focus on using a wearable exoskeleton for
fitness movements primarily applies to physically active individuals.
Nevertheless, our results suggest that Bot Fit has potential beyond
fitness assessments. The integration of exercise speed and
performance metrics into our model introduces a novel approach
to strength evaluation, highlighting the versatility of exoskeletons for
broader fitness and health applications.

5 Conclusion

This study demonstrates the practicality and effectiveness of using
Bot Fit to estimate lower body strength through key performance
metrics such as IS, NR, and CZ. Among these, IS emerged as the most
accurate predictor, reflecting the user’s ability to overcome inertia and
perform quick, forceful movements. By focusing on simple resistance
exercises like squats and knee-ups, we developed strength prediction
models that are both reliable and easy to implement. Notably, strength
estimates based on a single exercise, such as the squat, were comparable
to those derived frommultiple exercises, highlighting Bot Fit’s ability to
provide streamlined and efficient strength assessments. These metrics
were carefully selected through rigorous statistical analysis, resulting in a
robust and accurate estimation model.

Our study introduces a novel approach compared to traditional
methods of predicting lower limb strength, demonstrating Bot Fit’s
potential as a valuable tool beyond rehabilitation. By incorporating
sEMG-based evaluation metrics and performance data from Bot
Fit’s motor signals, we used multivariable analysis to identify the
most effective predictors—such as initial exercise speed and the
number of repetitions—allowing for more precise assessments of
muscle strength. The resulting strength prediction model,
particularly when using squat metrics, showed significantly
higher accuracy than conventional methods, underscoring the
potential for exoskeleton robots to be applied in real-world
fitness and health monitoring systems. Bot Fit offers a simple
and reliable method for tracking strength in healthy individuals,
without the need for specialized equipment or environments.

Future study should include older adults and individuals with
musculoskeletal conditions to validate the model’s generalizability.
Exploring additional exercise protocols could help develop models
suited to diverse physical abilities and rehabilitation needs.
Leveraging advanced data analytics and machine learning could
further enhance strength prediction accuracy, enabling Bot Fit to
deliver personalized exercise recommendations and health
assessments to a wider range of users.
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