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Introduction: Despite the growing body of evidence highlighting the individuality
in movement techniques, predominant models of motor learning, particularly
during the acquisition phase, continue to emphasise generalised, person-
independent approaches. Biomechanical studies, coupled with machine
learning approaches, have demonstrated the uniqueness of movement
techniques exhibited by individuals. However, this evidence predominantly
pertains to already stabilised movement techniques, particularly evident in
cyclic daily activities such as walking, running, or cycling, as well as in expert-
level sports movements. This study aims to evaluate the hypothesis of
individuality in whole-body movements necessitating intricate coordination
and strength among novice participants at the very beginning of an
acquisition phase.

Methods: In a within-subject design, sixteen highly active male participants
(mean age: 23.1 ± 2.1 years), all absolute novices in the learning task (i.e., power
snatch of Olympic weightlifting), participated in randomised snatch learning
bouts. These bouts comprised 36 trials across various motor learning models:
differential learning contextual interference (serial, sCIL; and blocked, bCIL), and
repetitive learning. Kinematic and kinetic data were collected from three
standardised snatch trials performed following each motor learning model
bout. The time-continuous data were input to a linear Support Vector
Machine (SVM). We conducted analyses on two classification tasks: participant
and motor learning model.

Results: The Support Vector Machine classification revealed a notably superior
participant classification compared to the motor learning model classification,
with an averaged prediction accuracy of 78% (in average ≈35 out of 45 test trials
across the folds) versus 27.3% (in average ≈9 out of 36 test trials across the folds).
In specific fold and input combinations, accuracies of 91% versus 38% were
respectively achieved.

Discussion: Methodically, the crucial role of selecting appropriate data pre-
processingmethods and identifying the optimal combinations of SVM data inputs
is discussed in the context of future research. Our findings provide initial support
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for a dominance of individuality over motor learning models in movement
techniques during the early phase of acquisition in Olympic weightlifting power
snatch.
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strength, coordination, barbell

1 Introduction

Motor learning encompasses the acquisition, stabilisation, and
refinement of movement techniques. Historically, prevailing
motor learning models have emerged from three primary
research domains, each with a different focus: training science
(refinement), sports pedagogy (acquisition), and sports
psychology (stabilisation) (Newell, 1990; Starkes and Ericsson,
2003; Naul and Scheuer, 2020; Schöllhorn et al., 2022). While
research approaches in training science and sports pedagogy are
typically idiographic and learner-centred, those in sports
psychology are often characterised as nomothetic and group-
oriented. The stronger focus on the individual learner on the
part of sports pedagogy was reflected in practice, among other
things, in the development of methodical exercise and game series
(Gaulhofer and Streicher, 1924; Mester, 1959; Mahlo, 1965), in
which the initial difficulty level of the exercise or game is
individually adapted to the learner’s ability level from the
outset, but nonetheless with an orientation towards a person-
independent role model at the end of the learning process. In
training science individuality was ascribed a specific role within
the framework of the “principle of individuality” Matveev (1966).
The principle states that every training intervention must take into
account the specific needs and abilities of the individuals for
whom it is designed, regardless of the motor learning and/or
training phase. Since training in sports is not only aimed at
endurance, strength, agility, or tactics, but also at movement
techniques and coordination, it has a large overlap with the
research subject of motor learning of sports movements. For
the acquisition process of a movement technique most
intriguing, the “principle of individuality” was modified by
Harre (1975) to the “principle of increasing individualisation”
that was closely related with the “principle of increasing
specialisation” (Schöllhorn et al., 2006). Moreover, its
importances was reduced by shifting it from the first to eighth
position. This principle constrained the individuality of training
measures to the last end of the training process, to the highest
performance level. This meant that up to a certain performance
level all athletes had to exercise the same. Only specialised and
high-performance athletes received individual training contents
and schedules. While the “principle of individuality” assumes the
uniqueness of an athlete as fundamental and independent of time,
the “principle of increasing individualisation” considers the
uniqueness as an add on to a general technique that only
develops at the highest level of performance. Both training
principles are associated with different practical consequences.
Although individuality in novices and advanced athletes was still
lacking, the necessity of individuality at the absolute top level had
long been suspected in the form of these preset training principles.

In comparison, prevailing motor learning models offered by
sport psychology such as repetitive learning (RL), variability of
practice learning (VPL), and contextual interference learning
(CIL) have operated for long under the assumption of a widely
person-independent standardised movement technique. The RL,
VPL, and CIL models emphasise the importance of imitating a
generalised technique role model and engaging in correct imitations
through repeated executions to improve the learner’s proficiency in
performing a specific motor skill with greater accuracy and precision
(Schöllhorn et al., 2022).

A growing number of biomechanical studies indicate the
uniqueness of individual movement techniques (i.e., which
indicates that the characteristic should not be the same for any
two persons) calling into question the orientation and imitation
towards general technique role models in motor learning (Bauer and
Schöllhorn, 1997; Schöllhorn and Bauer, 1997; Horst et al., 2017b;
Horst et al., 2023b). Aiming at coping with the orientation towards
general technique role models, the differential learning (DL) model
suggests that motor learning should avoid the imitation of such
general role models throughout the learning process (i.e., in
acquisition, stabilisation, and refinement phase). Instead, DL
advocates embracing a diverse range of executed variants of
movement techniques during motor learning and variations from
one execution to another (Schöllhorn et al., 2006; Schöllhorn et al.,
2009). The variation of movement technique from execution to
execution should be tailored to the learner’s individual and
situational characteristics within an adaptive stochastic resonance
process throughout a learning intervention (Schöllhorn, 2000;
Schöllhorn and Horst, 2019; Apidogo et al., 2021; Apidogo et al.,
2022; Schöllhorn et al., 2022; Apidogo et al., 2023).

From a general perspective, motor learning interventions can be
regarded as external manipulations of movement techniques. This
prompts inquiry into the degree to which such interventions
influence the movement techniques of individuals, raising
questions about the persistence of individuality in movement
techniques in the presence of internal or external perturbations.

