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Supercooled preservation (SCP) is a technology that involves cooling a substance
below its freezing point without initiating ice crystal formation. It is a promising
alternative to prolong the preservation time of cells, tissues, engineered tissue
products, and organs compared to the current practices of hypothermic storage.
Two-dimensional (2D) engineered tissues are extensively used in in vitro research
for drug screening and development and investigation of disease progression.
Despite their widespread application, there is a lack of research on the SCP of 2D-
engineered tissues. In this study, we presented the effects of SCP at −2 and −6°C
on primary rat hepatocyte (PRH) monolayers for the first time and compared cell
viability and functionality with cold storage (CS, + 4°C). We preserved PRH
monolayers in two different commercially available solutions: Hypothermosol-
FRS (HTS-FRS) and the University of Wisconsin (UW) with and without
supplements (i.e., polyethylene glycol (PEG) and 3-O-Methyl-A-D-
Glucopyranose (3-OMG)). Our findings revealed that UW with and without
supplements were inadequate for the short-term preservation of PRH
monolayers for both SCP and CS with high viability, functionality, and
monolayer integrity. The combination of supplements (PEG and 3-OMG) in
the HTS-FRS solution outperformed the other groups and yielded the highest
viability and functional capacity. Notably, PRH monolayers exhibited superior
viability and functionality when stored at −2°C through SCP for up to 3 days
compared to CS. Overall, our results demonstrated that SCP is a feasible
approach to improving the short-term preservation of PRH monolayers and
enables readily available 2D-engineered tissues to advance in vitro research.
Furthermore, our findings provide insights into preservation outcomes across
various biological levels, from cells to tissues and organs, contributing to the
advancement of bioengineering and biotechnology.
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1 Introduction

Preservation is a commonly used technology to maintain the
viability, functionality, and structural integrity of biospecimens,
such as cells, tissues, tissue-engineered products, and organs
outside their natural environment over extended periods.
Preservation usually involves controlling and minimizing the
detrimental effects of changes in temperature, chemical agents,
and other factors that can compromise the biological integrity
and functionality of these specimens (Taylor et al., 2019). It plays
a crucial role in tissue and organ transplantation, blood transfusion
(Deller et al., 2014; Giwa et al., 2017), cell therapies (Schäffler and
Büchler, 2007; Schmidt et al., 2008; Zanata et al., 2016), assisted
reproduction (De Vos et al., 2014), and tissue regeneration and
repair (Sodian et al., 2006; Kaita et al., 2019).

There are various approaches to preservation; the most suitable
selection depends on the nature and complexity of the tissue and the
required length of storage. Of these, cryopreservation preserves
biological specimens in a state of suspended animation at
cryogenic temperatures (−120°C to −195°C) to maintain long-
term cell viability via freeze-thaw procedures and vitrification.
Cryopreservation requires cell membrane-permeating (e.g.,
dimethyl sulfoxide) or/and nonmembrane-permeating
cryoprotective agents (CPAs) such as 2-methyl-2,4-pentanediol to
minimize cryoinjuries. Despite some successes at the cell level, there
are still some limitations to cryopreservation. For example, cells
undergo various thermal, chemical, and mechanical forces during
cryopreservation, which significantly affect their biological function
after preservation (Karlsson and Toner, 1996). Freeze-thaw
procedures result in low cell recovery rates, and the removal of
cryoprotective agents (CPAs) necessitates laborious washing and
centrifugation processes (Davis et al., 1990; Karlsson and Toner,
1996; Huang et al., 2017) before further applications. Further, the
presence of CPAs alters chromosome stability (Usta et al., 2013;
Ullah et al., 2015), specifically when used in elevated concentration
and induces spontaneous differentiation (Chetty et al., 2013),
intravascular hemolysis (Meryman and Hornblower, 1972), and
cell loss (Rao et al., 2015).

Hypothermic storage or cold storage (CS) is used for short-term
preservation of tissues and organs at temperatures above their
freezing point (e.g., +4°C) (Kamijima et al., 2013; Robinson et al.,
2014; Yang et al., 2017; Zhang et al., 2020; Freitas-Ribeiro et al.,
2021). Under hypothermic conditions, metabolic rate and oxygen
demand dramatically decrease, and this unfrozen state offers several
distinct advantages compared to cryopreservation. Since CPA is not
needed and phase transition does not occur, this approach provides
easy harvesting, storage, and retrieval. Therefore, cryoinjuries,
including osmotic shock, intracellular and extracellular ice
formation, and oxidative stress, can be avoided. These advantages
provide convenience at remote treatment centers and field settings,
such as combat zones, where the absence of an “ultra-cold chain” is
prevalent (Muraki et al., 2006; Brinkkoetter et al., 2008; Adjirackor
et al., 2020; Yang et al., 2020). However, the relatively higher storage
temperatures can result in irreversible cold storage-induced injuries
such as adenosine triphosphate depletion, reduced enzyme activities,
and extracellular matrix loss. These adverse effects ultimately lead to
cell apoptosis over time. Although cold storage solutions can
prolong cell survival, their effectiveness is limited, and the

storage of biological samples is typically short, ranging from 6 to
48 h for cells such as human cardiac myoblasts (Abuarqoub et al.,
2007), renal cells (Salahudeen et al., 2000) and hepatocytes (Duret
et al., 2015; Aghdaie et al., 2020) and ranging from a few hours (e.g.,
4–6 h for hearts and lungs, 12 h for liver) to a few days (e.g., 3 days
for kidneys) (Dunn et al., 1991; Vela et al., 2018; Wang et al., 2018).

