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Introduction: 3D Markerless motion capture technologies have advanced
significantly over the last few decades to overcome limitations of marker-
based systems, which require significant cost, time, and specialization. As
markerless motion capture technologies develop and mature, there is
increasing demand from the biomechanics community to provide kinematic
and kinetic data with similar levels of reliability and accuracy as current reference
standard marker-based 3D motion capture methods. The purpose of this study
was to evaluate how a novel markerless system trained with both hand-labeled
and synthetic data compares to lower extremity kinematic and kinetic
measurements from a reference marker-based system during the drop vertical
jump (DVJ) task.

Methods: Synchronized video data from multiple camera views and marker-
based data were simultaneously collected from 127 participants performing three
repetitions of the DVJ. Lower limb joint angles and joint moments were
calculated and compared between the markerless and marker-based systems.
Root mean squared error values and Pearson correlation coefficients were used
to quantify agreement between the systems.

Results: Root mean squared error values of lower limb joint angles and joint
moments were ≤ 9.61 degrees and ≤ 0.23 N×m/kg, respectively. Pearson
correlation values between markered and markerless systems were 0.67-0.98
hip, 0.45-0.99 knee and 0.06-0.99 ankle for joint kinematics. Likewise, Pearson
correlation values were 0.73-0.90 hip, 0.61-0.95 knee and 0.74-0.95 ankle for
joint kinetics.

Discussion: These results highlight the promising potential of markerless motion
capture, particularly for measures of hip, knee and ankle rotations. Further
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research is needed to evaluate the viability of markerless ankle measures in the
frontal plane to determine if differences in joint solvers are inducing unanticipated
error.
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1 Introduction

Analysis of complex human movements provides critical insight
across a broad range of health, disease, and performance-related
applications. To generate such insights, researchers and clinicians
frequently aim to associate both patterns of movement (kinematics),
as well as internal and external forces and torques applied to the
body (kinetics) with specific health-related conditions (Xu et al.,
2023; Xu et al., 2024). Traditionally, accurate and reliable
measurement of kinematics through marker-based motion
capture requires a dedicated laboratory space with advanced
instrumentation operated by highly trained individuals. This
process is exceedingly time-consuming and can significantly limit
use in routine clinical and functional athletic assessments.

To address these limitations, several markerless motion capture
technologies have emerged in recent years. Advancements in
computer vision and artificial intelligence, particularly in deep
learning-based systems, have shown promise in achieving
accuracy levels comparable to marker-based tracking (Kanko
et al., 2021; Nakano et al., 2020; Needham et al., 2022). These
neural network-based markerless systems rely on large sets of
labeled training images, typically obtained from publicly available
datasets such as Microsoft Common Objects in Context (COCO)
(Lin et al., 2014), Max Planck Institut Informatik (MPII) Human
Pose (Andriluka et al., 2014), and Leeds Sports (Johnson and
Everingham, 2010) or proprietary datasets (Kanko et al., 2021).
While these datasets have facilitated the rapid development of
human pose estimation models, the process of manual labeling is
labor-intensive and prone to human error. Additionally, many of
these datasets offer sparse keypoint labels that limit their utility for
comprehensive kinematic and kinetic analyses, particularly for
accurately capturing non-sagittal planes of movement (Needham
et al., 2022).

One method to overcome the limitations of manual labeling is
the use of optical motion capture systems to generate automated 3D
labels for training, as demonstrated in HumanEva (Sigal et al., 2010),
Human3.6M (Ionescu et al., 2014), and TotalCapture (Gilbert et al.,
2019). By projecting 3D labels onto 2D image frames, this technique
enables efficient and consistent labeling of occluded points and
additional body landmarks. However, motion capture-based
datasets often lack the environmental and subject diversity seen
in public datasets, which can hinder generalizability. Furthermore,
such datasets can suffer from inherent errors associated with marker
placement, soft tissue artifacts, and indirect measurement of joint
centers, impacting the fidelity of kinematic data.