The persistence of individual movement techniques over time
(i.e., which means that the characteristic should be invariant with
time) was first indicated through machine learning-based analysis of
biomechanical data of movement techniques of world-class male
discus throwers for 1 year (Bauer and Schöllhorn, 1997) and world-
class female javelin throwers over a period of 5–6 years (Schöllhorn
and Bauer, 1998). Studies on running (Schöllhorn and Bauer,
1998a), sprinting (Schöllhorn et al., 2001), and walking (Horst
et al., 2016; Horst et al., 2017b) indicated similar findings. The
persistence of individuality against internal and external
perturbations was also investigated. For instance, emotions
(Janssen et al., 2008), fatigue (Janssen et al., 2011; Burdack et al.,
2020), music (Janssen et al., 2008), shoe heel heights (Schöllhorn
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et al., 2002a), orthopaedic insoles (Schöllhorn et al., 2002b), or
running shoes (Horst et al., 2023a) supported the predominance of
individuality within a single movement technique. Two recent
studies address individuality across multiple movement
techniques indicated that movement techniques overlap
individuality in sport techniques, e.g., shot put, discus, and
javelin throwing (Horst et al., 2020) and in everyday movements,
e.g., walking, running, and handwriting (Burdack et al., 2023).

Studies on individuality so far predominantly focused on
samples that either had stabilised the respective movements
through a corresponding number of repetitions (e.g., gait) (Horst
et al., 2016; Horst et al., 2017b; Horst et al., 2023b), showed extreme
performances close to an individual’s maximal potential (e.g., javelin
throwing) (Schöllhorn Bauer, 1998a)), or both (e.g., extreme shoe
heel heights) (Schöllhorn et al., 2002a). Correspondingly the subjects
were already in the stabilisation or refinement phase of a learning
process or reached a performance limit where individual
characteristics become more expressed (Schöllhorn et al., 2002a).
The hypothesis of individuality is therefore supported at a higher
and highest automatisation level in movement techniques in high-
performance sports (i.e., world-class athletes) or movement
techniques of daily life (e.g., walking), but not for novices. The
observed individuality of movement techniques (after the
acquisition phase) can be the result of three different conditions
(Horst et al., 2020). First, despite identical initial movement
techniques, the individuality of movement techniques is the
result of varying persistence to motor learning interventions.
Second, individuality of movement techniques exists before the
acquisition phase and is only minimally influenced by motor
learning interventions. Third, both individuality of movement
techniques exists before the acquisition phase and varying
persistence to motor learning interventions (Horst et al., 2020).

Each of the three conditions is based on the initial state of
individuality or non-individuality of movement techniques prior to
the acquisition phase, which has so far been largely unexplored. To
disentangle the influence of external interventions through motor
learning models and individual movement techniques, it is crucial to
assess individual movement techniques not only at the end of a
stabilisation process but also in the early stages of the acquisition
process. Furthermore, the majority of the available studies have
primarily evaluated the individuality hypothesis in movement
techniques that were dominated by coordination with limited
emphasis on a possible interaction of strength and coordination
like in whole-body weightlifting movement techniques. Moreover,
the risk of injury increases particularly when lifting weights
dynamically, as force peaks can occur in directions that
beginners are unable to compensate for, especially when they
deviate significantly from their individual strength patterns.
Therefore, identifying individual movement techniques among
novice weightlifters is beneficial for developing healthy (Kumaran
et al., 2022) and effective (Rushall, 1979; Bompa, 1983; Rushall and
Pyke, 1990) training and learning interventions. This area of
research has the potential to revolutionize training methods for
novice weightlifters, making a significant contribution to sports
science and biomechanics. To build upon this understanding, this
study aims to identify eventual individual weightlifting techniques
and evaluate the persistence of the individual weightlifting
techniques across four single bouts, each of four different motor

learning models, during the early acquisition phase in absolute
novices. Specifically, time-continuous biomechanical data from
three standardised snatch executions after the learning bout will
be subject to machine learning classification techniques,
distinguishing between “individual” and “motor-learning” short-
term effects, for the classification and prediction of snatch
movement technique. We hypothesise that the employed
machine learning method (i.e., support vector machine) will
achieve a higher prediction accuracy in the participant-based
classification, thereby providing initial empirical support for the
individuality hypothesis in the context of single bouts of various
motor learning models applied to weightlifting acquisition in
absolute novices.

2 Materials and methods

2.1 Participants

Sixteen highly active male participants (age: 23.1 ± 2.1 years,
body mass index: 24.1 ± 2.2 kg/m2), were recruited for this study.
None of the participants had prior experience with the to be learned
skill, the power snatch. After the protocol, potential risks, and study
benefits were presented, participants provided written consent to
participate in the study. The inclusion criteria for participants were
as follows: aged between 18 and 29 years, male, and at least 2 years of
experience in fitness and/or CrossFit club (i.e., including at least
6 months of performing barbell-based exercises). Participants with
prior involvement in Olympic weightlifting, current or past
neurological and/or cardiovascular issues, eye disorders,
psychiatric conditions, orthopaedic ailments, muscular disorders,
and those taking medications that could impact the cardiovascular
system were excluded based on the criteria. Furthermore, all
participants had no chronic diseases or sleep disturbances.
During the experimental period, participants reported
experiencing good to very good sleep quality, alongside
maintaining a very active lifestyle. This was demonstrated by an
average of more than 2 h of physical activity per weekday, which
included walking as well as moderate- and vigorous-intensity
activities. Participants were not engaged in napping during the
experimental period. The study was conducted according to the
Declaration of Helsinki and approved by the local ethics committee
of Faculty 02: Social Sciences, Media, and Sport at Johannes
Gutenberg-University of Mainz. Written informed consent was
obtained from all participants who were naive to the purpose of
the study and were coded with numbers for the anonymity of
personal data.