Unlike cold storage and cryopreservation, there is a possibility of
exploring preservation at subzero temperatures. This alternative
technology, known as supercooled preservation (SCP), lowers
cellular metabolism, prevents ice formation thus, mitigates the
effects of mechanical injuries and osmotic stress during
cryopreservation (i.e., freeze-thaw), and can potentially prolong
cell survival beyond current practices of cold storage (Pegg, 2010;
Taylor et al., 2019). Preventing ice formation plays a crucial role in
SCP, and even a minor reduction in subzero temperatures can
significantly improve organ preservation (Hertl et al., 1994) and
cell survival with superior ATP levels (Matsuda et al., 1999; Usta
et al., 2013). So far, SCP has been successfully employed to preserve
bacterial and yeast cells (Rasmussen et al., 1975; Mathias et al.,
1985), peripheral blood stem cells (Matsumoto et al., 2002), turkey
spermatozoa (Zavos and Graham, 1981; Zavos and Graham, 1983),
and rat hepatocytes (Matsuda et al., 1997; Matsuda et al., 1999;
Almada et al., 2006; Guibert et al., 2009; Rodríguez et al., 2009; Usta
et al., 2013). Recent studies have also investigated short-term organ
storage via SCP of the heart (Amir et al., 2004; Monzen et al., 2005),
liver (Eschwege et al., 1995; Scotte et al., 1996; Ishine et al., 1999;
Soltys et al., 2001; Monzen et al., 2005; Bruinsma et al., 2015; de
Vries et al., 2018; de Vries et al., 2019; de Vries et al., 2020), lung
(Abe et al., 2006; Okamoto et al., 2008), and kidney (Monzen
et al., 2005).

Two-dimensional (2D) engineered tissues mimic the
morphological and functional characteristics of native tissues.
They have been widely used in basic and preclinical biomedical
research, including disease progression screening, drug testing, and
drug development (Abbott and Kaplan, 2015). Despite their
extensive applications, there is a lack of research on the
preservation of 2D-engineered tissues that are readily usable in
biomedical research. While recent studies demonstrated the
preservation of monolayer rat insulinoma cells (RIN 5F)
(Yamauchi et al., 2021) and a human hepatocarcinoma-derived
cell line (HepG2) via SCP (Hikichi et al., 2023), the high viability
of these cells is not critical since they can proliferate and cope with
environmental changes in vitro. Consequently, there is a need for a
long-term preservation solution for adherent and fragile primary
cells such as hepatocytes.

Isolated liver cells, particularly isolated primary hepatocytes,
have been extensively used in medicine and different fields of
research, including physiological research, pharmacological
testing, metabolic studies, cell transplantation, and bioartificial
liver support (Tanaka et al., 2006). Still, the scarcity of fresh
viable cells has hindered the utilization of hepatocytes due to the
shortage of liver donors (Ostrowska et al., 2009). In successful cell
isolation, it is possible to obtain −2 × 106 cells/g of liver weight (Terry
et al., 2006). This amount is considered ample for cell
transplantation and significantly surpasses the amount required
for large-scale in vitro assays. Thus, significant interest exists in
preserving isolated hepatocytes to optimize the benefits of isolation,
store large quantities of cells for transplantation, or enable accurate
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inter-batch comparisons for xenobiotic assays, drug detoxification,
and cell therapies (Fuller et al., 2016). Several reports have been
published to prolong hepatocyte as storage via cryopreservation,
short-term cold storage, and supercooled preservation (Guillouzo
et al., 1999; RAUEN et al., 1999; Ostrowska et al., 2000;
OSTROWSKA et al., 2002; Rauen et al., 2002; Łaba et al., 2005;
Terry et al., 2006; Ostrowska et al., 2009; Terry et al., 2010; Pless
et al., 2012; Usta et al., 2013; Duret et al., 2015; Puts et al., 2015;
Fukuoka et al., 2017; Aghdaie et al., 2020). While cryopreservation
offers the advantage of indefinite storage duration, hepatocytes
exhibit high susceptibility to cryoinjury, leading to significant cell
loss (Guillouzo et al., 1999; Terry et al., 2006; Terry et al., 2010) and
reduced cell attachment subsequently (Guillouzo et al., 1999; Terry
et al., 2007). Cold storage has a protective effect by slowing down cell
metabolism. Still, the cold imposes cell damage, which often worsens
following the rewarming process after the preservation (RAUEN
et al., 1999; Rauen et al., 2002; Rauen and de Groot, 2004). On the
other hand, the preservation of hepatocytes through subzero
nonfreezing temperatures prolongs the viability of these cells for
much longer than cold storage. Our previous work has shown that
lowering the conventional cold storage temperature of 4 C (CS)
to −4.4 C (SCP) has resulted in a longer storage time of primary rat
hepatocyte (PRH) cell suspensions and whole livers (Usta et al.,
2013; Berendsen et al., 2014; Bruinsma et al., 2015; de Vries et al.,
2018; de Vries et al., 2019; de Vries et al., 2020).

Here, we investigated how cultured PRH monolayers tolerate
lower nonfreezing temperatures, SCP. We evaluated the effects of
SCP at −2 and −6 C on adherent PRHmonolayers and compared cell
viability and functionality with conventional cold storage (CS, +4 C).
To our knowledge, none of the previous reports have tested the
effects of SCP on the viability and functionality of PRH monolayers.
We tested two commercial baseline preservation solutions, UW and
HTS-FRS, with and without supplements (i.e., polyethylene glycol
(PEG) and 3-O-Methyl-A-D-Glucopyranose (3-OMG)). PRH
monolayers stored in UW with and without supplements (PEG
and 3-OMG) exhibit poor attachment, low viability, and
functionality in plates after SCP and CS. On the other hand, the
addition of supplements (PEG and 3-OMG) in the HTS-FRS
solution outperforms the other groups and yields the highest
viability and functional capacity. Our results demonstrated that
PRHmonolayers can be stored at −2 C via SCP for up to 3 days with
superior viability (−62%) and functionality compared to
conventional cold storage. While we focused on the SCP of PRH
monolayers, our findings have broader implications for improving
the preservation of cells, tissues, and organs.