In response to these challenges, synthetic datasets such as
AGORA (Patel et al., 2021), SURREAL (Varol et al., 2017), and
Infinite Form (Weitz et al., 2021) have been developed to provide
diverse, automatically labeled training images at a large scale. Studies
show that incorporating synthetic data into neural network training

can reduce error in both 2D and 3D joint position measurements.
However, the efficacy of synthetic datasets in reliably producing
biomechanics metrics, such as joint angles and joint moments,
remains unclear. It is uncertain whether markerless motion
capture trained on synthetic data can achieve the necessary
accuracy and fidelity across all three planes of motion to evaluate
complex dynamic movements.

The drop vertical jump (DVJ) is one example of a complex
dynamic movement that is widely used for assessing movement
quality, injury risk, and rehabilitation progress through 3D
kinematic and kinetic analysis. Numerous studies have
characterized the DVJ’s kinematic and kinetic profiles in various
populations (Bates et al., 2013; Ford et al., 2003; Ford et al., 2005;
Ford et al., 2009; Ford et al., 2010a; Ford et al., 2010B; Hewett et al.,
2004; Hewett et al., 2005a; Hewett et al., 2005b; Hewett et al., 2015;
Myer et al., 2005; Myer et al., 2013; Myer et al., 2014; Paterno et al.,
2010; Pedley et al., 2020). The task has shown high within-session
reliability for kinematic and kinetic measures at the hip, knee, and
ankle (interclass correlation coefficients (ICC): 0.78–0.99). Although
reliability decreases slightly over time in young athletes (ICCs
0.60–0.92 and 0.59–0.87, respectively) (Ford et al., 2007), the
DVJ remains a robust tool for comparative analysis of motion
capture methods. Its reliability and standardization have led to its
inclusion in lab-based motion capture and markerless clinical
prediction models aimed at assessing injury risk (Myer et al.,
2011). Therefore, the DVJ is an ideal movement task for
comparing marker-based and markerless motion capture systems.

Thus, the purpose of this study was to evaluate 3D kinematics
and kinetics calculated from a markerless motion capture and
compare to kinematics and kinetics obtained from a marker-
based system for the DVJ. We hypothesized that the markerless
system, trained with synthetic data, would produce 3D kinematic
and kinetic measures that closely align with marker-based data,
particularly in non-sagittal planes of motion, due to the enhanced
representation of these planes of motion provided by
synthetic datasets.

2 Materials and methods

2.1 Marker-based motion capture data
collection

This study includes a retrospective analysis of DVJ
biomechanics data collected as part of a large prospective study
meant to assess ACL injury risk (U01AR067997). Data were
collected from 127 adolescent female athletes [age
(average ±1 standard deviation) 15.56 ± 1.38 years (range:
12–18 years), height: 1.66 ± 0.07 m, weight: 64.40 ± 12.28 kg,
race/ethnicity: American Indian/Alaskan Native = 0, Asian = 5,
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Black/African American = 9, Hispanic = 20, Non-Hispanic White/
Caucasian = 78, Native Hawaiian/Other Pacific Islander = 1, More
than one race = 11, Declined to answer = 2]. All participants or their
legal guardians (if < under 18 years of age) provided informed
consent to participate in this study according to an International
Review Board protocol approved by Emory University
(STUDY00001770). Over the course of 5 weeks, athletes in this
sample participated in a large prospective study meant to assess ACL
injury risk, featuring the DVJ task. In this protocol, each participant
performed three repetitions of the DVJ. The DVJ consisted of the
subjects starting on top of a 31 cm box with their feet positioned
35 cm apart and arms held comfortably at their sides. They were
instructed to jump slightly from both feet as to drop directly down
off the box and immediately perform a maximum vertical jump
towards an overhead target, raising both arms as if they were
jumping for a basketball rebound (Ford et al., 2007).

