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Since their first industrial application in the acetone-butanol-ethanol (ABE)
fermentation in the early 1900s, Clostridia have found large application in
biomass biorefining. Overall, their fermentation products include organic acids
(e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol,
isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have
several applications such as fuels, building block chemicals, solvents, food and
cosmetic additives. Advantageously, several clostridial strains are able to use
cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-
gases (CO2, CO) which confer them additional potential as key players for the
development of processes less dependent from fossil fuels and with reduced
greenhouse gas emissions. The present review aims to provide a survey of
research progress aimed at developing Clostridium-mediated biomass
fermentation processes, especially as regards strain improvement by
metabolic engineering.
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1 Introduction

Clostridia include a large group of anaerobic gram-positive bacteria which have found
large application in biomass biorefining (Cruz-Morales et al., 2019; Yang et al., 2022).
Actually, the ABE (that stands for acetone, n-butanol and ethanol, in 3:6:1 ratio)
fermentation of starch or sugar by Clostridium acetobutylicum was one of the largest
fermentation industries until the 1960s when it was essentially replaced by cheaper oil-based
technologies (Jones and Woods, 1986; Green, 2011; Jiang et al., 2015). Interest in
biotechnological generation of n-butanol (hereinafter referred to as butanol) and other
valuable chemicals has been revived in the last decades as a means to reduce dependence on
fossil fuels, reduce CO2 emissions and ultimately improve the environmental sustainability
of these productions (Azambuja and Goldbeck, 2020; Bao et al., 2020; Wen et al., 2020c;
Ferreira et al., 2020; Nawab et al., 2020; Li et al., 2021).Within this framework, Clostridia are
among the candidates with the greatest potential. A number of Clostridia can grow using
inexpensive substrates such as lignocellulosic biomass (Mazzoli and Olson, 2020) or one
carbon (C1) gases (CO, CO2) (Zhang et al., 2020b). Clostridium fermentation products
include several compounds with important industrial application such as organic acids (e.g.,
lactate), short chain alcohols (e.g., ethanol, butanol, isobutanol, isopropanol), diols (e.g., 1,2-
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propanediol, 1,3-propanediol), acetone and H2 (Figures 1–4)
(Altaras et al., 2001; Mazzoli, 2012; Wilkens et al., 2012; Mazzoli
and Olson, 2020).

Development of universal systems for genetic manipulation of
Clostridia (Minton et al., 2016; Yang et al., 2016; Wen et al., 2020d)
has enabled significant enhancement of their natural potential as
microbial cell factories (Charubin et al., 2018). This constantly
expanding tool box also includes editing clostridial genome based
on Clustered Regularly-Interspaced Short Palindromic Repeat
(CRISPR)/cas (CRISPR associated) technology (Walker et al.,
2020; Wilding-Steele et al., 2021; Husaini et al., 2023) or fine
tuning gene expression by riboswitches (Marcano-Velazquez
et al., 2019) or CRISPR interference (Ganguly et al., 2020).
Consistently, significant improvement has been obtained as
regards Clostridium production of a number of valuable
chemicals and fuels such as ethanol (Tian et al., 2016; Hon et al.,
2017), butanol (Re and Mazzoli, 2023), isobutanol (Higashide et al.,
2011; Lin et al., 2015) and medium chain esters (Guo et al., 2023; Seo
et al., 2023).

The very next sections will provide a survey of the main raw
materials forClostridium fermentation (Section 2) and themetabolic
pathways involved (Section 3). The following sections will
summarize research progress in production of some of the most
valuable fuels and chemicals by Clostridia (Table 1), with special
focus on strain improvement by metabolic engineering.

2 Feedstocks for Clostridium
fermentation

Overall, Clostridia can ferment a wide range of substrates
comprising soluble sugars (e.g., glucose, xylose, fructose, lactose,
cellobiose), polysaccharides (e.g., starch, cellulose), glycerol and
gaseous carbon compounds (CO, CO2) (Wang and Yin, 2021;
Fernández-Blanco et al., 2023). Since feedstock expenditure may
account for more than 70% of the total fermentation cost, the use of
waste biomass is preferable to more expensive substrates such as
pure sugars or edible crops, especially for producing bulk
compounds such as fuels and platform chemicals (Gu et al.,
2011; Abo et al., 2019; Rawoof et al., 2021). As a comparison,
sugar costs about 460 US$/ton, pulp grade wood (a lignocellulosic
biomass) can be calculated at 43–54 US$/ton of fermentable sugars
and no cost can be referred to food waste (Nuss and Gardner, 2013;
Gharehkhani et al., 2015; International Sugar Organization, 2019;
Qureshi et al., 2020).

Carbohydrate-rich feedstocks include: i) lignocellulosic
biomass; ii) (micro) algae biomass; iii) food waste; iv)
municipal waste; v) agro-industrial effluents. Large availability
and low cost of lignocellulosic feedstocks, such as wastes from
agriculture (e.g., straws, stalks, wood fibers) and food processing
(e.g., bagasse, mushroom compost) make it an ideal raw material
for biorefining processes (Wang and Yin, 2021). However, this is
offset by its complex composition (mainly consisting of cellulose,
hemicellulose and lignin) and innate recalcitrance to
biodegradation (Lynd, 2017). (Micro) algae biomass has gained
considerable attention owing to its fast growth, no requirement of
farmland, low demand for growth conditions and no or reduced
lignin content which makes its hydrolysis and fermentation easier

than plant biomass (Liu et al., 2012a; Ortigueira et al., 2015a;
Ortigueira et al., 2015b; Fonseca et al., 2020). Globally, food waste
(a very abundant biomass with high starch content) represents
almost one-third of food produced for human consumption, and
its disposal significantly contributes to greenhouse gas emission
(Parthiba Karthikeyan et al., 2018; Qin et al., 2018; Zhang et al.,
2020a; Su et al., 2022). Carbohydrate-rich raw materials also
include some municipal wastes such as sewage sludge (Yin and
Wang, 2016; Yin and Wang, 2019), paper waste (Liu et al., 2006)
and garden wastes (leaves, branches) (Yang et al., 2019a).
However, most of them have a complex composition (e.g.,
organics are mostly encapsulated in microbial cells in sewage
sludge, paper and garden wastes are rich in lignocellulose) and
generally need pretreatment prior to fermentation (Wang and Yin,
2018). Carbohydrate-rich agro-industrial effluents comprise
sugarcane juice, molasses, cassava wastewater and cheese whey
(Wang and Yin, 2021).

Glycerol is the main by-product (10% w/w) obtained by
transesterification or saponification reactions aimed at producing
oleochemicals such as biodiesel (Yang et al., 2012). The substantial
increase in the biodiesel industry in the recent years has led to
massive production of crude glycerol and drop in prices, hence,
turned glycerol into a waste stream rather than a by-product
(Ciriminna et al., 2014; Russmayer et al., 2019).

C1 gases (CO, CO2) are part of the greenhouse gases (mainly
CO2) contributing to global warming and climate change (Canatoy
et al., 2022). The use of these compounds as fermentation
feedstocks can decrease their emission into the atmosphere by
human activities. Among the industries that use fossil fuels for
generating power and heat, steelmaking process emits about 50%
of the carbon used as CO (Bengelsdorf et al., 2018). CO, CO2 (and
H2) are also the major components of syn (thesis) gas which can be
generated from natural gas, by gasification of coal, oil, biomass
(e.g., agricultural and municipal waste) and by recycling used
plastics (Köpke et al., 2010; Arslan et al., 2019; Zhang et al.,
2020b). Syngas has extensively been used as a feedstock in the
chemical industry, but this requires precise CO/H2 ratio and
expensive gas purification from interfering contaminants
(Köpke et al., 2010). Chemoautotrophic Clostridia are far more
tolerant to such contaminants and already industrially used for
ethanol production from these feedstocks (by companies such as
Coskata, INEOS Bio, LanzaTech) (Köpke et al., 2010). However,
low gas-liquid mass transfer rate (due to poor solubility of these
gases in water) results in low cell densities and fermentation
efficiency and is the main limit of this technology (Fernández-
Blanco et al., 2023).

3 Heterotrophic and autotrophic
fermentative pathways of Clostridia

Clostridia include bacteria with heterotrophic and autotrophic
metabolism. In saccharolytic strains, glucose is generally converted
to pyruvate through the Embden Meyerhof Parnas (EMP)
pathway, since most Clostridia lack the oxidative part of the
pentose phosphate pathway (Crown et al., 2011; Koendjbiharie
et al., 2020; Foulquier et al., 2022). It is worth noting that clostridial
EMP pathway may contain a number of atypical reactions with
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respect to the traditional glycolysis which affect electron
distribution among the different redox cofactors [pyridine
cofactors, ferredoxin (Fd)], cellular pools of energy carriers
(e.g., adenine/guanine nucleotides, pyrophosphate) and pathway
thermodynamics (Iddar et al., 2002; Zhou et al., 2013; Scott et al.,
2019; Jacobson et al., 2020). Some heterotrophic Clostridia can also
ferment more reduced substrates than carbohydrates such as
glycerol which is converted to dihydroxyacetone phosphate
(DHAP) and enters the EMP pathway (Yoo et al., 2016; Agu
et al., 2019; Sarma et al., 2019).

Pyruvate can be fermented to a variety of compounds such as
organic acids (e.g., acetate, butyrate, formate, lactate), short chain
alcohols (e.g., ethanol, n-butanol, isobutanol), acetone, CO2 and
H2 (Figures 1–4) (Mazzoli, 2012; Mazzoli and Olson, 2020).
Metabolic flux distribution among fermentative pathways
significantly differs from one strain to another and is affected
by the growth conditions (e.g., the kind and amount of carbon
sources, agitation, H2 partial pressure, pH, bioreactor operation

mode) (Łukajtis et al., 2018; Yang et al., 2020; Wang and Yin, 2021;
Fernández-Blanco et al., 2023; Julkipli et al., 2023). A major
regulator of carbon flux distribution is the redox-responsive
protein Rex (Wietzke and Bahl, 2012; Schwarz et al., 2017). Rex
can affect gene transcription in response to changes of intracellular
NADH/NAD+ ratio (Ravcheev et al., 2012) and is involved in
modulating central carbon metabolism, solvent and organic acid
production, H2 generation, tolerance to oxidative stress, biofilm
formation, and sulfate and nitrate reduction (Hu et al., 2016;
Sander et al., 2019). Furthermore, a network of enzymes known
as ferredoxin:NAD oxidoreductases (Fnor) catalyze re-distribution
of electrons deriving from substrate oxidation among redox
cofactors (ferredoxin, NAD, NADP) and, finally, to the
fermentation end-products (Mazzoli and Olson, 2020).