2 Materials and methods

2.1 Materials

Primary rat hepatocyte culture media (C +H) was prepared with
high glucose (4.5 g/L) Dulbecco’s modified eagle’s medium (DMEM;
Life Technologies, CA, United States) and was supplemented with
10% fetal bovine serum (FBS, Sigma, St. Louis, MO, United States),
2% penicillin-streptomycin, 7.5 μg/mL hydrocortisone, 20 ng/mL
epidermal growth factor (EGF) and 14 ng/mL glucagon. 12 well
tissue culture plates were purchased from CellTreat Scientific

Products (Pepperell, MA, United States). The collagen was
prepared by extracting acid-soluble collagen from Lewis rat-tail
tendons, as reported previously (Dunn et al., 1991). GenClone
25-508 Dulbecco’s phosphate-buffered saline (DPBS) was
purchased from Genesee Scientific (Research Triangle Park, NC,
United States). 3-O-Methyl-A-D-Glucopyranose (3-OMG) was
purchased from Chem-Impex Int’L Inc. (Wood Dale, IL,
United States). Trypan blue, polyethylene glycol (PEG, 35 kDa),
and light mineral oil (MO) were purchased from Sigma Aldrich,
United States. HypoThermosol-FRS (HTS-FRS) and the Belzer
University of Wisconsin (UW) were purchased from BioLife
Solutions (101104, Bothell, Washington, United States) and
Bridge to Life (BUW-001, Illinois, United States), respectively.
Live cell imaging solution (1X), ethidium homodimer-1 (EthD-1),
calcein AM and Hoechst 33342, trihydrochloride and trihydrate,
and 12 and 96 well plates were purchased from Invitrogen by
Thermo Fisher Scientific (Carlsbad, CA, United States). Cell
counting kit-8 (CCK8) was purchased from ApexBio (Boston,
MA, United States). The urea assay kit was purchased from
Stanbio Laboratory (Cat. No. 0580-250). Tween 20, albumin
from rat serum, o-phenylenediamine dihydrochloride tablet
(10 mg substrate per tablet), hydrogen peroxide, and sulfuric acid
were purchased from Sigma Aldrich (St. Louis, MO, United States).
Sheep anti-rat albumin HRP conjugated (1 mL at 1 mg/mL) was
purchased from Fortis Life Sciences (Waltham, MA, United States).
Quick DNA miniprep kit (Cat. No. D3025) was purchased from
Zymo Research (Irvine, CA, United States).

2.2 Primary rat hepatocyte (PRH) isolation

Primary rat hepatocytes (PRHs) were freshly isolated from 10 to
12 weeks-old adult female (180–200 g) Lewis rats (Charles River
Laboratories, United States). The Cell Resource Core (CRC)
performed the isolation according to protocol #2011N000111,
approved by the Institutional Animal Care and Use Committee
(IACUC) at Massachusetts General Hospital (MGH).
Approximately 300–400 million primary rat hepatocytes were
provided with 85%–95% viability, as determined via
hemocytometer after trypan blue staining. The cells were seeded
in 12 well plates coated with collagen immediately after isolation, as
described in 2.3.

2.3 2D primary Rat hepatocyte monolayer
culture and preservation

2.3.1 Bottom collagen coating and cell seeding
12-well tissue culture plates were coated with Type I Collagen

(1.25 mg/mL) before the cell seeding protocol. The collagen solution
was diluted with a ratio of 1:25 in PBS at 4°C. Then, 500 µL of diluted
collagen solution was added into each well and incubated at 37°C for
1 h in a humidified atmosphere with 5% CO2. Then, the bottom
collagen gel was formed, the rest of the solution was aspirated, and
wells were washed with 1 mL PBS. The cell suspension was diluted to
560,000 cells/mL (160,000 cells/cm2) with the C + H medium. 1 mL
of this suspension was introduced to each well under sterile
conditions. The plate was gently shaken via repeated vertical and
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horizontal movements to spread the cells evenly. Plates were
incubated at 37°C with 5% CO2 until cells adhered to the
collagen coating (40 min). The medium was then aspirated to
remove dead cells, and 500 µL warm C + H medium was added
into each well to refresh cell conditions. After 24 h of incubation,
media were collected from each well and stored at −80°C for further
functionality analyses. Then, fresh C + H media were introduced
into the wells, and a cell viability assay was conducted to establish
control groups and normalize the SCP data (refer to figure captions
for details).

2.3.2 Supercooled preservation and cold storage of
PRH monolayer culture

The supercooled preservation of PRH monolayer culture was
adapted from the previously established protocol for water and
suspended red blood cells (Huang et al., 2018). Briefly, 24 h after cell
seeding, images were taken from each plate using an EVOS™
M5000 microscope (ThermoFisher Scientific, AMF5000,
Waltham, MA) to confirm confluency. Cell culture media were
removed from the wells and replaced with 500 µL 3-OMG solution
(200 mM, 3-OMG dissolved in two parts distilled water and one part
D-glucose-free DMEM, 310 mOsm/kg). After 1 h of incubation with
3-OMG solution (37°C, 5% CO2), the plates were removed from the
incubator, and the solution was replaced with 1 mL of preservation
solution. UW, HTS, UW supplemented with 5% w/v PEG and
200 mM 3-OMG (UW + A), and HTS supplemented only with 5%
w/v PEG (shown as HTS + PEG) and 200 mM 3-OMG (shown as
HTS+3-OMG) and combination of PEG and 3-OMG (shown as
HTS + A) were used as preservation solutions. Finally, 1.5 mL of
immiscible surface sealing agent (mineral oil) was gently added into

each well -to prevent ice formation during SCP (Huang et al., 2018)-
using serological pipettes, and plates were placed into portable
temperature-controlled freezers (Engel MDH-13, Engel, Jupiter
FL, United States) for 2 and 3 days of SCP (−2 C and −6 C)
(Figure 1). These coolers were placed in cold rooms (at 4 C) to
minimize temperature variations. The same procedure was followed
for cold storage (CS, +4 C) of PRH monolayers, as described above,
without 3-OMG loading and surface sealing steps (Figure 1).