2.2 Experimental design

In a randomised within-subject design, each of the
16 participants performed single bouts of four different motor
learning models, namely, RL, CIL in its blocked (bCIL), which
corresponds to VPL, and serial form (sCIL), and DL. After a
familiarisation session, participants visited the laboratory on four
separate occasions, with at least a 1-week washout period in between.
During each test session, a single motor learning model was
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implemented, all in a randomised order, involving a single training
bout. Each bout comprised 36 trials of power-snatch derivatives,
according to one of the four tested motor learning models with a 3-
min standardised duration (Ammar et al., 2024a; Ammar et al.,
2025). Each training bout utilised the same empty barbell weighing
10 kg. All testing sessions were conducted in the afternoon, as
previously suggested by Ammar et al. (2015a); Ammar et al. (2015b);
Ammar et al. (2016), to minimise the effect of diurnal biological
variations (Ammar et al., 2017; Ammar et al., 2018a). The
measurements were conducted in a laboratory setting, with
standardised and minimised changes in brightness and
temperature. 5 min following each bout, three 20 kg barbell
power snatch trials were performed, without any instruction, and
barbell kinematics and kinetics data were collected. Participants
were instructed to wear identical shoes during all test sessions.

2.3 Motor learning models

The training protocol for the RL model comprised 36 sets of
power snatch trials. In the case of the two CIL models (bCIL and
sCIL), the training protocols incorporated not only the power
snatch but also two variations: the high pull snatch (Waller et al.,
2009) and the snatch power jerk (Soriano et al., 2019). These
three techniques were practised either in blocked (bCIL) or serial
(sCIL) order. Because of the different relative timings and
different sequences of muscle contractions of all three
techniques, CIL is considered to switch between different
general motor programs. The DL model incorporated the
practice of these three techniques in a serial order but each
technique with additional movement variations. Variations in
foot starting position, barbell starting position, final positions,
practising with eyes closed, and utilising an unstable surface were
incorporated. Further details on each motor learning protocol,
including the movement schedule and resting intervals, are
elaborated in Ammar et al. (2024a); Ammar et al. (2025).

2.4 Measurements

2.4.1 Data acquisition
The power snatch trials were performed after each training bout

on a 2.4 × 0.9 m weightlifting platform and were recorded using
Qualisys Track Manager 2023.2 (Qualisys AB, Sweden). The 3D
barbell positions were measured using nine synchronised,
commercially available infrared cameras (Type Oqus 300/310+;
250 Hz; Qualisys AB, Sweden) positioned around the platform at
a distance of approximately 6 m from the lifting area. Two reflective
markers were attached to the right and left ends of the barbell. The
calibration was executed before each test session using a carbon fibre
calibration kit, including a 500 mm wand and an L-frame with
reflective markers. In addition, the 3D ground reaction forces
(GRFs) were measured using two Kistler force platforms (Type
9287CA; 1,000 Hz; Kistler, Switzerland) embedded in the ground.
During the power snatch trials, the tested participants positioned
one foot each on a force platform. Before the three dynamic power
snatch trials, a static measurement (without barbell) was performed
to calculate the participant’s body weight.

2.4.2 Data processing
For the kinematic analysis, the mean position of the reflective

markers attached to the right and left end of the barbell was
calculated to provide the trajectory of the barbell centre and reduce
the induction of artefacts associated with asymmetrical movement
execution (Ammar et al., 2018b; Ammar et al., 2019). For the kinetic
analysis, the total GRF was calculated by summing the recorded force
vectors of both platforms. The data was filtered using a fourth-order
Butterworth low-pass filter with a cut-off of 4 Hz for the barbell position
trajectories and 15 Hz for the GRF trajectories. The barbell velocity was
calculated by numerical estimation based on the filtered barbell position
trajectory. All processed trajectories were trimmed to the movement
phase from the start of the movement to the catch position (Nago et al.,
2019). The start position was defined as the time when the vertical
barbell velocity was≥0.01m•s-1 and the catch position was defined as the
first instance at which the barbell reached a vertical velocity of 0 m•s−1

after the phase of negative vertical velocity following the maximum
vertical displacement (Nagao et al., 2019; Ammar et al., 2024a; Ammar
et al., 2025). For one of the 16 participants recruited (participant 08), the
catch phase could not be identified using the definitions described by
Nagao et al. (2019). Data related to this participant was therefore
excluded from further analysis (Figure 1). The trimmed barbell
position and velocity trajectories were normalised based on body
height, and the GRF on the basis of body mass. All trajectories were
time normalised by linearly interpolating the trajectories to 101 time
points (0%–100% of the power snatch movement). Finally, the initial
values were subtracted from the barbell position trajectories to
standardise them, ensuring that all trajectories start from a baseline
value of zero. Figure 1 illustrates the processed barbell position
trajectories in the sagittal plane for the 16 participants.

2.4.3 Data analysis (machine learning-based
classification)

In total, the kinematic (i.e., position and velocity) and kinetic
(i.e., ground reaction force) trajectories of 180 power snatch lifts
performed by 15 participants after each of 4 training bouts formed
the basis for the machine learning-based classification analysis. Two
classification tasks were investigated: participant classification and
motor learning model classification. Support Vector Machines
(SVMs) (Cortes and Vapnik, 1995) were used as a machine
learning classification method, as they have shown competitive
performance in the classification of biomechanical data (Horst
et al., 2019; Burdack et al., 2020; Slijepcevic et al., 2021; Horst
et al., 2023) and favourable runtime efficiency. We utilised the
Liblinear Toolbox (version 1.4.1) with a linear kernel and an L2-
regularised L2-loss function (Fan et al., 2008). The hyperparameter
C was set to 1, a standard default that balances regularization and
ensures good generalization performance (Fan et al., 2008).

As Figure 2 shows, for both classification tasks, a leave-one-
group-out cross-validation approach was utilised to evaluate the
performance of the SVM models across motor learning models (in
the participant classification) and participants (in the motor
learning model classification). For participant classification, all
trials from three out of four test conditions were used as training
data (135 trials), while the trials from the remaining condition were
used as test data (45 trials). This procedure was repeated so that the
trials of each test condition were used once as test data, resulting in a
4-fold cross-validation (Fold 1: “bCIL”was tested, Fold 2: “sCIL”was
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tested, Fold 3: “DL” was tested, Fold 4: “RL” was tested). Similarly, a
5-fold cross-validation was performed for the classification of the
test conditions, leaving out a subset of the participants in each case.