Some Clostridia can grow chemoautotrophically using CO and/
or CO2 as the carbon source(s) (Liew et al., 2017; Zhang et al., 2020b)
which are reduced to acetyl-CoA through the Wood–Ljungdahl
(WL) pathway (Müller, 2003; Schuchmann and Müller, 2014). If

FIGURE 1
Fermentative pathways in Clostridia, production of C2-compounds and H2. Pyruvate decarboxylase (Pdc) has mainly been engineered in Clostridia
(Tian et al., 2017a). However, a pdc gene has been identified on the pSOL1 megaplasmid of C. acetobutylicum (Lehmann and Lütke-Eversloh, 2011).
Abbreviations: Acetyl-P, acetyl phosphate; Ack, acetate kinase; Adh, alcohol dehydrogenase; Aldh, aldehyde dehydrogenase; Aor, acetaldehyde
ferredoxin oxidoreductase; cH2ase, confurcating hydrogenase; DHAP, dihydroxyacetone phosphate; EMP pathway, Embden Meyerhof Parnas
pathway; Fd, ferredoxin; H2ase, hydrogenase; Pdc, pyruvate decarboxylase; Pfl, pyruvate formate lyase; Pfor, pyruvate ferredoxin oxidoreductase; Pta,
phosphotransacetylase; WL pathway, Wood Ljungdahl pathway.
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CO2 is used as the sole carbon substrate, H2 is required as the
reductant. The WL pathway requires eight reducing equivalents and
one ATP. Energy is provided by specialized version of Fnor which is
proton translocating reduced ferredoxin:NAD+ oxidoreductase
(Rnf) and ATP synthase (which uses the proton gradient
generated by Rnf for ATP synthesis). In most Clostridia growing
autotrophically, acetyl-CoA is mainly converted to acetic acid but
some strains such as C. autoethanogenum, C. ragsdalei, C.
ljungdahlii and C. carboxidivorans can also produce other
chemicals such as ethanol, butyrate, butanol, 2,3-butanediol (2,3-
BDO), hexanoate, hexanol and lactate (Köpke et al., 2011; Arslan
et al., 2019; Arslan et al., 2022) (Figures 1–4). In the latter strains, the
production of solvents (e.g., ethanol) through gas fermentation
generally occurs in two steps. First, CO/CO2 are converted to
acids (usually acetic acid) in a step called acetogenesis, then the
accumulated acids are reduced to alcohols (solventogenesis) (Arslan
et al., 2019; Arslan et al., 2022). Biosynthesis of lactate and 2,3-BDO
occurs through pyruvate formation (Figures 2, 3). In fact, in
autotrophic Clostridia, pyruvate ferredoxin oxidoreductase (Pfor)
can also catalyze acetyl-CoA reductive carboxylation to pyruvate
(acetyl-CoA + CO2 + Fdred→ pyruvate + CoA + Fdox) (Figures 2, 3),
a reaction that is coupled to CO oxidation by CO dehydrogenase/
acetyl-CoA synthase complex (Codh/Acs) (Furdui and
Ragsdale, 2000).

4 Production of industrially relevant
compounds by Clostridia

4.1 Hydrogen

Hydrogen gas (H2) is an optimal energy carrier featuring high
energy content (122 kJ/g) and clean combustion product (Table 1)
(Akhlaghi and Najafpour-Darzi, 2020). Biological production of H2

has gained attention over traditional technologies (e.g., steam
reforming of CH4, coal gasification) (Valle et al., 2019; Akhlaghi
and Najafpour-Darzi, 2020) because it does not rely upon usage of
fossil fuels and has reduced CO2 emissions (Lepage et al., 2021).
However, current technologies for biological production of H2 need
to improve their yield and cost competitiveness (Lepage et al., 2021;
Nirmala et al., 2023).

Bio-H2 production by the so called dark processes, that is
anaerobic fermentation of organic compounds by a number of
heterotrophic microbes (mainly bacteria), is generally considered
more effective than light-driven processes (i.e., direct and indirect
biophotolysis, photofermentation by means of photosynthetic
microorganisms) (Das and Veziroglu, 2008; Mudhoo et al., 2011;
Arizzi et al., 2021; Cao et al., 2022). Among microorganisms
catalyzing dark fermentation, obligate anaerobes such as
Clostridium spp. feature 2-fold higher maximum theoretical H2

FIGURE 2
Fermentative pathways in Clostridia, production of C3-compounds. 1,2-PDO biosynthesis can occur through the methylglyoxal (light green) or the
deoxyhexose pathway (dark green). Abbreviations: 1,2-PDO, 1,2-propanediol; 1,3-PDO, 1,3-propanediol; DHAP, dihydroxyacetone phosphate; EMP
pathway, Embden Meyerhof Parnas pathway; Fd, ferredoxin; FucA, fuculose-1-phosphate aldolase; FucI, fucose isomerase; FucK, fuculokinase; FucO,
1,2-PDO oxidoreductase; Gdht, glycerol dehydratase; GldA, glycerol dehydrogenase; Ldh, lactate dehydrogenase; MgsA, methylglyoxal synthase;
Pdor, 1,3-propanediol oxidoreductase; Pfl, pyruvate-formate lyase; Pfor, pyruvate ferredoxin oxidoreductase; RhaA, rhamnose isomerase; RhaB,
rhamnulokinase; RhaD, rhamnulose-1-phosphate aldolase; WL pathway, Wood Ljungdahl pathway; YqhD, aldehyde reductase.
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yield (i.e., 4 mol/mol hexose) compared to facultative anaerobes
(e.g., Escherichia coli, Enterobacter sp.) (Wang et al., 2011a).
Clostridial genomes generally encode multiple hydrogenases
(H2ases) likely involved in different functions (e.g., redox
balancing, derivation of energy from H2 oxidation, proton
respiration and/or proton-gradient build-up) (Calusinska et al.,
2010; Arizzi et al., 2021). These include monomeric FeFe H2ases
that catalyze proton reduction to H2 by oxidation of reduced
ferredoxin or flavodoxin (Demuez et al., 2007; Flamholz et al.,
2012; Therien et al., 2017; Morra, 2022) and multimeric electron-
confurcating H2ases that catalyze reduction of protons to H2 via the
oxidation of reduced ferredoxin and NAD(P)H (Figure 1) (Wang
et al., 2013; Latifi et al., 2019). In Clostridia, reducing equivalents for
proton reduction by H2ases mainly derive from glyceraldehyde-3-
phosphate (GAP) oxidation by GAP dehydrogenase (Gapdh) and
pyruvate oxidation by Pfor (Figure 1).

Metabolic engineering strategies aimed to increase H2

production in Clostridia have focused on different targets that
include: i) overexpression of (native and/or heterologous) H2-
producing enzymes and/or downregulation of uptake H2ases
(Nakayama et al., 2008; Cha et al., 2016; Sarma et al., 2019; Son
et al., 2021); ii) impairment of metabolic pathways competing for
reducing equivalents (e.g., production of ethanol, butyrate, formate,
lactate) (Wang et al., 2011a; Jiang et al., 2011; Lo et al., 2015; Rydzak
et al., 2015); iii) improvement of substrate catabolism (Sarma et al.,
2019; Son et al., 2021; Kim et al., 2023); iv) optimization of electron/
redox metabolism (Lo et al., 2017; Nguyen et al., 2018; Foulquier

et al., 2022). It is worth remembering that maximumH2 yield can be
obtained when sugars are fermented to acetate (glucose + 4 ADP +
4 Pi → 2 acetate + 2 CO2 + 4 ATP + 2 H2O + 4 H2), while it is lower
when more reduced products (e.g., propionate, butyrate, lactate,
ethanol) are accumulated (Wang et al., 2011a; Wang et al., 2021b;
Ortigueira et al., 2015a; Islam et al., 2015). Studies aiming at
improving monosaccharide catabolism include diversion of
glucose towards the pentose phosphate (PP) pathway (Son et al.,
2021). In fact, glucose fermentation through the PP pathway could
increase the maximum theoretical H2 yield by 33% (1 glucose +
3.33 ADP + 3.33 Pi→ 1.67 acetate + 2.67 CO2 + 3.33 ATP + 5.33 H2)
(Singh et al., 2019).

So far, most of these investigations achieved limited H2 yield
enhancement (generally comprised between 15% and 80%) with H2

yield still lower than 2 mol/mol hexose in most engineered strains
(Mazzoli et al., 2024). One likely reason is that only one gene has
generally been down- or upregulated in each engineered strain. For
instance, in Clostridia multiple hydrogenase-encoding genes are
present, with different roles and expression levels, and the balance of
their activity can be a key to improved performances (Land et al.,
2020; Arizzi et al., 2021; Morra, 2022; Fasano et al., 2024).
Combination of multiple advantageous metabolic modifications
(e.g., overexpression of evolving H2ases, elimination of alternative
pathways, optimization of sugar metabolism) in one strain seems
among the most obvious implementation. More extensive
application of adaptive laboratory evolution could be an
additional tool that avoid or implement complex rational genetic

FIGURE 3
Fermentative pathways in Clostridia, production of C4-compounds. 2-ketoisovalerate decarboxylase (KivD) was not found in Clostridia but a
Lactococcus lactis gene coding for it was engineered in C. thermocellum (Lin et al., 2015). Abbreviations: Acr, acetoin reductase; Adh, alcohol
dehydrogenase; Ald, α-acetolactate decarboxylase; Aldh, aldehyde dehydrogenase; Als, α-acetolactate synthase; Dhad, dihydroxy acid dehydratase;
DHAP, dyhydroxyacetone phosphate; Fd, ferredoxin; Kari, keto acid reductoisomerase; KivD, L. lactis 2-ketoisovalerate decarboxylase; Kor,
ketoisovalerate ferrodoxin-dependent reductase; Pfl, pyruvate-formate lyase; Pfor, pyruvate:ferredoxin oxidoreductase.
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engineering to tackle all these issues and enhance H2 production of
microorganisms (Tunca et al., 2023). Along with strain
optimization, the use of improved fermentation conditions (e.g.,
pH, temperature, substrate concentration, H2 partial pressure),
mode (e.g., continuous fermentation) and bioreactor
configuration is pivotal (Cai et al., 2013; Wang et al., 2014;
Łukajtis et al., 2018; Son et al., 2021; Julkipli et al., 2023). From
this standpoint, the improvement of systems for reducing H2 partial
pressure in the bioreactor (e.g., stirring the growth medium,
sparging the growth medium with inert gas, removing gas by a
vacuum pump, selectively removing H2 by active membranes) is
essential for overcoming thermodynamic barriers of biological H2

production. The ΔrG’
m (i.e., the change in Gibbs free energy

associated with a metabolic reaction/pathway when all the
reactants have a concentration of 1 mM) for the production of
H2 by oxidation of glucose to acetate (through the EMP pathway)
can vary from −205.1 to 0.2 kJ/mol for dissolved H2 concentration

ranging from 10–9 M–1 M (Flamholz et al., 2012). Promising results
have also been reported through the development of processes based
on syntrophic microbial chains, such as two-step fermentation (e.g.,
dark fermentation + photofermentation) (Ramprakash et al., 2022)
or co-cultures (e.g., H2 producing bacteria + bacteria able to perform
anaerobic respiration) (Zhang et al., 2023b) providing complete
oxidation ofClostridium fermentation by-products. Improvement of
H2 yield obtained by combining dark- and photo-fermentation was
significantly higher (≈100–200%) (Ramprakash et al., 2022) than
those reported for co-cultures (≈30–45%) (Zhang et al., 2023b). The
efficiency of syntrophic co-cultures could be enhanced within the
framework of microbial electrolysis cells in which additional electric
voltage is used to increase H2 yield from organic compound
oxidation (Bora et al., 2022).