Video-based markerless cameras and a marker-based motion
capture system (both Qualisys AB, Göteborg, Sweden) were used to
capture movement data. The marker-based system used a set of
55 retroreflective full-body markers to capture the DVJ movement
(DiCesare et al., 2019). Markers were placed on the thigh, shank,
foot, and upper arm forearm, with a focus on achieving high
accuracy in lower extremity tracking. Before performing any
movements, a static trial was captured with the participant in a
T-pose. The markerless setup used 12 Qualisys Miqus cameras
recording at a frequency of 120 Hz, while optical marker-based
motion capture was collected using 80-Qualisys cameras at 240 Hz.
Two force plates (AMTI; Advanced Medical Technology, Inc.,
Watertown, MA) were located in the center of the capture
volume and recorded ground reaction forces (GRF) and center of
pressure at 1,200 Hz. Qualisys Track Manager software (Qualisys
AB, Göteborg, Sweden) calibrated the global 3D reference
frame for the markerless video system and force plates such
that they coincided with the marker-based global 3D reference
frame and has built-in functionality to synchronize the data
streams in time.

2.2 ENABLE: training data and functionality

The ENABLE (Engine for Automatic Biomechanical
Evaluation) markerless biomechanics system (Southwest Research
Institute, San Antonio, TX, United States) was used to process video
data. ENABLE uses a convolutional neural network to predict the
location of 85 keypoints, each with specific and consistent
anatomical locations on the human body within each camera
view. The core neural network is trained on ~200,000 labeled
images from three broad training data classes: public datasets
(~50,000 images), auto-labeled images from an optical motion
capture marker-based system (~50,000 images), and a custom
synthetic dataset (~100,000 images). The public images consist of
select images from the COCO foot, MPII, and Leeds Sports datasets.
The MPII and Leeds Sports training sets are labeled with 15 points
including joints centers at the hip, knee, ankle, shoulder, elbow,
wrist, and head keypoints; the COCO foot dataset includes these as
well as additional foot keypoint labels (Cao et al., 2018).

The optical training dataset obtained during marker-based
motion capture data collection consists of images of individuals

performing various functional and sports-related movements.
Images are labeled using a patented approach that identifies
85 3D anatomical locations based on model pose estimations
which are reprojected into a 2D space (Templin et al., 2023). The
85 keypoints consist of the same 25 keypoints used in the COCO
dataset plus additional keypoints throughout the body to ensure that
each of the following body segments has at least three attached to
them: head, torso, upper arms, forearms, hands, thighs, shanks, and
feet. This allowed for full characterization of six degrees of freedom
for each segment.

A custom synthetic dataset with 100,000 images generated by
Infinity AI, a synthetic data generation company, is also included in
the training dataset, following the approach in the previous work
(Weitz et al., 2021). In summary, this dataset consists of synthetic
avatars performing various functional movements with varying
body size, shape, clothing, skin complexion, camera position,
appearance, lighting conditions, and background. Each synthetic
image contains an avatar based on the SMPL-X body model
(Pavlakos et al., 2019). Panoramas with varied lighting conditions
are used as image backgrounds to reflect varying conditions
observed in real-world settings. Each of the >10,000 vertices of
the SMPL-X model is mapped to a 2D pixel location on the image,
and the 85 vertices that most closely correspond to 85-point virtual
marker set described above are used as training labels (Figure 1).

During training, the CNN uses each input image to produce a
collection of probability maps which correspond to each anatomical
landmark and represent the likelihood the landmark is present in
any given pixel of the input image. The architecture of the network
utilizes multiple concurrent branches at different resolutions that
connect at several stages to capture fine-grain and coarse-grain
features. This allows the network to correctly locate smaller
landmarks such as within the hand while preserving its ability to
represent larger relationships such as the ones between limbs. A
mean-squared error cost function is used to measure error
between the output of the neural network and the ground truth
landmark locations to update the network weights. The neural
network was trained until the performance on the validation
set converged.