This involved dividing the participants into 5 groups and repeatedly
using one of the groups (36 trials) as validation of the model trained
on the remaining groups (144 trials). This procedure resulted in a 5-

FIGURE 1
Processed position trajectories of the barbell during the power snatch of the 16 participants (P01 to P16). Each subfigure shows the anterior-
posterior displacement of the barbell along the abscissa (x-axis) and the vertical displacement of the barbell along the ordinate (y-axis) as amultiple of the
participant’s body height. The randomization of themotor learningmodels within the 4 test sessions (S1 to S4) for each participant is detailed in the legend
of each subfigure. Please note that the subfigure labelled P08 represents the trajectories excluded from the analysis, belonging to participant 08.
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fold cross-validation with participants “9, 15, 6” being tested in Fold
1, participants “1, 7, 10” being tested in Fold 2, participants “4, 2, 12”
being tested in Fold 3, participants “14, 11, 3” being tested in Fold 4,
and participants “5, 16, 13” being tested in Fold 5.

In the classification, we evaluated the performance of
15 combinations of trajectory-related input (position.AP/V,
velocity.AP/V, GRF.AP/V), as detailed in the results tables. These
combinations included 9 focusing solely on kinematic input, 3 on
kinetic input, and 3 integrating both kinetic and kinematic inputs. This
led to an examination of 15 input trajectory configurations alongside
3 scaling approaches, yielding a total of 45 distinct combinations.
Regarding the scaling approaches this include 1. no scaling; 2. batch
scaling with data being scaled based on the absolute maximum value in
the training data (separately for each trajectory); and 3. instance scaling
with data being scaled based on the absolutemaximum value of the trial
(separately for each trajectory).

To identify the input features utilised by SVM models in the given
classification tasks, we employed Layer-wise relevance propagation (LRP)
(Bach et al., 2015; Horst et al., 2019), a method widely used in explainable
artificial intelligence designed to reveal the basis for machine learning
model predictions. The LRP method allows for the decomposition of the
SVM model’s predictions into relevance scores for each input feature,
highlighting the contributions of specific features to the classification
decisions (Bach et al., 2015; Horst et al., 2019). Particularly, these
relevance scores indicate the input values used by the SVM model for
its prediction, with positive scores supporting the classification prediction

and negative scores opposing it. In this study, we decomposed ground
truth class labels and analysed only positive input relevance scores
(i.e., those favouring the ground truth label), which were subsequently
normalised to the respective maximum of each trial. Following this, the
relevance scores were aggregated across all trials to generate model-level
explanations, providing insights into the trained machine learning
model’s overall functionality. This approach facilitated the
identification of task-specific prototypes and characteristic patterns by
calculating the average LRP relevance scores across all trials and cross-
validation folds in the test set.

The data processing and analysis was performed using Matlab
R2023b (MathWorks, USA).

In Table 1 and Table 2 of the results section, averaged accuracies
were introduced. These values were calculated using the “average”
function of Excel which is based on the “arithmetic mean” formula:
sum of all values (in all folds and scaling approaches) divided by the
number of values.

3 Results

3.1 Performance evaluation

3.1.1 Participants classification
Table 1 shows the prediction accuracy results of the participant

classification. Regardless of the scaling approach and fold, the results

FIGURE 2
Machine learning-based classification procedures.
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TABLE 1 Prediction accuracy of the participant classificationwith leave-learning-model-out cross-validation for different data partitions (i.e., folds). In Fold 1 "bCIL " was tested, Fold 2 "sCIL”was tested, Fold 3 "DL”was
tested, Fold 4 "RL” was tested.

Variables/accuracy Scaling condition + Test/training data Averaged
accuracy

No-scale Instance scale Batch scale

Fold
1

Fold
2

Fold
3

Fold
4

Mean ±
SD

Fold
1

Fold
2

Fold
3

Fold
4

Mean ±
SD

Fold
1

Fold
2

Fold
3

Fold
4

Mean ±
SD

Random Baseline 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7

Barbell Kinematic

Position.AP 42.2 37.8 35.6 51.1 41.7 ± 6.9 53.3 46.7 53.3 57.8 52.8 ± 5.8 46.7 46.7 44.4 62.2 50.0 ± 8.2 48.1 ± 7.8

Position.V 44.4 51.1 44.4 42.2 45.6 ± 3.8 42.2 48.9 46.7 42.2 45.0 ± 3.3 42.2 51.1 44.4 42.2 45.0 ± 4.2 45.2 ± 3.5

Position.AP, Position.V 77.8 66.7 60.0 75.6 70 ± 8.22 68.9 62.2 57.8 71.1 65.0 ± 3.12 75.6 64.4 62.2 84.4 71.77 ± 10.3 68.9 ± 8.1

Velocity.AP 55.6 46.7 53.3 62.2 54.4 ± 6.4 53.3 53.3 57.8 62.2 56.7 ± 4.3 57.8 46.7 53.3 62.2 55 ± 6.6 55.4 ± 5.4

Velocity.V 62.2 51.1 55.6 55.6 56.1 ± 4.6 64.4 48.9 57.8 55.6 56.7 ± 6.4 62.2 46.7 53.3 55.6 54.4 ± 6.4 55.7 ± 5.4

Velocity.AP, Velocity.V 80.0 66.7 64.4 86.7 74.4 ± 10.7 73.3 73.3 64.4 80.0 72.8 ± 6.4 82.2 64.4 66.7 86.7 75 ± 11.1 74.1 ± 8.8

Position.AP, Velocity.AP 60.0 48.9 53.3 64.4 56.7 ± 6.9 44.4 51.1 53.3 66.7 53.9 ± 9.3 64.4 53.3 55.6 71.1 61.7 ± 8.2 57.2 ± 8.0

Position.V, Velocity.V 77.8 68.9 60.0 64.4 67.8 ± 7.59 71.1 60.0 57.8 60.0 62.2 ± 6.0 77.8 68.9 55.6 66.7 67.2 ± 9.1 65.7 ± 7.4

Position.AP, Position.V,
Velocity.AP, Velocity.V

88.9 75.6 73.3 88.9 81.1 ± 8.4 77.8 71.1 64.4 80.0 73.3 ± 7.0 91.1 71.1 66.7 86.7 78.9 ± 11.8 78.0 ± 9.2