In summary, the high potential of Clostridia for H2 production
has been so far improved to a limited extent by a number of studies
employing metabolic engineering. More intense efforts in this

FIGURE 4
Fermentative pathways in Clostridia, production of C4-C6 alcohols. Abbreviations: Acetyl-P, acetyl phosphate; Ack, acetate kinase; Adc,
acetoacetate decarboxylase; Adh, alcohol dehydrogenase; Aldh, aldehyde dehydrogenase; Aor, aldehyde ferredoxin oxidoreductase; Bcd, butyryl-CoA
dehydrogenase; Buk, butyrate kinase; Butyryl-P, butyryl phosphate; Cat1, butyryl-CoA−acetate CoA transferase; Crt, crotonase; CtfAB, CoA transferase;
DHAP, dyhydroxyacetone phosphate; Fd, ferredoxin; Hbd, 3-hydroxybutyryl-CoA dehydrogenase; Hek, hexanoate kinase; Pfl, pyruvate-formate
lyase; Pfor, pyruvate ferredoxin oxidoreductase; Pta, phosphotransacetylase; Ptb, phosphotransbutyrylase; Pth, phosphotranshexanoylase; sAdh,
secondary alcohol dehydrogenase; Thl, thiolase.
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direction are desirable. Process optimization (e.g., reduction of H2

partial pressure, synthrophic microbial chains for complete
substrate oxidation) is also necessary for achieving suitable
efficiency for industrial application.

4.2 Ethanol

Ethanol is the most broadly produced biofuel today, with over
16 billion gallons produced in the United States alone in 2019
(Table 1) (Ethanolrfa, 2019). It is typically blended with gasoline for
use in spark-ignited engines (10% in the United States, 27% in
Brazil), but can also be catalytically upgraded to longer-chain fuel
molecules, such as jet fuel and gasoline (Hannon et al., 2020; Mazzoli
and Olson, 2020). 3.1 EJ/year of ethanol is currently obtained from
sugar cane (30%) and cereals (50%) (Lynd et al., 2017). However,
projected future global demand of bioethanol and the need for more
massive reduction of greenhouse gas emission will require a
significant contribution by bioethanol derived from other
feedstocks (e.g., lignocellulose, CO2) (Wang et al., 2015; Lynd
et al., 2017). Today, bioethanol is primarily produced by

fermentation of mono- or disaccharides using Saccharomyces
cerevisiae or Zymomonas mobilis. Nonetheless, these organisms
cannot directly grow on cheap feedstocks such as lignocellulose
or syngas (Himmel et al., 2007). Substantial research has been
dedicated to develop recombinant cellulolytic yeast or Z. mobilis
strains, yet the maximum cellulosic ethanol titer obtained through
direct biomass fermentation by these strains (≤10 g/L) is far lower
than what is generally considered as necessary for commercial
application (titer = 40 g/L, yield = 1.8 mol/mol hexose) (Dien
et al., 2003; Kojima et al., 2013; Todhanakasem et al., 2019;
Anandharaj et al., 2020). Clostridium thermocellum and
Thermoanaerobacterium saccharolyticum have been important
alternative microbial paradigms for one-step production of
ethanol from cellulose or hemicellulose, respectively (Figure 1)
(Mazzoli and Olson, 2020). On the other hand, acetogenic
Clostridia such as C. ljungdahlii (Phillips et al., 1993) and C.
ragsdalei (Sun et al., 2018) have been investigated as promising
ethanol producers through C1-gas fermentation.

C. thermocellum naturally produces low ethanol yield (typically
12%–34% of the theoretical maximum, i.e., 2 mol/mol hexose)
(Olson et al., 2015), but extensive metabolic engineering efforts

TABLE 1 Most recent estimation of economic parameters and applications of some top value chemicals produced by Clostridia.

No of
C Atoms

Product Price
(US$/Kg)

Market
size
(US$

million)

Annual
production
(M Tons)

CAGR
(evaluated
period)

Application
fields

References

— Hydrogen 0.9–1.7 170,140 50 9.3% (2024–2030 Energy sector/electricity
generation for industries and
households, fuel sector

Wang and Yin (2021), Grand
View Reserach (2023), Kindra
et al. (2023), Worku et al. (2024)

C2 Ethanol n.a. 89,100 ≈110 4.8% (2020–2027) Biofuels, food and beverages Grand View Research (2024)

C3 1,2-PDO 1–2.2 373 1.36 1.6% (2020–2026) Monomer for polymer synthesis
(polyester resins)/antifreeze
agent/liquid detergent, additive in
cosmetics/food

Tao et al. (2021), Shrirame et al.
(2023)

1,3-PDO 3–3.5 424.5 0.1 9.1% (2023–2030) Polymer synthesis (PTT), food
preservative, miosturaizer in
cosmetics/personal care, solvent

Cen et al. (2022), Agrawal et al.
(2023), Nimbalkar and Dharne
(2024)

Isopropanol n.a 2,650 2 8.2% (2023–2030) Fuel industry, production of bulk
chemicals (propylene), bio-
plastics, solvent, antifreeze
agents, disinfectants

Walther and François (2016),
Grand View Research (2020)

Lactic acid 1.3–4.0 1,300 ≈0.3 12.4% (2023–2028) Biodegradable polymers, food
and beverages, personal care/
cosmetics, pharmaceuticals

Klotz et al. (2017),
MarketsandMarkets (2024)

C4 Butanol 0.4–2.9 8,400 n.a 6.2% (2023–2031) Precursor of paints/polymers/
plastics, biofuels

Transparency Market Research
(2022), Re and Mazzoli (2023)

Isobutanol n.a 1,000 ≈0.55 6.3% (2021–2030) Biofuels, beverages, antiseptic,
perfumes, paints, precursor of
esters

Grand View Research (2022),
Allied Market Research (2024)

2,3-BDO 2–5 43,000 32 3.5% (2023–2031) Additive to fuels, printing inks,
fumigants, moistening agents and
anti-freeze agents

Köpke et al. (2011), Koutinas et al.
(2016), Mailaram et al. (2022),
Transparency Market Research
(2024)

C6 Hexanol n.a 1,400 n.a 4.10% (2023–2030) Fuel industry, solvent, plasticizer,
pesticide, flavoring agent,
chemical intermediate

Lauer et al. (2022a), Verified
Market Research (2024)

C4-C8 Short/Medium
Chain Esters

n.a 89,360 n.a 5.4% (2023–2033) Fuels, solvents, flavors, food
additives, fragrances

Future Market Insights (2024)

Abbreviations: 1,2-PDO, 1,2-propanediol; 1,3-PDO, 1,3-propanediol; 2,3-BDO, 2,3-butanediol; CAGR, compound annual growth rate; n.a., not available.
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have significantly increased this efficiency (Mazzoli and Olson,
2020). These studies have included: i) elimination of pathways
that compete for carbon and electron flux (namely, production of
acetate, lactate, formate, and H2) (Biswas et al., 2015; Papanek et al.,
2015; Rydzak et al., 2015; Holwerda et al., 2020); ii) improvement of
electron metabolism (Hon et al., 2017; Hon et al., 2018; Lo et al.,
2017); iii) improvement of glycolytic flux (Deng et al., 2013; Zhou
et al., 2013; Tian et al., 2017b; Hon et al., 2022); iv) overexpression of
autologous and heterologous genes for ethanol production (e.g.,
alcohol dehydrogenase, aldehyde dehydrogenase, pyruvate
decarboxylase) (Tian et al., 2017a; Zheng et al., 2017; Hon et al.,
2018). Eventually, these efforts led to strains which can produce
ethanol at titers of 25–30 g/L and high yields (75%–80% of the
theoretical maximum) (Olson et al., 2023). Still, this is too low for
commercial application. In particular, ethanol titer in these strains
seems to be limited by ethanol tolerance. The latter has been
improved in the wild type C. thermocellum to 50–80 g/L
(Williams et al., 2007; Brown et al., 2011; Shao et al., 2011).
However, a recent investigation has highlighted a tradeoff
between ethanol tolerance and production, namely, C.
thermocellum strains with enhanced ethanol tolerance generally
show decreased ethanol production (Olson et al., 2023). The
main reason for C. thermocellum inhibition by ethanol
accumulation seems to be related to redox, i.e., NADH/NAD+

ratio, imbalance (which affect alcohol dehydrogenase and GAP
dehydrogenase activities) but other yet elusive mechanisms could
be involved.

T. saccharolyticum is a thermophilic anaerobic bacterium which
can ferment xylan (the main polymer in hemicellulose) and all the
most abundant monosaccharides of plant biomass (e.g., glucose,
mannose, xylose, galactose, and arabinose) although it cannot use
cellulose (Herring et al., 2016). The wild-type T. saccharolyticum
accumulates ethanol as its main fermentation product (yield =
1 mol/mol xylose) but also significant amounts of acetate and
lactate (Shaw et al., 2008). Disruption of genes involved in
production of acetate (phosphotransacetylase, pta, and acetate
kinase, ack) and adaptation to high xylose concentration resulted
in homoethanologenic phenotype with a maximum ethanol titer =
37 g/L (Shaw et al., 2008). In a following study, higher performing T.
saccharolyticum strains were obtained by introducing additional
genetic modifications such as the expression of a urease and the
disruption of an operon involved in exopolysaccharide biosynthesis
(Herring et al., 2016). These strains were able to produce up to 70 g/L
of ethanol from a mixture of cellobiose and maltodextrin. However,
much lower ethanol titer (26 g/L) was obtained by fermentation of a
hemicellulose extract (Herring et al., 2016). Interestingly, co-culture
of C. thermocellum and T. saccharolyticum (or other hemicellulolytic
microbes such as (Thermoanaerobacterium thermosaccharolyticum
and Herbinix spp.) has been performed which enabled one-pot
fermentation of both the cellulose and hemicellulose components of
plant biomass (He et al., 2011; Jiang et al., 2013; Froese et al., 2019;
Beri et al., 2020).