Based on the weights established during training, ENABLE
identifies the highest probability pixel for each landmark in each
frame of the input synchronized videos. Following the 2D detection,
a triangulation procedure was used to estimate the 3D position of each
anatomical location in each frame. In this process, calibrated camera
positions are used to create a set of rays from each camera through each
predicted of the 2D keypoint locations. A random sample consensus
approach (Fischler and Bolles, 1981) is used to determine a set of inlier
and outlier rays. Subsequently, the estimated 3D point is determined to
be the point closest to the set of all lines using a least squares approach.
The 3D points are then used to scale and generate kinematics for a
musculoskeletal model in OpenSim [version 4.4, (Delp et al., 2007),].
The Rajagopal model (Rajagopal et al., 2016) was modified such that it
had a total of 14 degrees of freedom in the lower body: 3 hip, 3 knee, and
2 ankles. Ankle subtalar angle includes both transverse and frontal
plane motion but for reporting purposes are included in the ab/
adduction angles. This model is scaled to match each participant’s
anthropometry by using median segment lengths of each segment
during each trial as determined by keypoint locations. After themodel is
scaled, the pose of the model in each frame is globally optimized using
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inverse kinematics via the Python Application Programing Interface
with the OpenSim Inverse Kinematics (IK) tool.

2.3 Marker-based and markerless motion
capture processing

All marker-based motion capture data were quality controlled,
and any gaps in marker tracking were corrected. Next force plate
data were filtered with a 4th-order bidirectional Butterworth filter
with a 50 Hz low-pass cutoff frequency for further processing
(Roewer et al., 2014). Marker and markerless data were filtered
with a 4th-order bidirectional Butterworth filter with a 6 Hz low-
pass cutoff frequency in Python (version 3.7). Filtered data were
used as input for the IK tool in the scaled model as described above.
The kinematic output from both markerless and marker-based
systems was used as input along with the GRF collected from
force plates to calculate joint moments using the OpenSim
Inverse Dynamics (ID) Tool. Each trial for both systems was
normalized to 101 points during the stance phase of the
DVJ. The beginning of the stance phase was determined by the
first timepoint when either force plate recorded a measurement
of >10 N, and the end of the stance phase was determined by the first
timepoint after the starting point when both force plates recorded a
measurement of <10 N. The 10 N threshold was used to identify the
start and end of the stance phase because it represents a point where
the GRF becomes minimal.

2.4 Statistical analysis

To evaluate performance of the ENABLE markerless system, IK
and ID results for the hip, knee, and ankle were compared to IK and

ID results from the marker-based system. Comparisons were made
using root mean squared error (RMSE), normalized root mean
squared error (NRMSE), and Pearson correlations to quantify the
average difference, relative difference and similarity of waveform
respectively across the entire time series for each repetition of the
DVJ. Pearson correlation strength was defined as the following:
0–0.4 indicates a weak positive correlation, 0.4–0.7 indicates a
moderate positive correlation, 0.7 to 0.9 indicates a strong
positive correlation, and 0.9–1.0 indicates a very strong
correlation (Schober et al., 2018). NRMSE values were calculated
for each DOF by normalizing the calculated RMSE by the range of
motion of that DOF during the DVJ. For the kinematic RMSE
evaluation, a “good” fit was defined as an RMSE value ≤5° (Song
et al., 2023), a “moderate” fit was defined as an RMSE value that
was ≤10°, and a “poor” fit was defined as an RMSE value that
was >10°. For the kinetic comparison, without an established
consensus in the scientific community, “good” fit was defined as
an RMSE value ≤0.15 N·m/kg degrees, a “moderate” fit was defined
as an RMSE value that was ≤0.30 N·m/kg, and a “poor” fit was
defined as an RMSE value that was >0.30 N·m/kg degrees.