Kinetic

GRF.AP 42.2 37.8 40.0 44.4 41.1 ± 2.9 46.7 35.6 31.1 40.0 38.3 ± 6.6 44.4 35.6 42.2 46.7 42.2 ± 4.8 40.6 ± 4.8

GRF.V 55.6 53.3 42.2 51.1 50.6 ± 5.8 55.6 55.6 33.3 44.4 47.2 ± 10.6 60.0 51.1 33.3 44.4 47.2 ± 11.2 48.3 ± 8.8

GRF.AP, GRF.V 71.1 62.2 53.3 53.3 60 ± 8.5 71.1 44.4 55.6 44.4 53.9 ± 12.6 73.3 46.7 55.6 60.0 58.9 ± 11.1 57.6 ± 10.2

Kinematic + Kinetic

Position.AP, Velocity.AP,
GRF.AP

73.3 64.4 64.4 75.6 69.4 ± 5.8 64.4 51.1 46.7 68.9 57.8 ± 10.6 82.2 68.9 64.4 73.3 72.2 ± 7.6 66.5 ± 9.9

Position.V, Velocity.V,
GRF.V

66.7 68.9 62.2 71.1 67.2 ± 3.8 68.9 73.3 60.0 68.9 67.8 ± 5.6 77.8 66.7 66.7 73.3 71.1 ± 5.4 68.7 ± 4.9

All: Position.AP, Position.V,
Velocity.AP, Velocity.V,

GRF.AP, GRF.V

88.9 80.0 66.7 77.8 78.3 ± 9.1 84.4 75.6 60.0 84.4 76.1 ± 11.5 91.1 77.8 66.7 86.7 80.6 ± 10.8 78.3 ± 9.7
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TABLE 2 Prediction accuracy of the learning-model-classification with leave-participant-out cross-validation for different data partitions (i.e., folds). Fold 1: participants “9, 15, 6" were tested; Fold 2: participants “1, 7,
10" were tested; Fold 3: participants “4, 2, 12" were tested; Fold 4: participants “14,11,3" were tested; Fold 5: participants “5,16,13" were tested.

Variables/
accuracy

Scaling condition + Test/training data Averaged
accuracy

No-scale Instance scale Batch scale

Fold
1

Fold
2

Fold
3

Fold
4

Fold
5

Mean
± SD

Fold
1

Fold
2

Fold
3

Fold
4

Fold
5

Mean
± SD

Fold
1

Fold
2

Fold
3

Fold
4

Fold
5

Mean
± SD

Random Baseline 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

Barbell Kinematic

Position.AP 8.3 25.0 25.0 27.8 19.4 21.1 ± 7.8 16.7 25.0 25.0 30.6 19.4 23.3 ± 5.4 11.1 27.8 13.9 33.3 25.0 22.2 ± 9.4 22.2 ± 7.2

Position.V 16.7 22.2 30.6 19.4 16.7 21.1 ± 5.8 16.7 22.2 25.0 19.4 16.7 20.0 ± 3.6 19.4 25.0 30.6 19.4 16.7 22.2 ± 5.6 21.1 ± 4.8

Position.AP, Position.V 16.7 22.2 38.9 27.8 11.1 23.3 ± 10.7 13.9 25.0 36.1 22.2 16.7 22.8 ± 8.7 13.9 27.8 36.1 27.8 8.3 22.8 ± 11.6 23.0 ± 9.5

Velocity.AP 11.1 19.4 22.2 27.8 16.7 19.4 ± 6.2 22.2 25.0 25.0 30.6 19.4 24.4 ± 4.1 13.9 19.4 22.2 27.8 16.7 20 ± 5.3 20.7 ± 5.4

Velocity.V 13.9 22.2 30.6 25.0 13.9 21.1 ± 7.2 13.9 25.0 30.6 25.0 13.9 21.7 ± 7.5 16.7 19.4 27.8 25.0 16.7 21.1 ± 5 20.8 ± 6.2

Velocity.AP, Velocity.V 11.1 22.2 38.9 19.4 27.8 23.9 ± 10.3 22.2 22.2 33.3 27.8 22.2 25.6 ± 5 13.9 22.2 38.9 22.2 22.2 23.9 ± 9.1 23.6 ± 7.9

Position.AP, Velocity.AP 13.9 22.2 25.0 27.8 19.4 21.7 ± 5.3 19.4 25.0 25.0 22.2 22.2 22.8 ± 2.3 22.2 22.2 33.3 19.4 13.9 22.2 ± 7.1 22.2 ± 4.9

Position.V, Velocity.V 11.1 22.2 27.8 27.8 22.2 22.2 ± 6.8 19.4 25.0 30.6 22.2 22.2 23.9 ± 4.2 11.1 19.4 27.8 25.0 16.7 20.0 ± 6.6 22.0 ± 5.8

Position.AP, Position.V,
Velocity.AP, Velocity.V

11.1 25.0 36.1 27.8 22.2 24.4 ± 9.1 16.7 30.6 33.3 27.8 27.8 27.2 ± 6.3 13.9 27.8 38.9 19.4 16.7 23.3 ± 10.1 25.0 ± 8.2

Kinetic

GRF.AP 30.6 25.0 22.2 27.8 25.0 26.1 ± 3.2 27.8 30.6 27.8 36.1 22.2 28.9 ± 5 30.6 27.8 22.2 25.0 25.0 26.1 ± 3.2 27.3 ± 3.9

GRF.V 27.8 25.0 16.7 19.4 33.3 24.4 ± 6.6 27.8 22.2 13.9 22.2 38.9 25 ± 9.2 25.0 22.2 11.1 19.4 38.9 23.3 ± 10.1 24.5 ± 8.2

GRF.AP, GRF.V 25.0 27.8 16.7 16.7 36.1 24.4 ± 8.2 30.6 22.2 19.4 25.0 30.6 25.6 ± 5 27.8 27.8 13.9 27.8 33.3 26.1 ± 7.2 25.3 ± 6.5