As mentioned above, acetogenic Clostridia have been studied for
ethanol production via C1-gas fermentation. This generally occurs
in two steps, that is acetogenesis precedes ethanol formation
(solventogenesis) (Fernández-Blanco et al., 2023). Gas fermenting
Clostridia can produce ethanol through two pathways that is: i)
reduction of acetyl-CoA by aldehyde/alcohol dehydrogenase or; ii)

reduction of acetate to acetaldehyde by acetaldehyde ferredoxin
oxidoreductase (Aor) and then reduction of acetaldehyde by alcohol
dehydrogenase (Figure 1) (Zhang et al., 2020b). Ethanol production
is triggered by stress conditions limiting cell growth such as acidic
pH and/or lack of nutrients (Daniell et al., 2012; Fernández-Naveira
et al., 2016; Al-Shorgani et al., 2018). The highest ethanol titer
reported through C1-gas fermentation (48 g/L) was achieved in
1993 by Philips and co-workers by using a C. ljungdahlii strain
growing on syngas (Phillips et al., 1993). This result was obtained
after 560 h fermentation in a stirred tank bioreactor with cell
recirculation, using an optimized growth medium and high gas-
liquid mass transfer. This study indicated that a medium with
pH range of 4.0–4.5 promoted ethanol accumulation. However,
far lower ethanol titers were obtained in more recent investigations
(Fernández-Blanco et al., 2023). As far as we know, the highest
ethanol titer (16.25 g/L) reported by the latest studies was obtained
through syngas fermentation by C. ragsdalei in a medium
supplemented with poultry litter biochar (Sun et al., 2018). As
regards strain improvement by metabolic engineering, significant
increase of ethanol production (50%–180%) by C. autoethanogenum
orC. carboxidivoranswas obtained by either inactivation (Liew et al.,
2017) or overexpression (Lu et al., 2019) of adhE genes (encoding
bifunctional alcohol/aldehyde dehydrogenase). However, the
maximum ethanol titers obtained through autotrophic growth of
these strains were ≤ 3 g/L (Liew et al., 2017; Cheng et al., 2019).

In conclusion, Clostridia provide promising paradigms for
production of ethanol from low-cost feedstocks, such as
lignocellulose and C1-gas. Research progress is at a more
advanced stage as regards lignocellulose fermentation (also in
reason of the higher number of studies), while investigation of
C1-gas fermentation still needs substantial efforts.

4.3 C3 compounds

4.3.1 1,2-propanediol
1,2-propanediol (1,2-PDO) is a bulk chemical with applications

in antifreeze agents, cosmetics, nutrition, medicine and polyester
resins (Table 1) (Siebert and Wendisch, 2015). Currently, 1,2-PDO
is mostly produced through chemical hydration of fossil-derived
propylene which leads to a racemic mixture of R- and S-1,2-PDO
(Tao et al., 2021). Fermentative production of 1,2-PDO benefits
from the use of renewable feedstocks and can generate pure 1,2-
PDO stereoisomers (Tao et al., 2021). However, native bacterial
producers of 1,2-PDO (Prevotella, Salmonella, Klebsiella,
Corynebacterium, Clostridium) show low yield and productivity,
hindering their application in industrial processes (Turner and
Robertson, 1979; Badia et al., 1985; Cameron and Cooney, 1986;
Siebert and Wendisch, 2015).

Natural 1,2-PDO producing Clostridia include Clostridium
sp. AK1 (Ingvadottir et al., 2018), C. beijerinckii DSM 6423
(Diallo et al., 2019), C. phytofermentans (Petit et al., 2013), C.
sphenoides and C. thermosaccharolyticum (Tran-Din and
Gottschalk, 1985; Cameron and Cooney, 1986; Altaras et al.,
2001). Clostridia can produce 1,2-PDO through two alternative
metabolic pathways, the deoxyhexose (DXH) or the
methylglyoxal (MGL) pathway (Figure 2) (Tao et al., 2021). The
main limit of the DHX pathway is that it requires expensive
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TABLE 2 Comparison between production of top value chemicals by Clostridia (bold) and other high performing microorganisms.

No of C
Atoms

Product Microorganism(s) Fermentation
mode

Feedstock Titer
(g/L)

Yield
(g/g)

Productivity
(g/L/h)

Reference

— Hydrogen Enterobacter cloacae DM11 Batch + reduced H2

partial pressure
Glucose n.a 0.044 3.4 *10–5 Mandal et al.

(2006)

Clostridium perfringens
ATCC 13124

Batch +
pH regulation

Glucose n.a 0.044 n.a Wang et al.
(2014)

C2 Ethanol Zymomonas mobilis/
Saccharomyces cerevisiae

Various Glucose up
to 100

0.4–0.5 up to 80 Panesar et al.
(2006)

Engineered Clostridium
thermocellum

Continuous
fermentation

Cellulose 29.9 0.29 n.a Holwerda et al.
(2020)

Engineered
Thermoanaerobacterium

saccharolyticum

Batch Cellobiose +
maltodextrine

70.0 0.46 n.a Herring et al.
(2016)

C3 1,2-PDO Engineered Escherichia coli Fed-batch Glucose 17.3 0.18 0.72 Niu et al. (2019)

Engineered Escherichia coli Batch Glucose 5.6 0.21 0.078 Clomburg and
Gonzalez (2011)

Clostridium
thermosaccharolyticum

HG-8

Batch Glucose 9.05 0.20 n.a Cameron and
Cooney (1986)

1,3-PDO Engineered Escherichia coli Fed-batch Glucose 135 0.51 3.5 Nakamura and
Whited (2003)

Clostridium butyricum Fed-batch Glycerol 93.7 0.52 3.3 Wilkens et al.
(2012)

Isopropanol Engineered Escherichia coli Fed-batch Glucose 40.1 0.73 0.66 Inokuma et al.
(2010)

Engineered Escherichia coli Batch Glucose 8.0 0.45 0.12 Shen and Liao
(2013)

Engineered Clostridium
acetobutylicum

Batch Glucose 8.8 0.14 0.30 Collas et al.
(2012)

Lactic acid Lactic acid bacteria/
Bacillus sp

Batch Glucose up
to 190

≈0.9 2.5–4.4 Alves de Oliveira
et al. (2018),
Rawoof et al.

(2021)

Evolved
Caldicellulosyruptor sp

Batch Microcrystalline
cellulose

70 0.85 1.0 Svetlitchnyi et al.
(2022)

C4 Butanol Engineered Escherichia coli Fed-batch + gas
stripping

Glucose 30 0.29 0.18 Shen et al.
(2011)

Engineered Clostridium
beijerinckii

Fed-batch + gas
stripping

Glucose 157.7 0.31 0.76 Ezeji et al. (2004)

Engineered Clostridium
acetobutylicum

Continuous
fermentation +

extractive distillation

Glucose 550 0.35 0.14 Nguyen et al.
(2018)

Isobutanol Engineered Escherichia coli Batch Glucose 22.0 0.35 n.a Atsumi et al.
(2008)

Engineered Clostridium
thermocellum

Batch Cellulose 5.4 0.17 0.072 Lin et al. (2015)

2,3-BDO Klebsiella oxytoca Fed-batch Glucose 150 n.a 4.21 Ma et al. (2009)

Clostridium ljungdahlii Fed-batch CO 16.9 n.a 0.061 Zhu et al. (2020)

C6 Hexanol Engineered Escherichia coli Batch Glucose 0.47 n.a n.a Machado et al.
(2012)

Clostridium
carboxidivorans

Batch CO 1.90 n.a n.a Oh et al. (2022)

(Continued on following page)
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feedstocks such as L-fucose and L-rhamnose (Figure 2) (Tran-Din
and Gottschalk, 1985; Cameron and Cooney, 1986). The MGL route
allows the conversion of a much larger panel of cheaper sugars (e.g.,
glucose, fructose, mannose, galactose, xylose, arabinose, lactose or
cellobiose), however, suffers from possible accumulation of toxic
intermediates (e.g., methylglyoxal) which limit bacterial growth and
1,2-PDO production (Tao et al., 2021). Efforts have been made to
find cheaper natural sources of L-rhamnose, such as the macroalgae
Ulva lactuca which contains L-rhamnose and D-glucose as the
major sugars (Diallo et al., 2019). C. beijerinckii DSM 6423 was
able to accumulate up to 5.96 g/L 1,2-PDO by fermenting (DHX
pathway) a U. lactuca hydrolysate with a yield of 0.41 g/g of
rhamnose (Diallo et al., 2019). C. thermosaccharolyticum HG-8 is
equipped with the MGL pathway and is currently the highest
performing 1,2-PDO producer among Clostridia (Sánchez-Riera
et al., 1987). This strain was reported to produce 1,2-PDO from
a variety of feedstocks (e.g., glucose, xylose, mannose, cellobiose or
whey permeate) up to a titer = 9.05 g/L (yield = 0.20 g/g hexose)
(Table 2) (Sánchez-Riera et al., 1987). As far as we know, no study
has attempted to increase 1,2-PDO production in Clostridia by
metabolic engineering strategies which, to date, have mainly
targeted E. coli (Tao et al., 2021).

4.3.2 1,3-propanediol
1,3-propanediol (1,3-PDO) has various industrial uses in

cosmetics (e.g., solvent, moisturizer), food (e.g., preservative) and
polymer synthesis (e.g., polytrimethylene terephthalate) (Table 1).
Since 2003, 1,3-PDO has mainly been produced via fermentation of
corn-derived glucose by an engineered E. coli strain through a
collaboration of DuPont, Genencor and Tate & Lyle group
(Agrawal et al., 2023). Advantageously, a number of
microorganisms including some Clostridia can naturally produce
1,3-PDO through glycerol fermentation (Figure 2) (Nimbalkar and
Dharne, 2024). When glycerol is the only carbon source, a part of it
is dehydrated and reduced to 1,3-PDO, however, another part is
oxidized to DHAP which enters the glycolytic flux, thus providing
the reducing power for generating 1,3-PDO (Figure 2). Glycerol
oxidative metabolism leads to accumulation of by-products such as
organic acids (mainly acetic, butyric, and lactic), alcohols (e.g.,
ethanol, butanol, 1,2-propanediol, 2,3-butanediol), H2 and CO2,
depending on the species and culture conditions (Nimbalkar and
Dharne, 2024). The most studied natural producers of 1,3-PDO are
Klebsiella pneumoniae and Clostridium butyricum owing to their

high glycerol consumption rate and 1,3-PDO production (titer up to
100 g/L, yield ≈ 0.5 g/g, productivity ≈ 2 g/L/h) (Wilkens et al., 2012;
Zhu et al., 2022). Natural 1,3-PDO producing-Clostridia offer many
advantages with respect to K. pneumoniae since they are non-
pathogenic, produce lower amounts of by-products and require
cheaper fermentation systems (Yazdani and Gonzalez, 2007). For
instance, C. butyricum and other Clostridium strains biosynthesize a
vitamin B12-independent glycerol dehydratase (GDHt, glycerol →
3-hydroxypropionaldehyde +H2O) (Figure 2), hence, do not require
exogenous supplementation of this expensive vitamin in the growth
medium (Raynaud et al., 2003). Yet, optimization of 1,3-PDO
production by C. butyricum is hindered by low tolerance to
product accumulation, large amounts of by-products (e.g., butyric
acid, acetic acid) and lack of efficient gene modification tools (Yang
et al., 2019b).