2.3.3 Cell recovery
After 2 and 3 days of CS and SCP, cell culture plates were

removed from the coolers and warmed at room temperature for
15 min. The mineral oil and preservation solution were aspirated
carefully, and cells were washed with 1 mL PBS at least thrice. PBS
was replaced with 500 µL of warm fresh C + Hmedia, and cells were
rewarmed in an incubator (37 C, 5% CO2) for 2 hours before
viability assays. For functionality assessments (albumin and urea
secretion), media in each well was replaced with 500 µL warm, fresh
C + H media. The cells are then incubated at 37 C, with 5% CO2 for
2 h in initial screening experiments and 24 h for the SCP and CS
comparison (refer to figure captions for details). Then, media was
collected from at least three wells for each experimental group and
stored at −80 C for further analyses. Throughout the SCP and CS, we
slowed down the metabolism of PRH monolayers for 2 and 3 days.
Subsequently, after preservation, we assessed the viability and
functionality and compared them with a control group that
underwent incubation at 37 C for 24 h (Figure 1, control group).
All groups were normalized to the control group, and their results
are presented in the figures as normalized cell viability, relative
albumin secretion, and urea excretion.

FIGURE 1
Schematic profile for supercooled preservation (SCP) and cold storage (CS). After 24 h of cell seeding, the cell culturemedia were removed from the
wells and replaced with the 3-OMG solution for 1 h (37°C, 5% CO2). After 1 h of incubation, preservation solution and immiscible surface sealing agent
(mineral oil) were gently added to each well, and plates were placed into temperature-controlled freezers at −2°C and −6°C for supercooled preservation.
The same procedure was followed for cold storage (+4°C) of PRH monolayers without 3-OMG loading and surface sealing step. After 2 days and
3 days of preservation, cell viability and functionality were evaluated for both SCP and CS.
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2.4 Assessment of cell viability, functionality,
and attachment quantification

2.4.1 Live dead staining and CCK-8 assay
After cell recovery, cell viability was determined using a standard

live/dead assay kit and CCK-8 assay. The fluorescent dye calcein AM
and ethidium homodimer were utilized to evaluate the cellular
esterase activity and membrane integrity of the cell membrane
through fluorescence imaging. The staining solution was
prepared by mixing 10 mL live cell imaging solution (1X), 5 µL
calcein AM reagent, 2 µL Hoechst 33342, and 20 µL ethidium
homodimer-1. Cell media were aspirated, and the wells were
washed with 1 mL of Live cell imaging solution (1X). 1 mL of
staining solution was added into wells, and the plate was incubated
at 37 C, 5% CO2 for 20 min. Then, the staining solution was replaced
with 1 mL of the cell imaging solution, and viability was evaluated
with the EVOS™M5000 microscope. Viable cells were identified by
the exclusion/minority of ethidium homodimer (red) and the
retention of calcein (green), whereas cells stained with ethidium
homodimer (red) were counted as non-viable. CCK-8 assay was also
utilized to quantify cell viability. For control groups, after 24 h of
initial cell seeding, 50 µL of CCK-8 was added into each well
containing 500 µL of C + H medium and incubated at 37 C, 5%
CO2 for an hour. For SCP samples, after cell recovery, 50 µL of CCK-
8 was added into each well containing 500 µL of fresh C + H
medium, and the plates were incubated at 37 C, 5% CO2 for an hour.
Later, 80 µL samples were collected from each well in a 96-well plate,
and the absorbance values were measured using a microplate reader
(Molecular Devices, SpectraMax® ID3) at 450 nm.

2.4.2 Albumin analysis
Albumin secretion of PRHmonolayers was determined using an

in-house enzyme-linked immunosorbent assay (ELISA) protocol.
Substrate buffer (5.1 g citric acid and 7.29 g sodium phosphate
dibasic in 1 L distilled water, pH 5), 8N sulfuric acid (22.2 mL
concentrated sulfuric acid in 77.8 mL distilled water), PBS-Tween
20 solution (0.05 v/v% Tween 20 in PBS) and OPD solution (mixing
one pill of OPD, 25 mL substrate buffer, and 10 µL of 30% H2O2)
were prepared before analysis. First, 96 well plates were coated with
100 µL of 50 μg/mL rat albumin. Then, the plate was sealed with a
plate sealer and incubated at 4 C overnight. Next, the plate was
washed four times with PBS-Tween 20 solution. 50 μL of samples or
standards were added to wells in triplicate. Following, 50 µL of
antibody solution (1:10000 dilution in PBS-Tween) was added to
each well. The plate was covered with an adhesive plate sealer and
incubated for 1.5 h at 37 C. After incubation, the plate was washed
with PBS-Tween 20 solution four times, and then 100 µL of OPD
solution was added to the wells at regular intervals. Finally, the
reaction was stopped by adding 50 µL 8N sulfuric acid (H2SO4) to
each well. The absorbances of each well were then measured using a
microplate reader (Molecular Devices, SpectraMax® ID3) at
490–650 nm. Standard curves were created for each plate, and
albumin concentrations were calculated correspondingly.

2.4.3 Urea analysis
Urea excretion of PRHmonolayers was analyzed using a Stanbio

Urea BUN assay kit following the protocol by the manufacturer.
Briefly, the urea assay reagent was prepared by mixing one part BUN

color reagent with two parts BUN acid reagent. 10 μL of samples or
standards were pipetted into a 96-well plate in triplicate. 150 μL urea
reagent was added to each well with a multichannel pipet. The plate
was sealed tightly and incubated at 60 C for 90 min. Then, the plate
was removed from the incubator and cooled down at room
temperature for 10 min. The absorbance values were read at
540 nm using a microplate reader (Molecular Devices,
SpectraMax® ID3).