Kinematic + Kinetic

Position.AP, Velocity.AP,
GRF.AP

16.7 27.8 30.6 19.4 13.9 21.7 ± 7.2 27.8 36.1 22.2 38.9 33.3 31.7 ± 6.7 19.4 27.8 36.1 16.7 16.7 23.3 ± 8.5 25.6 ± 8.3

Position.V, Velocity.V,
GRF.V

16.7 13.9 19.4 16.7 30.6 19.4 ± 6.51 22.2 22.2 11.1 13.9 36.1 21.1 ± 9.7 19.4 22.2 22.2 16.7 27.8 21.7 ± 4.1 20.7 ± 6.7

All: Position.AP,
Position.V, Velocity.AP,
Velocity.V, GRF.AP,

GRF.V

19.4 25.0 22.2 16.7 22.2 21.1 ± 3.2 25.0 25.0 19.4 27.8 33.3 26.1 ± 5.0 22.2 27.8 16.7 25.0 27.8 23.9 ± 4.6 23.7 ± 4.6
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showed the highest averaged prediction accuracies when kinematic
data were considered and combined either alone (accuracy of
78.0% ± 9.2%) or in combination with the GRF data (accuracy of
78.3% ± 9.7%), indicating a non-advantage of adding kinetic data.
The lowest averaged prediction accuracy was detected when kinetic
data, particularly GRF.AP were considered (accuracy of 40.6% ±
4.8%). The combination of kinetic data resulted in an accuracy of
57.6% ± 10.6%, which was markedly lower than the accuracy
achieved using combined kinematic data. The highest prediction
accuracies were achieved in the kinematic combination when the
classification models (i.e., SVMs) were trained with sCIL and DL
data (i.e., fold 1 and 4) with an accuracy ranging between 77.8% and
91.9% across the three scaling approaches, resulting in an averaged
accuracy of 85.6% ± 5.4%.

When considering the scaling approach, the highest prediction
accuracies (average of the 4 folds) were recorded following no
scaling approach with an accuracy of 81.1% ± 8.4% when
considering the combination of kinematic data, and following
batch scaling approach (accuracy of 80.6% ± 10.8%) when
considering the combination of kinematic and kinetic data. In
both combinations the lowest accuracies were achieved following
the instance scaling approach (73.3% ± 7.0% and 76.1 ± 11.5,
respectively).

Looking at each prediction accuracy across the different scaling
approaches and fold procedures, the highest prediction accuracy was
91.1% registered following the batch scaling approach when
considering combined kinematic data, either alone or in
combination with the kinetic ones, and training the SVM with
data from sCIL, DL, and R. The second highest accuracy of 88.9%
was found following the no scaling approach when considering
similar combinations and training data.

3.1.2 Motor learning model classification
Table 2 shows the results of the learning-model-classification.

Regardless of the scaling approach and fold procedures, the highest
averaged prediction accuracy was 27.3% ± 3.9%, when GRF.AP data
were considered. Similarly low accuracy rates were observed across
various scaling approaches and input conditions, with prediction
accuracies ranging between 8.3% (no-scale, position.AP, fold 1) and
38.9% (instance or batch scaling, GRF.V, and fold 5).

3.2 Explainability evaluation

Themodel explainability results obtained by LRP were evaluated
across three combinations of trajectory-related inputs (position.AP/
position.V, velocity.AP/ velocity.V, GRF.AP/GRF.V) and scaling
approaches (no scaling, batch scaling, instance scaling) for the
participant classification task. The results for the motor learning
models classification task were not evaluated because the prediction
accuracy indicated that the models likely were not able to identify
relevant features for the classification task.

Figure 3 provides an overview of which input values are relevant
for discriminating between movement techniques of different
participants, presenting the average input vectors with aggregated
colour-coded LRP relevance scores across all test samples for the
input combinations: position.AP/ position.V (Figure 3A),
velocity.AP/ velocity.V (Figure 3B), and GRF.AP/GRF.V

(Figure 3C). The highest LRP relevance values are observed
between 40%–100% (position.V), 30%–60% (velocity.V), and 0%–
15% and 80%–100% (GRF.V) of the snatch movement techniques.
Across all input combinations and scaling approaches, the
aggregated average LRP relevance values for the vertical input
trajectories exceed those for the horizontal trajectories. This trend
is particularly pronounced for the GRFs, with a notable scarcity of
relevant ranges for the GRF.AP across the three scaling approaches.

While the regions with the highest LRP relevance remain
consistent across the three scaling approaches, notable differences
arise due to the scaling approach. This effect is most evident for the
position.AP trajectory. In the no-scaling approach, the position.AP
exhibits a reduced number of relevant regions for participant
classification by the SVM compared to position.V. However, with
instance scaling, a relevant region emerges in position.AP.
Furthermore, there is a pronounced emphasis on the movement
endpoint, particularly noticeable with position.V in the absence of
scaling, but this effect is mitigated by batch and instance scaling. A
similar trend is observed with GRF.V, albeit less prominently.

4 Discussion

Machine learning-based analyses of movement techniques have
been recommended in the context of learning an Olympic
weightlifting technique (Ammar et al., 2024a; Ammar et al.,
2025), such as classification based on participant versus motor
learning models to substantiate the individuality hypothesis in
whole-body movement techniques. The employed SVM in the
present study aimed at evaluating the individuality hypothesis at
the very early phase of acquisition, through the classification of
participants and motor learning related snatch patterns performed
by novices.

The main findings revealed a superior prediction accuracy for
the participant compared to the motor learning model classification.
The prediction accuracy for the participant classification across all
scaling approaches reached 78% for the averaged values and 91%
following specific fold and input combination procedures, markedly
exceeding the zero-rule baseline of 6.7% (1/15 participants). In
comparison, the prediction accuracy for motor learning model
classification was 27.3% for the averaged values, not heavily
exceeding the zero-rule baseline of 25% (1/4 motor learning
models), and 38% following specific fold and input combination
procedures. This discrepancy underscores the inadequacy of motor
learning model classification based on the short-term effects of
single training bouts, which performs no better than the zero-
rule baseline, in comparison to the strong capability to classify
individual participants. This result supports the persistence of
individual snatch techniques of novice participants across
different motor learning models already at the very beginning of
the acquisition phase. The present results provide specific evidence
for the “individuality” assumption of whole-body movement
techniques in the domain of Olympic weightlifting. The
explainability results obtained through LRP indicate that the
participant classification depends often on multiple features, with
emphasis on near maxima or inflection points of the curve as well as
on the start or end of movements (Figure 3) where variability is more
prevalent, especially among novices (Liu et al., 2018). From a signal
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theoretical point of view these areas are either connected with a
change of sign (zero crossing) or are associated with maxima in their
next derivative that contains the most information of a signal and
most probably indicates the expression of the most
individual features.