This has prompted research on other native or engineered 1,3-
PDO producing Clostridia such as C. acetobutylicum (González-
Pajuelo et al., 2005), C. beijerinckii (Wischral et al., 2016; Schoch
et al., 2023),C. diolis (Otte et al., 2009; Li et al., 2020a) orC. perfringens
(Guo et al., 2017) for which maximum 1,3-PDO titers range between
40-84 g/L. Particularly noteworthy are the results obtained with an
engineered C. acetobutylicum (González-Pajuelo et al., 2005). In fact,
the C. acetobutylicum ATCC824 DG1 mutant (unable to produce
solvents and sporulate) overexpressing the genes encoding C.
butyricum GDHt and 1,3-propanediol oxidoreductase (Pdor, 3-
hydroxypropionaldehyde + NADH + H+ → 1,3-PDO + NAD+)
(Figure 2) was able to ferment glycerol and produce 1,3-PDO as
the major product in fed-batch fermentation (titer = 84 g/L 1,3-PDO,
yield = 0.53 g/g, maximum productivity = 1.70 g/L/h). Interestingly, a
two-step fermentation involving C. acetobutylicum was developed
which was able to convert glucose or molasses to 1,3-PDO (Mendes
et al., 2011). In the first fermentation, the recombinant S. cerevisiae
HC42 (adapted to grow on high glucose concentration) converted
sugars into glycerol, which was subsequently fermented to 1,3-PDO
by a 1,3-PDO hyperproducing C. acetobutylicum DG1 (final titer =
25.5 g/L, yield = 0.56 g/g of glycerol and 0.24 g/g of glucose, maximum
productivity = 0.16 g/L/h). This study is paradigmatic of alternative
strategies for extending the panel of feedstocks for fermentative
production of 1,3-PDO by Clostridia beyond glycerol.

4.3.3 Lactic acid
Lactic acid (LA) is among the chemicals with the largest

worldwide industrial demand by sectors that include the food,

TABLE 2 (Continued) Comparison between production of top value chemicals by Clostridia (bold) and other high performing microorganisms.

No of C
Atoms

Product Microorganism(s) Fermentation
mode

Feedstock Titer
(g/L)

Yield
(g/g)

Productivity
(g/L/h)

Reference

Clostridium
carboxidivorans

Fed-batch + in situ
product extraction

CO + ethanol 8.45 n.a n.a Oh et al. (2023)

C8 Butyl
butyrate

Engineered Escherichia coli Batch + in situ product
extraction

Glucose +
butyrate

≈0.005 n.a 2*10–4 Layton and
Trinh (2016)

Engineered Clostridium
tyrobutyricum

Batch Cassava starch 26.8 n.a 0.19 Guo et al. (2024)

Engineered Clostridium
tyrobutyricum

Fed-batch + in situ
product extraction

Mannitol 63 0.17 0.31 Guo et al. (2023)

n.a., not available.
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cosmetic, pharmaceutical industry and the synthesis of
biodegradable solvents and plastics (e.g., polylactide) (Table 1)
(Abdel-Rahman et al., 2011; Abdel-Rahman et al., 2013; Alves de
Oliveira et al., 2018). About 90% of global LA production is obtained
by microbial fermentation producing pure L- or D-LA enantiomer
(chemical synthesis generates a racemic mixture) (Abdel-Rahman
et al., 2013; Alves de Oliveira et al., 2018) which is required for
plastic polymer synthesis (Abdel-Rahman and Sonomoto, 2016),
and food and pharmaceutical applications (Jem et al., 2010).
Currently, industrial production of LA mainly rely on lactic acid
bacteria (LAB) (Sauer et al., 2008) based on their high LA yield,
productivity and GRAS (generally regarded as safe) status (Abdel-
Rahman et al., 2013; Rawoof et al., 2021). However, LAB also have
drawbacks such as limited acid tolerance, requirement for complex
nutrients (amino acids, nucleotides, vitamins) and inability to
directly ferment cheap feedstocks (e.g., lignocellulose). This has
stimulated research on alternative microbial platforms for LA
production (Poudel et al., 2016; Tarraran and Mazzoli, 2018).
Within this perspective, a major advantage of using Clostridia for
LA production is the ability of (hemi) cellulolytic strains to directly
ferment lignocellulosic biomass. One-step fermentation of
lignocellulose to LA could dramatically decrease the cost of LA
production and its current dependence from food crops (Nuss and
Gardner, 2013; Gharehkhani et al., 2015; International Sugar
Organization, 2019; Qureshi et al., 2020).

So far, the number of studies aimed at enhancing LA production
in natural (hemi) cellulolytic microorganisms is limited. Research on
bacteria such as C. thermocellum (Lo et al., 2015; Mazzoli et al.,
2020), C. bescii (Williams-Rhaesa et al., 2018), Thermoanaerobacter
mathranii (Yao and Mikkelsen, 2010), T. saccharolyticum (Zhou
et al., 2015), Thermoanaerobacterium aotearoense (Yang et al., 2013)
and Thermoanaerobacterium thermosaccharolyticum (Bhandiwad
et al., 2013) has suggested valuable metabolic engineering
strategies to increase LA accumulation in these strains. These
include impairment of alternative fermentative pathways (e.g.,
production of H2, acetate, ethanol, formate) (Mazzoli, 2020),
increasing the expression of lactate dehydrogenase (Ldh)
(Figure 2) (Williams-Rhaesa et al., 2018; Mazzoli et al., 2020), or
engineering the redox state of the cell (Ravcheev et al., 2012; Lo et al.,
2017; Sander et al., 2019). Studies on C. thermocellum (Mazzoli et al.,
2020), Caldicellulosiruptor saccharolyticus (Willquist and van Niel,
2010) and Thermoanaerobacter ethanolicus (Bryant, 1991) have
indicated that the catalytic activity of their Ldh is modulated by
a number of compounds such fructose-1,6-bisphosphate,
nicotinamide cofactors (e.g., NADH, NAD+) and/or, energy
carriers (e.g., ATP, PPi), which need to be taken into account in
metabolic engineering strategies.

One of the main hurdles in engineering LA hyper-production in
anaerobic (hemi) cellulolytic microbes is their limited acid tolerance
(Yang et al., 2013; Mazzoli et al., 2022; Svetlitchnyi et al., 2022).
Growth at regulated pH through base addition was essential for
major increase of the LA production of a Thermoanaerobacterium
aotearoense strain deficient in acetate production (Yang et al., 2013).
This growth condition resulted in nearly homolactic fermentation
(LA yield = 0.93 g/g glucose) with a final LA titer up to 47 g/L (Yang
et al., 2013). As base addition is complicated and expensive at the
industrial scale, use of strains with high acid tolerance is
recommended (Singhvi et al., 2018). Ideally, a microbial host

should tolerate pH conditions around the pKa(s) of the produced
acid (typically in the range 3–5 for organic acids) (Skoog et al., 2018).
So far, C. thermocellum and Caldicellulosyruptor sp. strains have
been obtained by adaptive laboratory evolution which have
increased tolerance to LA (Mazzoli et al., 2022; Svetlitchnyi et al.,
2022). An evolved Caldicellulosyruptor sp. strain showed more than
10-fold increase in LA titer and was able to produce up to 70 g/L LA
through batch fermentation of microcrystalline cellulose
(Svetlitchnyi et al., 2022). This titer is comparable to that
obtained through fermentation of cellulosic biomass hydrolysate
by lactic acid bacteria (Rawoof et al., 2021). However, it should be
noted that pH regulation of Caldicellulosyruptor sp. cultures was still
necessary (Svetlitchnyi et al., 2022). In fact, acid stress depends on
both the decrease of pH and the nature of the acid, i.e., more
hydrophobic carboxylic acids generally are more toxic (Jarboe et al.,
2013; Wilbanks and Trinh, 2017). Irrespective of the strategy used
(random mutagenesis, strain evolution, rational engineering), no
research could lower the acidic pH limit allowing a microorganism
to grow beyond 0.5 pH unit such as in the case of the anaerobic
cellulolytic bacteria Clostridium cellulovorans and Fibrobacter
succinogenes (Wu et al., 2017; Wen et al., 2020a; Mazzoli, 2021).
More intense effort in this direction is needed as regards LA hyper-
producing cellulolytic Clostridia.

4.3.4 Overview of C3-compound production by
Clostridia

Among the C3 compounds considered here, production of 1,3-
PDO by C. butyricum is the most established (Table 2), although the
lack of efficient genetic tools hampers strain improvement (e.g.,
increase product tolerance, reduce by-products formation) and
increase in process efficiency which has stimulated research on
other clostridial strains (e.g., C. acetobutylicum). A few engineered
clostridial strains have shown promising potential for direct
fermentation of lignocellulose to lactic acid although their limited
acid tolerance constitutes a major issue. As reported also for other
microorganisms (Table 2), 1,2-PDO production by Clostridia is
intrinsically hindered by the high cost of substrates or by
accumulation of toxic intermediates which need to be addressed
(e.g., by metabolic engineering).

4.4 C4 compounds

4.4.1 Butanol and isobutanol
4.4.1.1 Improving butanol production in natural
solventogenic Clostridia

Butanol has high potential as a drop-in fuel (namely, it can be
fed to spark ignited engines without anymodification) which adds to
its applications as paint, polymer and plastic precursor (Table 1) (Gu
et al., 2011; Campos-Fernández et al., 2012; Jiang et al., 2015). ABE
fermentation is still the most economically viable route for
biobutanol production, yet, it is affected by several drawbacks
especially under industrial conditions: i) high cost of feedstock
and substrate inhibition; ii) low butanol titer (≤20 g/L), yield
(≈0.33 g/g), and productivity (<0.5 g/L/h); iii) important
formation of by-products which increase butanol purification
costs; iv) poor understanding of Clostridium physiology (Green,
2011; Gu et al., 2011; Abo et al., 2019; Li et al., 2020c). Current
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research aimed to improve butanol production by native
solventogenic Clostridia includes: i) enhancing butanol yield, titer
and tolerance; ii) expanding fermentation substrates to low-cost
feedstocks (e.g., food waste, lignocellulosic biomass and C1-gases)
(Zhang et al., 2020a; Fernández-Blanco et al., 2023; Re and
Mazzoli, 2023).

Four Clostridium species, C. acetobutylicum, C. beijerinckii, C.
saccaroperbutylacetonicum and C. saccharoacetobutylicum, can
biosynthesize significant butanol amounts (Figure 4) (Keis et al.,
2001; Huang et al., 2010). The growth of these strains develops
through three phases that is acidogenesis, solventogenesis and
sporogenesis which is subjected to complex metabolic regulation
whose molecular details are still poorly understood (Li et al., 2020c).
The exponential phase is characterized by accumulation of acids
(mainly acetic and butyric acid), ATP and reduced pyridine
cofactors. Growth medium acidification and accumulation of
ATP, NAD(P)H and possibly other metabolites (e.g., butyryl-
phosphate, formic acid) contribute to shift the metabolism
towards solvent (acetone, butanol, ethanol) production and is
accompanied by acid re-assimilation (Zhao et al., 2005; Wang
et al., 2011b; Li et al., 2020c). Biomass production, non-
assimilation of acids, and accumulation of other carbohydrates
contribute to lower the actual butanol yield with respect to the
theoretical maximum (1 mol/mol of glucose, that is 0.41 g/g) (Li
et al., 2020c).