3 Results

3.1 Kinematics

Markerless kinematics demonstrated good to moderate
agreement with marker-derived data (Figure 2), with average
RMSE values of 2.52–9.21° for hip, knee, and ankle angles
(Table 1). Sagittal plane hip, knee, and ankle values had good to
moderate fits with RMSE (≤6.93°) and NRMSE (≤0.11) and very
strong correlations (≥0.97). Frontal and transverse plane knee and
hip kinematics also demonstrated good to moderate fits with RMSE

FIGURE 1
Example image from synthetic dataset.
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FIGURE 2
Mean ± 1 standard deviation of the time history trajectories of lower-limb DVJ kinematics measured by the marker-based (black) or markerless
(orange) system. Ankle Ab/Adduction is the subtalar angle which includes both transverse and frontal plane motion.

TABLE 1 RMSE ±1 standard deviation and Pearson correlation ±1 standard deviation of markerless relative to marker-based system for lower limb DVJ
kinematics.

Joint Degree of freedom Kinematics

RMSE (std)
degrees

NRMSE (std) Pearson (std)

Hip Flex/Ext 6.93 (0.27) 0.11 (0.05) 0.98 (0.02)

Ad/Ab 2.52 (1.2) 0.34 (0.22) 0.69 (0.34)

Int/Ext 5.82 (2.45) 0.40 (0.28) 0.67 (0.29)

Knee Flex/Ext 5.55 (1.55) 0.08 (0.03) 0.99 (0.01)

Ad/Ab 4.75 (2.15) 0.54 (0.36) 0.45 (0.43)

Int/Ext 5.86 (1.90) 0.66 (0.65) 0.59 (0.37)

Ankle Flex/Ext 5.77 (1.79) 0.11 (0.03) 0.97 (0.01)

Subtalar 9.61 (4.72) 0.99 (0.66) 0.06 (0.48)
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FIGURE 3
Mean ± 1 standard deviation of the time history trajectories of lower limb DVJ kinetics measured by themarker-based (black) or markerless (orange)
system. Ankle Ab/Adduction is the subtalar angle which includes both transverse and frontal plane motion.

TABLE 2 RMSE ±1 standard deviation and Pearson correlation ±1 standard deviation of markerless relative to marker-based system for lower limb DVJ
kinetics.

Joint Degree of freedom Kinetics

RMSE (std)
N·m/kg

NRMSE (std) Pearson (std)

Hip Flex/Ext 0.23 (0.07) 0.14 (0.04) 0.90 (0.07)

Ad/Ab 0.17 (0.11) 0.23 (0.17) 0.73 (0.22)

Int/Ext 0.08 (0.07) 0.30 (0.29) 0.78 (0.21)

Knee Flex/Ext 0.14 (0.05) 0.09 (0.03) 0.95 (0.02)

Ad/Ab 0.16 (0.13) 0.42 (0.38) 0.61 (0.32)

Int/Ext 0.11 (0.09) 0.36 (0.31) 0.71 (0.33)

Ankle Flex/Ext 0.14 (0.08) 0.11 (0.07) 0.95 (0.04)

Subtalar 0.15 (0.14) 0.65 (0.6) 0.74 (0.28)
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values (≤5.68°), NRMSE values (≤0.66), and moderate correlations
(0.45–0.69). The ankle subtalar angle had a moderate RMSE (9.61),
the highest NRMSE (0.99), and the lowest correlation value (0.06).

3.2 Kinetics

Very strong to moderate agreement was observed for hip, knee,
and ankle moments (Figure 3). Very strong correlations (≥0.90)
were observed for the sagittal plane hip, knee, and ankle moments
(Table 2). Strong correlations (0.71–0.78) were observed in the
transverse and frontal plane hip, transverse plane knee, and
subtalar ankle joint moments. While the frontal plane knee
moment exhibited a moderate correlation (0.61). Moderate
agreement with respect to RMSE was observed in hip sagittal
(0.23 N·m/kg), hip frontal (0.17 N·m/kg), and knee frontal
(0.16 N·m/kg) plane moments. All other degrees of freedom
showed good agreement (RMSE values ≤0.15 N·m/kg).