The present findings contribute additional evidence to the
growing body of research supporting the individuality of
movement techniques, demonstrating that this individuality is
evident not only at the end of a learning process (Schöllhorn and
Bauer, 1998a; Schöllhorn et al., 2001; Horst et al., 2017b; Hoitz et al.,
2021; Horst et al., 2023b) but also from the beginning (i.e., novices).
The findings of this study align with the sport science training
principle of ‘individuality’ proposed by Matveev, (1966). This
principle emphasises the importance of considering individual
differences among athletes throughout the training process,
regardless of their performance level. In comparison, our findings
challenge the training principle of increasing individualisation
advocated by Harre (1975) (Martin et al., 1991; Schöllhorn et al.,
2002a), which suggests that individual differences among athletes
should only be taken into account in advanced performance
level athletes.

The need to consider individuality of movement techniques
throughout the motor learning process (i.e., during acquisition,
stabilisation, and refinement phase) is further corroborated by
studies that attempted to evaluate the individuality of movement
techniques by assessing commonalities across diverse movement
techniques (Horst et al., 2020; Burdack et al., 2023). Particularly,
focusing on varied movement techniques within the same sport
domain (i.e., throwing), Horst et al., 2020 used an automatic
classification by means of machine learning (i.e., SVMs) to

identify participant- and discipline-specific throwing techniques.
Furthermore, exploring different movement techniques across
various domains, Burdack et al. (2023) investigated the
individuality assumption in walking, running, and handwriting
techniques through a person classification. Their findings
indicated distinct differences between participants in terms of
GRF.V in running or walking, as well as in vertical pen pressure
in handwriting with F1-scores exceeding 90%. Collectively, these
results from the present study and previous research provide
substantial evidence for individual characteristics both within
single-movement technique as well as across different movement
techniques with either similar or different kinematic structures.

Prior to this study, empirical recommendations for the most
effective processing (e.g., scaling approaches) and combination of
input trajectories for classifying movement techniques in Olympic
weightlifting were scarce. The present study represents a pioneering
effort to provide insights into optimal scaling approaches and
combinations of kinematic and/or kinetic input combinations for
machine learning classification in this field.

The analysis of the combinations of input trajectories on the
accuracy in participant classification showed that the highest
prediction accuracies with SVM models were attained using
kinematic data either alone (position.AP/V, velocity.AP/V) or in
combination with kinetic ones (position.AP/V, velocity.AP/V,
GRF.AP/V), achieving an average accuracy of 78%, in both cases.
These findings suggest that adding kinetic GRF data does not confer
an advantage in terms of prediction accuracy in the studied
movement technique. The exclusive use of kinetic data resulted
in a lower average accuracy of 57.6%. The lower prediction accuracy
of the kinetic data compared to the kinematic data, coupled with the

FIGURE 3
Explainability results obtained through LRP for three input combinations: (A) position.AP, position.V, (B) velocity.AP, velocity.V, and (C) GRF.AP,
GRF.V. Each across three different scaling approaches: (top) no scale, (middle) instance, and (bottom) batch. The average input vectors (+/- one standard
deviation) with aggregated colour-coded LRP relevance scores across all test samples are presented. For visualisation, input values neutral to the
classification task are shown in dark blue colour, while red colour indicates input values relevant for the classification task.
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lack of improvement in accuracy despite the inclusion of kinetic data
alongside kinematic data, might be attributable to the processing
approach used for the kinetic data. The data segmentation relied on
the kinematic data of the barbell, which may have favoured
kinematic variables. Furthermore, disparities in movement
technique among the novice participants may have exerted a
more pronounced effect on the GRF data. Specifically, some trials
featured a flight phase during the snatch movement, while others did
not. The presence or absence of flight phases, which affect GRF data
significantly more than kinematic data (GRFs drop to zero while
kinematic data continue their trajectory), poses greater challenges
for participant classification. Future research could benefit from
incorporating whole-body kinematic measures, such as ankle, knee,
and hip angles, allowing for more detailed and accurate
segmentation of the snatch movement’s phases. A more precise
definition of movement phases and phase-dependent scaling of GRF
data could potentially yield kinetic prediction accuracy comparable
to that of the kinematic data. These observations underscore the
critical role of adopting appropriate data preprocessing pipelines
(i.e., segmentation) in machine learning-based research in
biomechanics.

The analysis of the impact of different scaling approaches on the
accuracy in participant classification, particularly with kinematic
input combinations, revealed a decrease in accuracy when scaling is
applied, particularly instance scaling, as opposed to classifications
without scaling (81.1% ± 6.7% vs 73.3% ± 7.0%). This discrepancy
remains notably for instance scaling even when considering a
combination of both kinematic and kinetic inputs (76.1% ±
11.5%), where the accuracy rates for classifications without
scaling and batch scaling stood exceeding 78%, with slight
advantage of batch scaling (≈81%). These results suggest that the
no scaling approach generally showed better performance,
particularly with mixed kinematic data inputs, likely due to its
less restrictive handling of variable ranges. This is a surprising
finding, because scaling prior to machine learning-based
classifications is generally recommended and accepted in the
machine learning domain (Bishop, 2006). For example, to allow
all input trajectories to have an equal share to the prediction of the
machine learning models. Our results indicate for the position,
velocity, and GRF trajectories that the AP trajectories are hardly
relevant for the decision of the SVM compared to V trajectories if the
data is not scaled (Figure 3). Indeed, the LRP relevance scores
indicated that the vertical trajectories (position.V and GRF.V)
consistently showed higher relevance values, particularly at key
phases of the movement (e.g., 40%–100% for position.V and
80%–100% for GRF.V). This suggests that these phases, contain
critical information for distinguishing individual movement
techniques. Additionally, the scaling approach influenced the
distribution of relevance scores, with instance scaling revealing
relevant regions in position.AP that were not evident with no
scaling. However, in particular for the position and GRF
trajectories, we can observe that the start and the end phase of
the movement have higher LRP relevance scores when input
trajectories are not scaled prior to the SVM classification
(Figure 3). This could indicate that differences in the start or end
position are taken more into account by the SVM models. This may
be helpful for differentiating participants (and have a positive effect
on the prediction accuracy), but for classification tasks that are