Significant enhancement of butanol production by natural
solventogenic Clostridia has been obtained by: i) strain
improvement (by mutagenesis, metabolic engineering, adaptive
laboratory evolution); ii) optimization of the growth medium; iii)
optimization of the fermentation process (e.g., high cell density
fermentation, use of in situ product recovery techniques)
[extensively reviewed by Li et al. (2020c)]. Further improvement
of bacterial strains throughmutagenesis is hampered by the complex
and unknown metabolic/phenotypic changes generated by random
gene mutations (Palsson and Zengler, 2010). Rational metabolic
engineering has targeted genes involved in: i) butanol biosynthetic
pathway; ii) pathways competing for carbon and electrons; iii)
butanol tolerance (illustrated in Section 4.4.1.4); iv) redox
homeostasis; v) energy homeostasis; vi) regulation of
acidogenesis-solventogenesis shift and solvent production
(Wietzke and Bahl, 2012; Nguyen et al., 2018; Li et al., 2020c;
Dai et al., 2021; Re and Mazzoli, 2023).

The acetyl-CoA-butanol production pathway is intrinsically
hampered by its high NADH consumption (5 mol/mol butanol)
(Figure 4) and is not very exergonic (ΔrG’

m = −50.1 ± 13.7 KJ/mol)
(Flamholz et al., 2012). Metabolic engineering strategies have been
used to enhance the cellular NADH levels by up-regulating NADH
formation pathways [e.g., by overexpressing heterologous
ferredoxin-NAD(P) oxidoreductase] (Qi et al., 2018) or reducing
NADH consumption by the butanol pathway (Lee et al., 2012;
Nguyen et al., 2018; Qi et al., 2018; Li et al., 2019; Li et al.,
2020b). As regards the latter strategy, increased butanol flux in
C. acetobutylicum was obtained by replacing NADH-dependent
enzymes (e.g., 3-hydroxybutyryl-CoA dehydrogenase, Hbd;
alcohol-aldehyde dehydrogenase, AdhE) with NADPH-dependent
counterparts (Figure 4) (Lee et al., 2012; Nguyen et al., 2018). C.
acetobutylicum thiolase (CaThl, 2 acetyl-CoA → acetoacetyl-CoA +
CoA, ΔrG’

m = 25.0 ± 1.7 kJ/mol) is among the most critical nodes of

the butanol pathway. CaThl is subject to redox-switch, namely,
oxidized cell conditions lead to enzyme inactivation and repression
of butanol (and butyric acid) biosynthesis (Flamholz et al., 2012;
Kim et al., 2015). Furthermore, CaThl is inhibited by low
concentration of CoA (Nguyen et al., 2018). Engineering CaThl
protein to alleviate feedback inhibition (Mann and Lütke-Eversloh,
2013) or avoid enzyme inactivation by oxidized conditions (Kim
et al., 2015), or replacing CaThl with E. coli thiolase (AtoB) (that
shows higher catalytic efficiency, lower sensitivity to CoA and is not
redox-switch modulated) (Nguyen et al., 2018) increased Thl
activity and/or butanol flux to varying degrees (18%–64%).
Recently, early activation (that is during acidogenesis) of butanol
production leading to increased titer has accidentally been obtained
by trying to engineer a complete WL pathway in C. acetobutylicum
(Jang et al., 2023).

The impairment of biosynthetic pathways for alternative
fermentation products (e.g., acetate, acetone, butyrate, ethanol,
lactate) (Figures 1–4) has generally decreased by-product
accumulation and enhanced butanol yield (Lee et al., 2012;
Nguyen et al., 2018) but sometimes generated undesired
phenotypes (e.g., defective acid assimilation or growth rate) (Li
et al., 2020c). Elimination of acetone production (a non-fuel solvent
with high corrosivity) (dos Santos Vieira et al., 2019) has been
reported to increase acetate (and ethanol) generation and decrease
butanol accumulation (Jiang et al., 2009; Lehmann et al., 2012).
Instead, overexpression of secondary-alcohol dehydrogenases
(sAdh) (coupled with upregulation of acetone pathway and
disruption of butyrate production) in C. acetobutylicum resulted
in efficient conversion of acetone to isopropanol (up to 8 g/L)
(Dusséaux et al., 2013; dos Santos Vieira et al., 2019; Zhang et al.,
2023a). This strategy generated isopropanol, butanol, ethanol (IBE)
mixture that, differently from the traditional ABE fermentation, can
be directly applied to spark-ignition engines without the need to
remove by-products (Peralta-Yahya and Keasling, 2010; Zhang et al.,
2023a). Engineering of C. acetobytylicum aldehyde/alcohol
dehydrogenases has been used to increase substrate specificity for
butyryl-CoA and increase butanol over ethanol production (Cho
et al., 2019).

So far, the largest increases in butanol titer and/or productivity
have been obtained by engineering the fermentation process, that is
by using fed-batch or continuous configuration, and/or using
immobilized cells and/or using in situ product recovery (e.g.,
pervaporation, adsorption, liquid–liquid extraction, gas stripping,
vacuum fermentation) (Nguyen et al., 2018; Li et al., 2020c), leading
to alleviation of substrate and/or product inhibition. So far, the
highest butanol titer (550 g/L) was obtained by an engineered C.
acetobutylicum strain in a continuous high cell density bioreactor
with in situ alcohol extractive distillation (Table 2) (Nguyen et al.,
2018). However, these improved fermentation systems are generally
associated with higher technical complexity and cost (Nguyen et al.,
2018; Li et al., 2020c).

Few natural Clostridia can produce low butanol titer (≤3.6 g/L)
through direct fermentation of cellulose or hemicellulose (Mendez
et al., 1991; Virunanon et al., 2008; Li et al., 2018). The development
of a recombinant cellulolytic C. acetobutylicum has been hampered
by severe issues in heterologous cellulase expression (Mingardon
et al., 2011; Kovács et al., 2013; Willson et al., 2016). However, the
replacement of the inactive catalytic module of C. acetobutylicum
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cellulase Cel48A with a homologous domain from C. cellulolyticum
Cel48F enabled direct fermentation of phosphoric acid swollen
cellulose (although no butanol titer, yield or productivity was
reported) (Soucaille et al., 2010). (Hemi)cellulolytic and solvent-
producing Clostridia have been used to develop artificial consortia
or generate fusant strains (Re and Mazzoli, 2023) leading to
production of 11–14 g/L butanol through direct fermentation of
lignocellulosic feedstocks (Wen et al., 2014; Begum and Dahman,
2015; Jiang et al., 2020). These titers are close to those generated
through fermentation of lignocellulose hydrolysates by
solventogenic Clostridia (Gu et al., 2011) but still significantly
lower than those obtained by conversion of starch or soluble
sugars (≈20 g/L) (Gu et al., 2011; Wen et al., 2014; Abo et al.,
2019). Among C1-gas fermenting Clostridia, only C.
carboxidivorans can naturally produce low amounts (≤2 g/L) of
butanol in addition to hexanol and ethanol (Fernández-Naveira
et al., 2017; Fernández-Blanco et al., 2023). Recently, metabolic
engineering has resulted in minor increase of butanol titer (18%) in
this bacterium (Cheng et al., 2019). Higher butanol titer (2.6–6.8 g/
L) was obtained by mixotrophic growth (i.e., using both sugars and
C1-gas as growth substrates), or by natural or artificial microbial co-
cultures (Fernández-Blanco et al., 2023).

4.4.1.2 Engineering butanol production in non-native
Clostridium hosts

Engineering butanol production in non-native hosts has at least
two possible advantages: i) no production of other solvents which
allows simplified downstream processing for product purification;
ii) selection of hosts that can naturally ferment low-cost substrates
(e.g., lignocellulose, CO2). Much interest has been attracted by the
hyper-butyrate producer C. tyrobutyricum (Bao et al., 2020). In fact,
this microorganism has high metabolic flux toward butyryl-CoA
and a high butanol tolerance (>15 g/L) (Yu et al., 2011). In addition,
C. tyrobutycum has rarely been reported to be subjected to
bacteriophage infection, which is a common issue of industrial
ABE fermentation (Bao et al., 2020). A butanol hyper-producing
C. tyrobutyricum was developed by overexpressing the C.
acetobutylicum bifunctional acetaldehyde-alcohol dehydrogenase
AdhE2 and disrupting the gene encoding butyrate:acetate CoA
transferase (Cat1, which catalyzes butyrate production) which
can generate 26.2 g/L butanol through glucose fermentation
(Figure 4) (Lee et al., 2016; Zhang et al., 2018). This butanol titer
is actually higher than those reported for native butanol producers.
Hence, C. tyrobutyricum appears to be a microbial platform with
high potential for butanol production, at a level similar or higher
than other non-native butanol producers such as E. coli (Shen et al.,
2011) or the yeastArxula adeninivorans (Kunze and Haehnel, 2011).

Butanol production has mainly been engineered in three
cellulolytic Clostridia, C. cellulolyticum (Gaida et al., 2016) C.
cellulovorans (Yang et al., 2015) and C. thermocellum (Tian et al.,
2019b). Reduced or imbalanced biosynthesis of butanol pathway
enzymes, enzyme instability, insufficient availability of co-factors
and unfavorable reaction thermodynamics have probably
contributed to a variable extent to modest butanol titer (<0.5 g/
L) in C. cellulolyticum and C. thermocellum (Gaida et al., 2016; Tian
et al., 2019b). Fewer genetic modifications enabled butanol
production in C. cellulovorans (it is naturally equipped with a
butyryl-CoA biosynthetic pathway) (Yang et al., 2015; Wen et al.,

2019) which likely contributed to its higher butanol titer (4.96 g/L)
from lignocellulosic biomass (Wen et al., 2020b). Similar metabolic
engineering strategies used for ABE fermenting strains [e.g.,
impairing alternative fermentative pathways, enhancing NAD(P)
H availability, dysregulating redox homeostasis] are likely to succeed
also in further improving butanol formation in C. cellulovorans (and
other cellulolytic Clostridia) (Bao et al., 2021; Re andMazzoli, 2023).
However, the efficiency of genetic tools for manipulating C.
cellulovorans is still limited (Wen et al., 2017). Apart from the
native ability to produce butanol of C. carboxidivorans, the butanol
pathway has been engineered in another C1-gas fermenting
Clostridium, namely, C. ljungdahlii (Köpke et al., 2010; Lauer
et al., 2022b). However, butanol titer < 0.2 g/L was obtained by
this engineered strain through autotrophic growth. An alternative
approach to bioconvert C1-gases into alcohols with longer chain
than C2 consists in co-culturing gas fermenting strains with chain-
elongating strains (Fernández-Blanco et al., 2023). Different gas
fermenting Clostridia (e.g., C. aceticum, C. autoethanogenum, C.
carboxidivorans, C. ljungdahlii) have been co-cultured with the
chain-elongating model strain Clostridium kluyvery resulting in
production of C4-C8 alcohol mixtures (maximum alcohol titer
generally ≤ 1 g/L). (Diender et al., 2016; Richter et al., 2016;
Bäumler et al., 2022; Fernández-Blanco et al., 2022). In fact, C.
kluyvery is able to elongate the chain of acetate and ethanol
(produced by acetogenic Clostridia) to butyrate, hexanoate and
octanoate by using reverse β-oxidation. On the other side,
acetogenic strains can reduce these fatty acids to their
corresponding alcohols (Figure 4). One of the main limitations of
this approach is that acetogenic bacteria usually have an optimum
pH for growth close to 6, while that of C. kluyveri is close to
neutrality (Fernández-Blanco et al., 2023).