4 Discussion

The present study is the first peer-reviewed evaluation of the
ENABLE markerless motion capture system compared to a marker-
based system. ENABLE has several distinct characteristics relative to
other markerless systems. Firstly, the dataset used to train the
underlying neural network includes 85 keypoints, with at least
three keypoints on each body segment, which is essential for
non-sagittal plane tracking. Furthermore, roughly half of the
training set consists of synthetic data which be generated quickly
and without human intervention, making it highly efficient and
scalable. Finally, ENABLE uses musculoskeletal modeling to
biomechanically constrain the kinematic output to be
physiologically reasonable.

The purpose of the study was to assess the 3D kinematics and
derived kinetics from ENABLE relative to a traditional marker-
based system. Strong correlations were observed in hip (flexion/
extension, ab/adduction, and internal external rotation planes), knee
(flexion/extension and internal external rotation), and ankle
(plantar/dorsiflexion and subtalar angle) joint kinetics and hip,
knee, and ankle sagittal plane kinematics. While moderate
associations were observed with knee ab/adduction and internal
rotation angles and only subtalar ankle angle had a weak association.

The 127 participants analyzed in this study represent one of the
largest cohorts used to estimate performance of a markerless system
compared to a marker-based system. Previous studies have focused
on cohorts of ≤30 participants (Ito et al., 2022; Kanko et al., 2021;
Nakano et al., 2020; Needham et al., 2022; Strutzenberger et al., 2021;
Uhlrich et al., 2023) yet a larger sample size considerably improves
generalizability of the results. In agreement with previous research
(Song et al., 2023), sagittal plane joint angles showed the highest
correlation values. However, our hip flexion results were more
accurate than results from previous studies reporting mean
difference of >22° for squats (Ito et al., 2022) and >16° for
countermovement jumps (Strutzenberger et al., 2021). One
possible explanation for this finding is that the markerless system
identifies points on the pelvis, which many markerless systems are
unable to track due to the sparse labels of many commonly used

datasets. Consistently, one study (Uhlrich et al., 2023) showed that
adding additional anatomical markers (including pelvis points) to a
markerless system reduces hip flexion RMSE values by an average of
8.5°. The difference between the present study and Uhlrich et al. is
that all our landmarks were inferred directly from the video, while
Ulrich et al. created a separate neural network to identify additional
landmarks exclusively from sparse keypoint labels.

While RMSE values in the frontal and transverse plane at the
knee and ankle were low for the markerless system, these degrees of
freedom still exhibited the greatest discrepancy in correlation and
NRMSE values with the marker-based data. One potential cause of
the decreased accuracy in non-sagittal planes of motion at the knee
and ankle is error propagation to distal segments of the kinematic
tree (Needham et al., 2022). Since the IK solver used in OpenSim is a
global optimization procedure, error observed in the joint may be
compounded by error in joints that are more proximal to the root
joint (pelvis). This helps explain why NRMSE values increased and
Pearson correlations decreased in the non-sagittal plane for joints
further down the kinematic chain from the pelvis (i.e., hip
correlations > knee correlations > ankle correlations). In
addition, including synthetic data into the training pipeline offers
many advantages (cost-effective, diverse, scalable, and automatic
generation of labeled images), however synthetic data may not
capture all the nuances, lighting conditions, textures, and
environmental variables present in real-world images. For
example, while these data may effectively capture variances in
skin tone, differences in lighting can impact how light reflects off
each individual’s skin, affecting image segmentation contouring
(Sigal et al., 2004). It is possible that this combined variation
from lighting and skin tone could alter accuracy of landmark
identification and requires future study. Due to the retrospective
nature of this study, the lighting conditions, movement type,
background, and clothing were not systematically varied. In
addition, the racial and ethnicity data collected did not include
information about light or darkness of skin tone and, therefore, may
not provide enough information to verify that skin tone differences
do not impact data accuracy. Our cohort included only adolescent
female athletes, so the performance of the current model for other
individuals remains unknown. Future studies should investigate the
performance of this markerless systems across a wider range of ages,
body morphologies, movements, and background environments. A
key limitation to the kinetic analysis in this study is the GRF were
measured through lab-based force plate equipment. Consequently,
despite the portable nature of the kinematic analysis, the kinetic
analysis described in this study is tied to the lab. However, novel
portable 3D force plates have shown excellent agreement with lab-
based equipment (Miller et al., 2023), and alternatively neural
network-based GRF predictions from motion capture data
(Alcantara et al., 2022; Johnson et al., 2018; Louis et al., 2022)
have also shown promising potential to remove the need for lab-
based force sensing equipment.