2.4.4 DNA extraction
The DNA quantity of PRH monolayers in each well was

determined using a Quick-DNA Miniprep Kit (Zymo Research,
D3024) following the manufacturer’s protocol. Isolated DNA
quantity was used to normalize the viability and functionality
data for the supercooled preservation (SCP) and cold storage
(CS) comparison. This approach was used to mitigate potential
inconsistencies across wells (refer to figure captions for details).
Briefly, the cell culture mediumwas initially aspirated, and cells were
lysed by adding a Genomic Lysis Buffer in each well. Then, samples
were transferred to a Zymo-Spin™ IICR Column. After consecutive
washing and centrifuging steps with DNA-Pre-Wash Buffer and
g-DNA-Wash Buffer, respectively, DNA was eluted from the
samples via DNA Elution Buffer. The DNA concentrations of the
samples were measured using a nanodrop (Thermo Scientific,
NanoDrop One).

2.4.5 ImageJ analysis
The relative cell attachment area of PRH monolayers after 2 and

3 days of supercooled preservation (SCP) at −6 C in UW, UW + A,
HTS, and HTS + A was quantified using phase contrast images in
ImageJ. All images converted into an 8-bit format, cell-attached
areas were marked and measured using freehand selections. The
total cell attached area was then calculated. Each group’s attachment
area (UW, UW + A, HTS, HTS + A) was normalized to the cell
attachment area of fresh control groups.

2.5 Statistical analysis

Origin Pro 2021 Graphing & Analysis Software v.9.0.8.200
(Origin Lab, Northampton, Massachusetts) was used to analyze
data. All quantitative data were presented as the mean ± standard
error of the mean (SEM) from three different wells (n = 3) and three
different isolations (N = 3). The statistical significance of the results
was assessed using one-way ANOVA with Tukey multiple
comparisons. Statistical significance was defined as p < 0.05 for
all experiments.

3 Results

We examined two commercially available solutions for the
supercooled preservation of PRH monolayers with and without
supplements: 1) HTS-FRS (labeled as HTS herein) and 2) UW,
which have been used for the preservation of primary hepatocytes in
the previous reports (Adams et al., 1995; Arikura et al., 2002; Janssen
et al., 2003; Meng, 2003; Sosef et al., 2005; Mathew et al., 2006;
Ostrowska et al., 2009; Usta et al., 2013; Gramignoli et al., 2014;
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Jorns et al., 2014; Duret et al., 2015). As supplements, we used PEG
(35 kDa, 5% (w/v)) as an extracellular cell membrane stabilizer
(Oltean et al., 2012; Puts et al., 2015) and 3-OMG (200 mM) as a
nonmetabolizable intracellular cytoprotectant (Sugimachi et al.,
2006) either alone or together. All experiments were conducted
with PRH monolayers in 12 well plates.

We initially investigated the effect of preservation solution on
cell viability by conducting a) live/dead staining (Figures 2A,B,
Supplementary Figures S1, S2) and CCK-8 cell viability assay

(Figures 2C,D) following SCP of PRH monolayers for 2 and
3 days at −6°C. Staining images indicated that PRH monolayers
preserved in UW presented low cell viability on both days (Figures
2A,B). They presented 11% and 6% viabilities via CCK-8 assay after
2 and 3 days of SCP, respectively (Figures 2C,D). Although the cells
were confluent and fully attached to the well plates before SCP, PRH
monolayers preserved in UW could not maintain their monolayer
integrity and detached by −40% and −80%, respectively, from the
bottom of the wells after 2 and 3 days of SCP (Supplementary

FIGURE 2
Cell staining and normalized cell viability comparison after 2 and 3 days of SCP of PRHmonolayers (−6°C) with different preservation solutions. UW+
A: UW supplemented with 5% w/v polyethylene glycol (PEG) and 200 mM 3-O-methyl glucose (3-OMG). HTS + A: HTS supplemented with 5% w/v
polyethylene glycol and 200 mM 3-O-methyl glucose (3-OMG). PRH monolayers were treated with the 200 mM 3-OMG solution for an hour (37°C, 5%
CO2) before SCP. Cells were stained by calcein AM (live) and ethidium homodimer (dead) after (A) 2 and (B) 3 days of supercooled preservation.
Normalized cell viability after (C) 2 and (D) 3 days of SCP at −6°C. The CCK-8 cell viability assay was conducted 24 h after initial cell seeding, serving as
controls. All groups were normalized to the control group. The HTS + A group has significantly higher viability than UW, UW + A, and HTS on both days.
According to staining images (A, B) and cell viability results (C, D), the HTS + A group had significantly higher viability than UW, UW + A, and HTS on both
days. Cell viability was assessed via CCK-8 assay. The viability was determined after 2 h of rewarming in cell culture media (C + H) at 37°C. Three different
isolations were conducted, and three different wells from each isolation were stained (N = 3, n = 3). CCK-8 cell viability data are expressed as mean ± SD
(n = 3, N = 3). We use n.s.: non-significant, and ***≤ 0.001 by Tukey-method for significance comparisons between groups. Scale bar: 200 µm.
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Figures S3A–C). The addition of supplements (either PEG (shown
as UW + PEG), 3-OMG (shown as UW+3-OMG), or a combination
of PEG and 3-OMG in UW (shown as UW + A) enhanced cell
attachment and maintained monolayer integrity better than UW

alone. Nevertheless, the cell viability of PRH monolayers preserved
in UW + A was still low on days 2 and 3 (−15%) (Figures 2A–D).