4.4.1.3 Production of isobutanol
Isobutanol is an attractive vehicle fuel with energy density similar

to butanol and higher octane number, which is advantageous for
blending into gasoline (Chen and Liao, 2016). Moreover, isobutanol
can be dehydrated to isobutene, which can then be converted to C8-
C12 alkenes to be used as jet fuel (Lin et al., 2015). Additional uses of
isobutanol and its derivatives are as solvents, additives in paints, ink
ingredients, and extractants for organic compounds (Table 1) (Nawab
et al., 2024). A few microorganisms such as Lactococcus lactis, S.
cerevisiae, Pichia pastoris and Candida sp. can naturally produce very
little isobutanol amounts (≤0.44 g/L) (Nawab et al., 2024). In S.
cerevisiae and lactic acid bacteria, isobutanol is biosynthesized
through the diversion of 2-ketoisovalerate (an intermediate of
valine and isoleucine biosynthesis) which is decarboxylated to
isobutyraldehyde by 2-ketoisovalerate decarboxylase and finally
reduced (Figure 3) (Hazelwood et al., 2008). Higher levels of
isobutanol have been produced by engineered microbial platforms
(Nawab et al., 2024) with studies targeting Corynebacterium
glutamicum (Yamamoto et al., 2013; Hasegawa et al., 2020) and
E. coli (Atsumi et al., 2008) reporting the highest titers (≥20 g/L)
through glucose fermentation. However, much lower isobutanol titer
(1.88 g/L) was obtained through fermentation of cheaper feedstocks
such as pretreated corn stover (Minty et al., 2013).

Advantageously, native production of higher isobutanol levels
(1.6 g/L) has been observed in the cellulolytic bacterium C.
thermocellum (Holwerda et al., 2014). Isobutanol biosynthetic
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pathway in C. thermocellum differs from that found in lactic acid
bacteria or S. cerevisiae in that 2-ketoisovalerate is converted to
isobutyraldehyde in two steps (Figure 3) (Lin et al., 2015). First,
ferredoxin-dependent ketoisovalerate reductase (KOR) catalyzes
oxidative decarboxylation of 2-ketoisovalerate to isobutyryl-CoA
by which is then reduced to isobutyraldehyde (Figure 3). Isobutanol
production of C. thermocellum was enhanced by overexpressing
autologous acetohydroxy acid synthase (Als), keto acid
reductoisomerase (Kari) and dihydroxy acid dehydratase (Dhad)
and introducing L. lactis 2-ketoisovalerate decarboxylase (KivD)
(Figure 3) (Lin et al., 2015). In optimized growth conditions, the
most efficient engineered C. thermocellum strain produced 5.4 g/L of
isobutanol from cellulose, which corresponds to 41% of the
theoretical yield (Lin et al., 2015). Since this concentration is
close to the isobutanol tolerance of the wild type C. thermocellum
(Tian et al., 2019a), it is likely that isobutanol production in this
microorganism is limited by tolerance. Less successful engineering
of isobutanol production (titer ≤ 0.66 g/L) was reported in other
cellulolytic Clostridia, i.e., C. cellulolyticum (Higashide et al., 2011)
and C. cellulovorans (Wen et al., 2022). Recently, an original
approach was reported which consisted in producing a mixture
of butanol and isobutanol through direct fermentation of alkali
extracted deshelled corn cobs (Wen et al., 2022). To this aim,
artificial consortia were developed that included engineered
strains of C. cellulovorans and C. beijerinckii which were able to
generate up to 1.05 g/L isobutanol and 6.22 g/L butanol in the same
fermentation (Wen et al., 2022). Efforts to engineer the isobutanol
pathway into autotrophic Clostridia have also been reported (Weitz
et al., 2021). However, fermentation of a syngas mixture (50% CO,
45% H2, 5% CO2) by an engineered C. ljungdahlii strain could only
produce ≈ 70 mg/L isobutanol (Weitz et al., 2021).

4.4.1.4 Improving butanol/isobutanol tolerance
Butanol (and isobutanol) toxicity is among the main issues of

biological production of this chemical(s). These compounds are
inherently more noxious than other established biofuels, such as
ethanol, owing to their higher hydrophobicity (Heipieper et al.,
2007; Wilbanks and Trinh, 2017). The toxicity of butanol is mainly
due to impairment of structure and functions of biological
membranes, dissipation of proton motive force and ATP pools
and protein denaturation (Bowles and Ellefson, 1985; Tomas
et al., 2004; Alsaker et al., 2010; Venkataramanan et al., 2015).
Even native butanol-producing strains, e.g., C. acetobutylicum, can
typically tolerate up to 1%–2% v/v butanol (Huang et al., 2010;
Nicolaou et al., 2010).

Increasing microbial tolerance to butanol/isobutanol is a key
aspect for enhancing their biological production especially as
regards final titer. To this aim, responses to butanol stress have
been studied in several microbial species that showed the
implication of a very complex network of mechanisms only
partially understood (Re and Mazzoli, 2023). Hence, increasing
butanol tolerance by targeted gene manipulation (e.g.,
overexpression of protein chaperones) has so far attained only
limited results. Random approaches (e.g., random mutagenesis,
genome shuffling, adaptive evolutionary engineering) proved to
be more suitable strategies to select for multiple-gene trait
combinations conferring higher butanol resistance such as for
mutant C. acetobutylicum strains able to tolerate up to 3%–4%

(v/v) butanol (Liu et al., 2012b; Liu et al., 2013). Interestingly, the
adaptive evolution strategy used to develop a butanol-hypertolerant
C. thermocellum also enhanced tolerance to isobutanol to the same
extent (i.e., 15 g/L), suggesting that similar physiological
mechanisms allow cells to cope with both compounds (Tian
et al., 2019a). Interestingly, most of the strains characterized by
increased tolerance (and equipped with butanol pathway) also
showed higher butanol production which highlights the
importance of this line of research in improving biobutanol
production (Re and Mazzoli, 2023).

Metabolic engineering strategies targeting global gene regulators
involved in stress response could advantageously contribute to
future development of butanol/isobutanol hypertolerant
Clostridia (Jones et al., 2016; Mazzoli, 2021; Xu et al., 2021).
Recent studies have indicated that small non-coding RNAs
(sRNAs) and RNA chaperones (e.g., Hfq) have important roles in
the ability of microorganisms to tolerate a variety of stresses such as
butanol exposure (Venkataramanan et al., 2013; Jones et al., 2016;
Sun et al., 2017; Costa et al., 2021).

4.4.2 2,3-butanediol
2,3-butanediol (2,3-BDO) plays a critical role in numerous

industrial sectors (Table 1) (Köpke et al., 2011). 2,3-BDO is an
important starting material in the production of solvents like
methyl-ethyl-ketone (MEK) and 1,3-butadiene, which are
essential for creating fuel additives, resins, rubbers, printing inks,
and lubricating oils. Additionally, 2,3-BDO is used in cosmetics and
food industry and as antifreezing agent (Soltys et al., 2001).
Nowadays, 2,3-BDO is mostly produced through cheap
petrochemical processes, although a pilot plant for its biological
production using Klebsiella oxytoca and Paenibacillus polymyxa was
operating during theWorldWar II (Blackwood et al., 1949; Celińska
and Grajek, 2009). The most efficient natural producers of bio-2,3-
BDO include Paenibacillus polymyxa, Klebsiella pneumoniae, K.
oxytoca, P. polymyxa, Serratia marcescens, Enterobacter aerogenes
and S. cerevisiae (Köpke et al., 2011). In particular, Klebsiella species
show fast growth, can use a wide variety of simple sugars and
produce up to 150 g/L 2,3-BDO through fed-batch fermentation of
glucose (Köpke et al., 2011; Hakizimana et al., 2020). 2,3-BDO
biosynthesis is primed by condensation of two pyruvate units to
form acetolactate which is subsequently decarboxylated to acetoin
(by α-acetolactate decarboxylase, Ald) and reduced to 2,3-BDO by
acetoin reductase (Acr) (Figure 3) (Xiao and Xu, 2007; Caspi
et al., 2008).

Although C. acetobutylicum is naturally equipped with acetoin
biosynthetic pathway, overexpression of C. beijerinckii Acr led to
modest 2,3-BDO production (≈2 g/L) (Siemerink et al., 2011).
Instead, some C1-gas fermenting Clostridia such as C.
autoethanogenum, C. ljungdahlii, C. ragsdalei can naturally
produce 2,3-BDO (Köpke et al., 2011; Ricci et al., 2021).
Nonetheless, autotrophic growth on CO-rich steel mill waste gas
(44% CO, 32% N2, 22% CO2, and 2% H2) led to accumulation of
small amounts of 2,3-BDO (<0.2 g/L) especially as compared to the
predominant metabolic end products (1.7–1.9 g/L acetate, 0.9–1 g/L
ethanol) (Köpke et al., 2011). A recent in silico study has suggested
some metabolic engineering strategies for increasing 2,3-BDO
biosynthesis by C. autoethanogenum (Ghadermazi et al., 2022).
However, so far, the most significant progress in 2,3-BDO
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production by gas-fermenting Clostridia has been obtained through
optimization of the growth medium, substrate composition and
fermentation conditions (Zhu et al., 2020; Ricci et al., 2021).
Improved gas-liquid mass transfer, gas mixture composition (CO:
CO2 4:1) and growth medium (Zinc and Iron supplementation) was
able to significantly shift carbon flux of C. ljungdahlii from acetate/
ethanol to 2,3-BDO production up to a titer ≈ 2 g/L (batch
fermentation) (Ricci et al., 2021). Use of fed-batch fermentation
technology with pH and gas (CO) pressure control dramatically
increased 2,3-BDO titers up to ≈ 17 g/L (Zhu et al., 2020). It is worth
noting that pH regulation is essential for energy conservation in C.
ljungdahlii since it affects the Rnf-ATPase responsible for ATP
generation (Zhu et al., 2020). It is likely that further optimization
of the bioreactor configuration (e.g., continuous fermentation,
optimized gas flow rate, cell recycling) can enable further
enhancement of 2,3-BDO production by gas fermentation
(Simpson et al., 2009; Simpson et al., 2014; Ricci et al., 2021).

4.4.3 Overview of C4-compound production by
Clostridia

Extensive research has been dedicated to improving butanol
production by ABE fermenting strains and non-native butanol
producers. Although native solventogenic Clostridia are still the
most established microorganisms for industrial production of
butanol, other engineered strains are promising alternative
candidates on traditional substrates (e.g., C. tyrobutyricum) or
lignocellulosic feedstocks (e.g., C. cellulovorans). More limited
progress has been reported as regards the generation of
isobutanol through direct fermentation of lignocellulose or C1-
gases. Yet, a major challenge in the biological production of
butanol/isobutanol is the development of hyper-tolerant strains
which still requires substantial efforts. Despite the high
commercial interest in 2,3-BDO, the levels so far produced by
Clostridia are modest both from gaseous substrates and sugars.