evaluated across participants, a stronger integration of these
characteristics (which are more related to body size rather than
to movement technique) may be disadvantageous. It is important to
note that the input trajectories in our study were already normalised
to body height and body weight. This normalisation implies that
differences in amplitude range between trajectories were already
mitigated. Further research is necessary to explore this aspect in
depth and provide recommendations for scaling methods that
consider not only classification performance but also the
prevention of biases. For instance, Burdack et al. (2020) indicated
a notable enhancement in classification accuracy when using
advanced preprocessing pipelines prior to the classification of gait
data (Burdack et al., 2020). The study demonstrated that while
weight normalisation and the number of data points in time
normalisation had limited effects, filtering GRF data and
employing data reduction techniques, such as Principal
Components Analysis, significantly improved the prediction
performance of machine learning-based approaches. The extent
to which these domain-specific recommendations for common
data preprocessing methods in human gait are applicable to
sports movements, such as strength-coordination exercises,
warrants further investigation.

Overall, the present results demonstrate that the movement
techniques of the individual participants exhibit a high degree of
uniqueness even at the beginning of the acquisition phase in
Olympic weightlifting, and that these individual movement
techniques are persistent across various learning bouts with
different motor learning models. However, the preliminary
nature of these findings and caution against their generalisability
needs to be considered. This relates, among other factors, to the
following considerations:

(1) Since the present analysis was conducted using data gathered
only from a standard empty barbell weighing 20 kg, these
results need to be verified using higher barbell load commonly
used during weightlifting training.

(2) We acknowledge the lack of kinematic data related to the
athletes’ complete gestures as a main limitation of our study.
Analyzing the participants’ complete gesture, in addition to
the weightlifting bar, would provide deeper insights into the
contributions of the different segments to the movement as
well as the ratios of force and speed deployed by each subject
in each technique. This would offer a more comprehensive
understanding of the individuality in motor learning.

(3) The lack of perfect classification accuracy (approximately
20% misclassification) warrants further investigation in
future research. Possible factors contributing to this
include increased movement variability in absolute novices,
a limited amount of data per participant, simple data
processing (no reduction techniques, no hyperparameter
tuning) and classification (linear SVMs) pipelines, or the
individual variability in response to the barbell weighing of
20 kg and the motor learning models. This also raises
questions about the individual’s sensitivity to specific
motor learning interventions and the origins of these
sensitivities.

(4) In particular, the persistence of individual movement
techniques in motor learning interventions needs to be
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investigated in more detail. Since the present analysis
encompassed only four learning bouts, each comprising
36 trials according to another motor learning model, these
results need to be verified over longer time periods and
controlled for differing effects between motor learning
models. The variance across folds in the participant
classification suggests differing effects among various
motor learning models. Interestingly, within the kinematics
input combination, the present findings showed their highest
prediction accuracies when trained with data after the sCIL
and DL training bouts (i.e., the cases of folds 1 and 4). These
results suggest varying impacts of different motor learning
models, particularly those that induce variability, such as
sCIL and DL. However, further research is needed to
determine whether the robustness and accuracy of the
SVM models primarily depend on the variability of the
motor learning models (either inter- or intra-variability),
or if it is simply a result of a specific cross-validation
procedure. A question to be clarified will be, how the
variability introduced by different motor learning methods,
e.g., serial or random and within or between motor programs
in CIL or the size of execution-to-execution differences in DL,
will affect movement variability during the learning bouts and
how this will shape the long-term development of a
participant’s movement technique.

(5) The uniqueness and persistence of individual movement
techniques also need to be investigated in more
experienced populations during the stabilisation and
refinement phases of motor learning, in Olympic
weightlifting.

(6) The present finding is specific to machine learning-based
studies that utilise a similar data preprocessing approach and
must be validated by further strength-coordination-based
research employing different preprocessing methods. This
future research needs to explore explainable artificial
intelligence (e.g., LRP) in more detail.

Regardless of the large-scale tasks at hand, our findings
encourage the applicability and efficacy of machine learning-
based classifications (i.e., using SVMs) of biomechanical data in
the exploration of complex human movement techniques and the
identification of athlete-specific similarities in weightlifting-
movement patterns across different motor learning models,
especially among novice athletes. Such insights advocate for a
tailored approach to data preprocessing and combinations of
input trajectories to enhance model performance and reliability
in identifying participant-specific movement techniques.

5 Conclusion

This research reinforces the feasibility of employing machine
learning classification for more comprehensive analyses of
biomechanical technique analysis especially in the context of
movements that combine strength and coordination. The study
provides additional evidence supporting the concept of the
individuality of whole-body movements, highlighting its
uniqueness and persistence aspects, specifically within the

context of weightlifting and strength-coordination activities that
engage the whole-body motor system. Notably, the study reveals
that unique movement patterns can be discerned even among
novice practitioners and persist post-training bouts, irrespective of
the training method employed. Additional research is needed to
determine whether the observed individuality is consistent across
different levels of expertise, stages of motor learning, and sports
disciplines with varying kinematic structures. Such research could
also elucidate how coordination, strength, and endurance (each
operating on distinct temporal scales) influence the long-term
adaptation processes of individual movement techniques. Future
research in this area should be conducted with caution,
emphasizing the critical importance of the appropriate selection
of input trajectories and data scaling for machine learning
classifications. In more general terms, the results underline the
need for a more thorough understanding of the time-dependent
changes in individual living systems based on a nonclassical
statistical approach as it is associated with the machine
learning approach.
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