In contrast, PRH monolayers preserved in HTS retained their
monolayer integrity better than UW after 2 and 3 days of SCP

FIGURE 3
Relative cell functionality comparison of 2 and 3 days SCP of PRHmonolayers (−6°C) at different preservation solutions. UW + A: UW supplemented
with 5% w/v polyethylene glycol (PEG) and 200 mM 3-O-methyl glucose (3-OMG). HTS + A: HTS supplemented with 5% w/v polyethylene glycol and
200 mM 3-O-methyl glucose (3-OMG). PRH monolayers were treated with the 200 mM 3-OMG solution for an hour (37°C, 5% CO2) before SCP. Urea
excretion of cells after (A) 2 and (B) 3 days of supercooled preservation at −6°C. The urea excretion in the HTS + A group is statistically higher than in
UW, UW + A, and HTS groups on days 2 and 3. Average urea excretion in the control group: 28.1 μg/mL/2 h/0.56 M cells. Albumin and urea samples were
collected and analyzed 24 h after SCP. All groups were normalized to the control group. Data are expressed as mean ± SD (n = 3, N = 3). We use
**≤ 0.01 and ***≤ 0.001 by Tukey-method for significance comparisons between groups.
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(Figures 2A,B, Supplementary Figures S2, S3). The addition of
supplements in HTS, either PEG (5%, 35 kDa) and 3-OMG
(200 mM) or a combination of both (shown as HTS + A)
enhanced preservation outcomes at −6°C after 2 days SCP
(Supplementary Figure S2). PEG and 3-OMG improved post-
storage confluency and viability compared to HTS alone, but
their effects on viability were higher when used together
(Supplementary Figures S3A, B). Moreover, the combination of
supplements provided enhanced cell attachment (over 90%) after
2 and 3 days of SCP (Supplementary Figure S3C). The viability of
PRHmonolayers preserved in HTS + A was around 63% after 3 days
of SCP (Figure 2D). Thus, our findings demonstrated that the
combination of supplements was necessary and had a significant
impact when used with HTS to improve cell viability at −6°C for
2 and 3 days of SCP. We also extended the SCP to 4 days, preserving
the PRH monolayers in base solutions with supplements (5% PEG
and 200mM 3-OMG) and evaluated the cell viability using live/dead
staining (Supplementary Figure S4). We observed that PRH
monolayers lost their viability when stored in UW + A and HTS
+ A after 4 days of SCP (Supplementary Figure S4).

Next, we assessed the functionality of PRH monolayers after
2 and 3 days of SCP at −6°C (Figures 3A,B). While PRH monolayers
preserved in UW, UW + A, and HTS, showed statistically similar
urea excretions, HTS + A stood out with significantly higher urea
excretions than other preservation solutions (Figures 3A,B) on both
days. Together with cell viability, SCP of PRH monolayers at −6°C
with HTS + A solution exhibited better viability and functionality
than other preservation solutions.

To compare supercooled preservation and cold storage of PRH
monolayers outcomes, we then moved to evaluate the differences
between UW, HTS, and HTS + A solutions for cold storage (4°C) of
PRH monolayers after 3 days of preservation and following 2 h of
rewarming in cell culture media (C + H) (Supplementary Figure
S5). Almost all the PRH monolayers preserved in UW were
detached from the wells after 2 and 3 days of CS
(Supplementary Figures S6A,B). UW supplemented with either
5% w/v PEG (shown as UW + PEG) and 200 mM 3-OMG (shown
as UW+3-OMG) and a combination of 5% w/v PEG and 200 mM
3-OMG (shown as UW + A) did not enhance monolayer integrity
even after 2 days of CS (Supplementary Figure S6C). PRH
monolayers preserved in HTS and HTS + A demonstrated
better viability than UW (Supplementary Figure S5A). We
observed that the addition of supplements (PEG and 3-OMG)
in HTS did not significantly affect the cell viability as indicated in
staining images and cell viability assay results (Supplementary
Figure S5); PRH monolayers preserved in HTS and HTS + A
showed almost similar viabilities (40% and 46%, respectively) after
3 days of preservation at +4 C (Supplementary Figure S5B).
Accordingly, we continued quantifying functionality using
better performing preservation solutions, HTS and HTS + A
(Supplementary Figure S7). Albumin secretion was statistically
similar in PRH monolayers preserved in HTS and HTS + A.
However, higher urea excretion was observed for PRH
monolayers preserved in HTS. Interestingly, while the addition
of supplements in HTS did not significantly affect the cell viability
after 3 days of cold storage, PRHmonolayers preserved in HTS + A
were able to maintain much better functionality than HTS
(Supplementary Figure S7).

Our results demonstrated that PRH monolayers preserved in
HTS + A outperformed other groups in terms of viability and
functionality both for SCP and CS. Thus, using the best-
performing preservation solution, HTS + A, we compared the
viability and functionality of PRH monolayers after 3 days of
SCP and CS (Figures 4, 5). We used three different groups -i.e.,
PRH monolayers preserved at a) −2°C, b) −6°C, and c) +4°C and
normalized our findings with the control group at 37°C. Based on the
staining images and CCK-8 cell viability assay, SPC of PRH
monolayers at both temperatures (−2°C and −6°C) resulted in
significantly higher cell viability compared to CS (+4°C) (Figures
4, 5A). PRH monolayers preserved at −2°C outperformed other
groups regarding functionality (Figures 5B,C). PRH monolayers
preserved in HTS + A at −2°C showed the highest albumin
secretion and urea excretion compared to other groups, while
PRH monolayers preserved at +4°C and −6°C were statistically
similar in albumin secretion and urea excretion.

4 Discussion

Mammalian cells are typically cryopreserved in suspension, but
cells are used as adherent monolayers for basic or preclinical
research (e.g., disease progression toxicity screening). This creates
a mismatch between the storage format, requiring significant time
and expertise for cell preparation. Cryopreservation of cells directly
in plates could streamline the process, allowing cells to be used after
preservation and facilitating high-throughput screening. However,
current methods have limitations to cryopreserve cells in the
monolayer format, which results in low cell recovery rates
(<30%) (Pless-Petig et al., 2018). Intracellular ice formation is a
particular challenge for the cryopreservation of cells in monolayers,
as cell-cell contacts promote the propagation of ice, contributing to
low recovery rates (Acker et al., 1999; Acker and McGann, 2000;
Acker et al., 2001; Higgins and Karlsson, 2013). Various methods
have been explored to reduce intracellular ice formation, yet it still
remains challenging (Bahari et al., 2018; Daily et al., 2020; Murray
et al., 2022).