While this study compared the markerless system to the
standard of a reference marker-based system, there are well-
documented limitations of marker-based systems that can result
in erroneous measurements. These include skin motion artifact,
marker placement error, and challenges associated with estimating
joint centers from markers placed externally to the body (Benoit
et al., 2015; Benoit et al., 2006; Cappozzo et al., 1996; Gorton et al.,
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2009; Kessler et al., 2019; Leardini et al., 2005; Lucchetti et al., 1998;
Miranda et al., 2011; Miranda et al., 2013; Peters et al., 2010;
Reinschmidt et al., 1997). In addition, marker-based systems also
require substantial manual effort to post-process and gap-fill
missing marker trajectories. Analogous manual editing of the
markerless points was not used to augment the ENABLE data
processing, but in the future could be an added feature for users
who are experienced with such data post-processing and would
like to further improve accuracy. Despite the limitations of
marker-based tracking, it is considered the standard to acquire
accurate non-invasive kinematic information in the biomechanics
community due to the difficultly of collecting data using more
accurate methods such as biplane fluoroscopy or the use of bone
pins. These methods are often discouraged from use because
biplane fluoroscopy uses excessive radiation to capture full-body
motion and bone pins are invasive and may impede motion due to
discomfort. Our hope is that the results of this study may help to
introduce the biomechanics community to markerless tracking
methodologies, which have a desirable ease of use at the time of
data capture.

In this study we found that the 3D lower limb joint moments
derived from the markerless system exhibited similar trends and
magnitudes as moments derived from the marker-based system for a
DVJ. A few previous studies have estimated joint moments from
markerless motion capture data, but 3D analysis of joint kinetics at
the hip, knee, and ankle has only been conducted during running
(Kanko et al., 2024). Two additional studies investigated joint
kinetics with input from markerless motion capture but did not
report findings for non-sagittal knee and ankle angles (Song et al.,
2023; Tang et al., 2022). Thus, to our knowledge the present study is
the first to compare 3D kinetics derived from markerless and
marker-based system for a landing and jumping task. In
agreement with previous studies, we found that sagittal plane hip,
knee, and ankle moments were strongly correlated between
markerless and marker-based inputs. In each non-sagittal degree
of freedom, the joint moment correlation was greater than the
correlation observed for the corresponding joint angle. Despite
the trend observed with non-sagittal kinematic data, non-sagittal
plane correlations did not show a reduction with increasingly distal
joints but instead showed moderate to strong correlations. This
finding demonstrates that despite low to moderate kinematic
correlations for some joints, the joint moments required to
produce the respective motions exhibited similar trends. The two
greatest differences observed between correlation values of
kinematics relative to kinetics were at the knee adduction joint
(kinematic correlation = 0.45, kinetic correlation = 0.61, delta =
0.16) and the ankle subtalar joint (kinematic correlation = 0.06,
kinetic correlation = 0.74, delta = 0.68).

In conclusion, markerless motion capture systems have the
potential to vastly expand the impact of 3D motion analysis used
across the many patient and athlete populations. This study provides
additional insight into the utility of using a markerless system to
measure lower extremity kinematics and kinetics. Further
verification of markerless-derived biomechanical data will help
demonstrate validity and practicality in translation settings.
Development and validation of markerless systems will lead to
more ubiquitous, routine quantification of biomechanics in non-
laboratory settings (e.g., clinical environments, rehabilitation

settings). In addition, investigation into the benefit of using
synthetic training data in other environments to further improve
markerless motion capture system performance is warranted.
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