In this study, we aimed to preserve PRH monolayers via SCP to
create “ready-to-use” monolayers for research. We tested the
differences between two commercially available solutions -UW
and HTS-FRS (labeled as HTS herein) for SCP. Previous reports
tested both solutions for cryopreservation, CS, and SCP of
hepatocyte suspensions (Adams et al., 1995; Arikura et al., 2002;
Janssen et al., 2003; Meng, 2003; Sosef et al., 2005; Mathew et al.,
2006; Ostrowska et al., 2009; Usta et al., 2013; Gramignoli et al.,
2014; Jorns et al., 2014; Duret et al., 2015). Additionally, we
supplemented the base solutions with PEG (35 kDa, 5% (w/v)) as
an extracellular cell membrane stabilizer (Oltean et al., 2012; Puts
et al., 2015) and 3-OMG (200 mM) as a nonmetabolizable
intracellular cytoprotectant (Sugimachi et al., 2006) either alone
or together. We investigated their effect on PRHmonolayer viability
and functionality after SCP. We then compared our results with
cold storage.

Hepatocytes constitute approximately 80% of the liver’s total
mass and are crucial for detoxification and activation of xenobiotics
and endogenous molecules (Gomez-Lechon et al., 2010; Olsavsky
Goyak et al., 2010). As such, the liver removes ammonia, a toxic
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byproduct of glutamine metabolism, by converting it into urea via
the urea cycle (Arias et al., 2020). Therefore, urea excretion serves as
a vital indicator of liver functionality. Accordingly, in our initial
screening experiments, we selected the best-performing solution
based on viability and urea excretion (Figures 2, 3). We included
albumin secretion in subsequent experiments.

HTS-FRS and UW solutions primarily aim to maintain
intracellular balance. Their composition varies in ionic
concentrations, impermeants, and the use of different buffers
(Ostrowska et al., 2009). The UW solution contains a high
concentration of potassium ions (K+), whereas the HTS-FRS
solution contains a high concentration of sodium ions (Na+)
(Serrar et al., 1999; Ostrowska et al., 2009; Pless-Petig et al.,
2012). Additionally, these two solutions have slightly different
osmotic pressures: −320 mOsm/L (Serralta et al., 2005) for UW

and −350 mOsm/L for HTS-FRS. Nevertheless, previous reports
showed that osmolarity had minimal effects on the cold storage
of PRHs (Pless-Petig et al., 2012). One notable distinction
among these solutions is the antioxidant composition, which
is crucial in reducing the levels of reactive oxygen species
generated during preservation. While the UW solution
contains glutathione and allopurinol, the HTS-FRS solution
contains vitamin E analogs “Trolox” and glutathione to
diminish damage and consequent initiation of apoptosis
effectively. It was shown that Trolox had a high iron-
chelating capacity (Li et al., 2011), which prevented damages
beyond 48 h (Ostrowska et al., 2009) and was identified as crucial
in facilitating the attachment ability of the PRH monolayers
after cold storage (Li et al., 2011; Pless-Petig et al., 2012). Unlike
HTS, PRH monolayers preserved in UW significantly detached

FIGURE 4
Cell staining comparison of SCP and CS of PRH monolayers in HTS + A at different temperatures. The staining of live cells and dead cells was
achieved by calcein AM and ethidium homodimer, respectively. The staining was performed following 2 h of rewarming in cell culture media (C + H) at
37°C. According to staining images, SCP groups at −2°C and −6°C represented higher viability compared to the CS group at +4°C. Three different isolations
were conducted, and three different wells from each isolation were stained (N = 3, n = 3). Scale bar: 200 µm.
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(40% and 80%) after 2 and 3 days of SCP respectively (Figures
2A,B, Supplementary Figure S3). Thus, cell detachment might
likely be due to the absence of the potent antioxidant -Trolox- in

UW. Another reason could be the inadequate anti-oxidant
additive (glutathione) content in UW solution for the
preservation of cells beyond 24 h, as it has a half-life of 1 day
(Evans et al., 1996).

To further improve cell viability and functionality, the
preservation solution can be supplemented with membrane
stabilizers, antioxidants, and energy substrates. PEG is known
for its positive effects on cell and organ preservation (Cheng
et al., 2012) and its molecular weight (MW) plays a significant
role. For example, low MW PEG (5 kDa) was observed to
accumulate in hepatocytes (Mack et al., 1991). MWs ranging
from 0.4 to 20 kDa were identified to activate JNK signaling,
which could exhibit either protective or harmful effects (Dutheil
et al., 2009). Moreover, PEG MWs ranging from 0.4 to 20 kDa
interacted with the membrane glycerophospholipids (Dutheil
et al., 2006). On the other hand, PEG with a MW of 35 kDa
has demonstrated several advantages in the preservation of cells
and organs, including antioxidant activity ability to prevent edema
and membrane stabilization and freeze protection in subzero
preservation conditions (Mack et al., 1991; Bhatnagar et al.,
2010; Oltean et al., 2012; Berendsen et al., 2014; Puts et al.,
2015). Despite its benefits, PEG’s inability to penetrate the cell
membrane differs from the natural mechanisms observed in
freeze-tolerant wood frogs, where freezing prompts a rapid
breakdown of liver glycogen to produce a large amount of
glucose. This glucose is then circulated throughout the frog’s
body, contributing to the preservation of structural integrity in
the frog’s cells and organs during freezing (Storey, 1987; King et al.,
1993; Storey and Mommsen, 1994). Based on this, some reports
investigated the effectiveness of a non-metabolizable glucose
derivative, 3-O-methyl glucose (3-OMG), for the preservation
of mammalian cells. Previous research demonstrated that 3-
OMG was transported into the cell via members of the GLUT
family and can accumulate within the cytoplasm at an appreciable
level (Longo et al., 1988). Once internalized, 3-OMG was
metabolically inert and nontoxic for mammalian cells (Longo
et al., 1988; Sugimachi et al., 2006). Studies on primary rat
hepatocytes loaded with 3-OMG (200 mM, a total osmolarity of
310 mOsm/kg) demonstrated high post-thaw viability and
preserved long-term hepatospecific functions (Sugimachi et al.,
2006). Moreover, studies also confirmed 3-OMG’s efficacy in SCP
of the liver (Sugimachi et al., 2006; Berendsen et al., 2014). Thus, to
improve SCP, we also incorporated a nontoxic, intracellular
protectant, 3-OMG, before and during preservation. Our results
indicated that the addition of supplements in UW, either alone or
in combination, improved post-storage confluency but did not
significantly enhance viability compared to UW alone.
(Supplementary Figure S1). Moreover, neither PEG nor 3-OMG
alone sufficiently increased the viability of PRH monolayers in
HTS for SCP (Supplementary Figure S2). However, when
combined in HTS, PEG and 3-OMG improved monolayer
viability compared to other SCP groups (Supplementary Figures
S1, S2) and CS (Supplementary Figure S5). This enhancement is
likely due to the necessity of intracellular and extracellular
protectants during SCP of PRH monolayers. Conversely, for CS
of PRH monolayers, the combination of supplements did not
significantly improve viability compared to HTS
(Supplementary Figure S5). We speculate that this stems from

FIGURE 5
Relative viability and functionality comparison of 3 days of SCP and
CS of PRH monolayers in HTS + A at different temperatures. (A) Cell
viability after 3 days of SCP and CS. The −2°C and −6°C groups had
significantly higher viability than cold storage (+4°C). The viability
was determined following 2 h of rewarming in cell culturemedia (C+H)
at 37°C, (B) albumin secretion of cells at different temperatures. The
albumin secretion in the −2°C group is statistically higher than +4°C
and −6°C. Average albumin secretion in the control group: 26.8 μg/mL/
24 h/0.56M cells, (C) urea excretion of cells after 3 days ofCS. The −2 °C
group had significantly higher urea excretion than the +4°C group. The
average urea excretion in the control group was 171.2 μg/mL/24 h/
0.56 M cells. PRH monolayers were treated with the 200 mM 3-OMG
solution for an hour (37°C, 5% CO2) before SCP. Albumin and urea
samples were collected and analyzed 24 h after SCP. All groups were
first normalized to the DNA content within each well, followed by
normalization to the control group. Data are expressed as mean ± SD
(n = 3, N = 3). We use n.s.: non-significant, *≤ 0.05, **≤ 0.01, and ***≤
0.001 by Tukey-method for significance comparisons between groups.
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differences in injury mechanisms at SCP and CS temperatures,
where we expect higher membrane related injuries for SCP (Usta
et al., 2013; Puts et al., 2015).

In terms of functional capacity, during SCP, although PRH
monolayers displayed comparable viabilities at both −2°C and −6°C,
a notable decrease in albumin secretion was observed at −6°C
(Figure 5B). This decrease could potentially be explained by the
increasing membrane injuries of PRH monolayers at decreasing
preservation temperatures (i.e., −6°C). The irreversible injuries to
cell membranes likely happen at these low temperatures (i.e., −6°C),
which would then manifest as loss of membrane integrity and,
subsequently, the direct lysis of the cells or a slow apoptosis response
eventually. This was despite our theoretical expectation that lower
temperatures would further slow metabolism (Liu et al., 2014;
Huang et al., 2018) and improve preservation outcomes.
Additionally, we observed the urea excretion exceeded 100% in
some cases during SCP and CA (Figure 5C, Supplementary Figure
S7B). This heightened excretion might be due to changes in cellular
metabolism (e.g., glutamine metabolism (Arias et al., 2020)) or
altered metabolic pathways, necessitating further investigation.
Among all SCP and CS groups, HTS + A at −2°C is the most
optimal choice regarding viability and functionality (i.e., albumin
secretion, Figure 5B). Our results indicated that achieving viable SCP
of PRH monolayers with minimal loss of function requires both
lowering the preservation temperature below CS (+4°C) and
supplementing the preservation solution with PEG and 3-OMG.

5 Conclusion and future outlook

In this study, we investigated the preservation of PRH
monolayers using SCP and compared our results with CS
regarding viability and functionality. We used two commercially
available solutions (UW and HTS-FRS) with and without
supplements (PEG and 3-OMG). Our findings demonstrated the
significance of maintaining a non-frozen, supercooled state to
extend the storage time of PRH monolayers. We demonstrated
that the choice of preservation solution is critical, and the addition of
PEG and 3-OMG to the HTS solution is essential for maintaining
higher viability and functionality of the PRH monolayers during
SCP. Specifically, our results indicated that HTS performed better
than UW for SCP and CS as a base preservation solution for PRH
monolayers. Furthermore, HTS supplemented with PEG and 3-
OMG (HTS + A) improved cell viability, attachment, and
functionality of PRH monolayers for SC. In contrast, these
supplements did not significantly affect the viability and
functional capacity of PRH monolayers in CS. Importantly,
although PRH monolayers showed almost similar viability
at −2°C and −6°C after 3 days of SCP, −2°C was the optimal
storage temperature for maintaining the highest functional
capacity (i.e., albumin secretion).

The enhanced cell viability and functionality of PRH
monolayers through supercooled preservation (SCP) is a
significant advance toward high-quality preservation of
engineered tissue models. Still, there is room for further
improvement and novel strategies—the use of novel antioxidants,
membrane stabilizers, and energy substrates before, during, and
after preservation—can be instrumental for such improvement.

Additionally, it is important to identify which family of genes
(e.g., extracellular matrix and adhesion molecule genes or
mitochondrial metabolism genes) are altered before and after
SCP at different times. Such deeper molecular understanding can
provide more profound insights into subzero non-freezing biology
and have far-reaching implications for improving preservation
outcomes for cells, tissues, and organs. Such advancements in
preservation technologies will transform cell-based therapies,
streamline in vitro drug screening studies, and enhance the
efficiency of organ transplantation logistics.
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