4.5 Hexanol

Hexanol has different industrial applications (e.g., solvent,
pesticide, flavoring agent, platform chemical) (Table 1).
Currently, it is mainly obtained by petrochemical production
systems, although it can also be generated through fermentation
of sugars or gaseous substrates by a number of microorganisms, such
as C. carboxydivorans (Lauer et al., 2022b). C. carboxydivorans can
condense acetyl-CoA units to generate hexanoyl-CoA which is then
reduced to hexanol (Figure 4) (Shen et al., 2017; Lauer et al., 2022b).
C. carboxidivorans can produce hexanol also through the reduction
of hexanoate by Aor (Wirth and Dürre, 2021). The highest hexanol
titers obtained so far through CO fermentation by the wild-type C.
carboxidivorans are 1.4–1.9 g/L (Shen et al., 2017; Oh et al., 2022).
Other Clostridia such as C. kluyvery instead convert hexanoyl-CoA
mainly into hexanoic acid (caproic acid) and produce only traces of
hexanol (Figure 4) (Shen et al., 2017; Lauer et al., 2022b). However,
as mentioned in the Section 4.4.1.2., C. kluyvery has been used as
chain-elongating partner in co-cultures with gas-fermenting
Clostridia (e.g., C. carboxidivorans, C. ljungdahlii) for fermenting
C1 substrates into butanol-hexanol-octanol mixtures (Richter et al.,
2016; Fernández-Blanco et al., 2023).

Recently, hexanol production was engineered in another gas
fermenting Clostridium (C. ljungdhalii) (Lauer et al., 2022b). Two
sets of genes encoding the acetyl-CoA-to-hexanoyl-CoA pathway of
C. kluyvery, and the gene coding for the aldehyde-alcohol
dehydrogenase AdhE2 of C. acetobutylicum (for the reduction of
hexanoyl-CoA to hexanol) were integrated into the C. ljungdahlii
chromosome (Figure 4). The engineered C. ljungdahlii showed
improvement of both butanol and hexanol production (Lauer
et al., 2022b). Fermentation in 2 L bioreactor, with continuous
CO2-H2 supplementation and pH regulation (pH = 6) resulted in the
production of 0.122 g/L hexanol. Limited hexanol titer was
attributed to inefficient biosynthesis of some enzymes of the
acetyl-CoA-to-hexanoyl-CoA pathway. Therefore, additional
genes from C. carboxidivorans (encoding thiolase, crotonase, 3-
hydroxybutyryl-CoA dehydrogenase and butyryl-CoA
dehydrogenase complex) (Figure 4) were introduced in the
genome of the engineered C. ljungdahlii. The final strain
produced 0.251 g/L hexanol through fermentation of 20% CO2,
80% H2 gas mixture (Oh et al., 2022).

As for other products obtained through gas fermentation,
significant research towards higher hexanol production has been
focused on optimizing the fermentation process such as growth
conditions, media composition, gas composition or supply (Oh
et al., 2022). Substantial improvement was obtained by using in
situ extraction of hexanol, which reduces hexanol accumulation in
the fermentation medium (Kottenhahn et al., 2021; Oh et al., 2023).
It is worth remembering that hexanol is even more toxic than
butanol because of its longer carbon chain (Heipieper et al.,
2007). Supplementation of 1 g/L hexanol is enough for reducing
C. ljungdahlii growth and 5 g/L caused total growth cessation (Oh
et al., 2023). Supplementation of small quantities of a biocompatible
extractant (i.e., oleyl alcohol) and ethanol (as a precursor) to C.
carboxidivorans P7 cultures growing on CO enabled production of
8.45 g/L hexanol, which is the highest titer reported so far (Oh
et al., 2023).

4.6 Medium (C4-C8) chain esters

Short- and medium-chain (C2-C12) esters such as ethyl acetate,
butyl acetate, isobutyl acetate and butyl butyrate, have a broad range
of application as flavors, fragrances, pharmaceuticals, green solvents
and advanced biofuels (Table 1) (Lee and Trinh, 2020; Wang et al.,
2021a). The traditional methods for synthesizing short- and
medium-chain fatty acid esters are mainly based on concentrated
sulfuric acid-mediated esterification of acids and alcohols and are
affected by serious health and environmental issues (Cull et al., 2000;
Jermy and Pandurangan, 2005). Alternative chemical strategies
based on ionic liquid catalysis can reduce these problems to
some extent, but they are expensive and not stable (Tankov
et al., 2017). In nature, microbes and plants can biosynthesize
several esters which encounters the increasing consumer
preference for natural and sustainable products (Lee and Trinh,
2020; Seo et al., 2021). Some yeasts and lactic acid bacteria can
naturally form esters but with limited efficiency (Abeijón Mukdsi
et al., 2009; Kruis et al., 2018). This has stimulated research aimed to
engineer more efficient producers (Rodriguez et al., 2014; Kruis
et al., 2017).
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Clostridia can synthesize a variety of volatile organic acids (e.g.,
acetic and butyric acid) and alcohols (e.g., ethanol, butanol and
isobutanol) (Tracy et al., 2012; Cho et al., 2015; Lin et al., 2015).
Therefore, significant amounts of acyl-CoA, organic acids, and
alcohols are available in cells that can serve as precursors for
ester generation. Biological synthesis of esters is mainly catalyzed
by esterases/lipases (alcohol + acid → ester + H2O) or by alcohol
acyltransferases (AAT, alcohol + acyl-CoA→ester + CoA) (Kruis
et al., 2019; Noh et al., 2019). In a number of studies, exogenous
lipases have been supplemented to clostridial fermentation broth to
convert acids and alcohols to esters (Cui et al., 2020; Wang et al.,
2021a). The main issue of these approaches is the cost of
exogenously added lipases (Wang et al., 2021a). Alternatively,
overexpression of heterologous lipases in Clostridia has proven to
be challenging (Wen et al., 2020c). The AAT-dependent pathway is
more thermodynamically favorable (Flamholz et al., 2012; Noh et al.,
2019). Overexpression of heterologous AATs has enabled different
mesophilic Clostridia (e.g., C. acetobutylicum, C. diolis, C.
beijerinckii, C. saccharoperbutylacetonicum) to produce esters
such as butyl acetate and butyl butyrate from glucose or xylose
(Horton and Bennett, 2006; Noh et al., 2018; Li et al., 2020a; Fang
et al., 2020; Feng et al., 2021). Efforts have been made also for
producing esters from cheaper feedstocks. By introducing an
engineered heterologous chloramphenicol acetyltransferase and
inactivating endogenous esterases, C. thermocellum was able to
produce C4-C8 esters (e.g., ethyl acetate, ethyl isobutyrate,
isobutyl acetate, and isobutyl isobutyrate) through direct
fermentation of cellulose (Seo et al., 2023). As far as we know,
only one study has reported engineering medium chain ester
production in a gas fermenting Clostridium (namely, C.
autoethagenum) resulting in accumulation of traces of ethyl-
acetate and butyl-acetate (Dykstra et al., 2022).

One of the key aspects of engineering ester production in
Clostridia relies on overproduction of stable AATs with desired
substrate specificity (Seo et al., 2021). Most characterized AATs
derive from plants or yeasts which results in poor biosynthesis,
solubility and/or thermostability in prokaryotes (Horton and
Bennett, 2006; Noh et al., 2018; Li et al., 2020a; Fang et al., 2020).
Studies have been dedicated to optimize AATs structure and/or
biosynthesis (Seo et al., 2021). In addition, limited knowledge is
available on substrate specificities of AATs (Noh et al., 2018; Kruis
et al., 2019). Both these aspects were tackled to develop an ester
overproducing C. saccharoperbutylaceticum (Feng et al., 2021). In
addition, systems metabolic engineering was used to increase
availability of NADH and ester precursor(s) (namely, acetyl-CoA).
The most efficient strain was able to produce up to 20.3 g/L butyl
acetate (and 0.9 g/L butyl butyrate) through glucose fermentation and
up to 17.8 g/L butyl acetate by fermentation of corn stover hydrolysate
(Feng et al., 2021). Few metabolic modifications were able to convert
C. tyrobutyricum (an efficient butyrate producer) into high
performing butyl butyrate producing strain, namely, enhancing
butyryl-CoA pathway (by upregulating CtfAB encoding CoA
transferase, Figure 4), engineering butyryl-CoA reduction to
butanol (by expressing C. acetobutylicum AdhE2), and introducing
the wild strawberry alcohol acyltransferase (VAAT) (Guo et al., 2023).
Additional reducing power for ester production was supplied by using
a reduced growth substrate, that is mannitol, instead of glucose. Fed
batch fermentation of mannitol at regulated pH and supplementation

of hexadecane for in situ extraction of esters led to ≈ 63 g/L butyl
butyrate (yield = 0.21 mol/mol, theoretical maximum is 0.5 mol/mol)
(Table 2) (Guo et al., 2023). This is by far the highest medium chain
ester titer obtained by microbial fermentation. Additional
introduction of heterologous α-amylase and α-glucosidase enabled
the engineered C. tyrobutyricum to produce high amounts of butyl
butyrate (26.8 g/L) through batch fermentation of starch from a non-
food crop (i.e., cassava) (Guo et al., 2024). As mentioned above for
other hydrophobic products (e.g., butanol, hexanol), in situ extraction
of esters significantly contributed to increase fermentation efficiencies
of the engineered strains by limiting toxicity linked to product
accumulation in the growth medium (Fang et al., 2020; Feng et al.,
2021; Guo et al., 2023; Guo et al., 2024).

In conclusion, the variety of acyl-CoA, acids and alcohols
produced by Clostridia confers them the ability to produce a
panel of commercially interesting medium-chain esters in high
amounts. Yet, challenges of this research area reside in efficient
expression of AATs with desired substrate specificity and improving
the availability of carbon precursors and reducing power.

5 Conclusion

The studies summarized in the present review illustrate the key
role of Clostridia in the development of sustainable biomass
biorefining processes. Clostridia are already the reference cell
factories for fuels such as butanol and among the most
promising microbial platforms for production of valuable
chemicals (e.g., ethanol, lactate, H2, hexanol, medium chain
esters) through direct fermentation of low cost biomasses (e.g.,
lignocellulose, C1-gases) (Table 2). Significant progress has also
been reported as regards clostridial production of 1,2-PDO and 1,3-
PDO, whose titers are not far from those obtained by the highest
performing microorganisms (e.g., engineered E. coli) (Table 2).
However, for the full deployment of Clostridium potential in
commercial applications further advances at multiple levels
are necessary.

Extensive investigations on the physiology and metabolism of
Clostridia over the last decades have revealed peculiar characteristics
(e.g., atypical pathway reactions, sophisticated regulation of enzyme
activity) and subtle differences between the different strains which
affect carbon and electron flux and pathway thermodynamics. We
believe that further advances in detailed understanding the
metabolic network of Clostridia will be major sources of
inspiration for improving current metabolic engineering
strategies. To this aim, further development of genetic tools for
manipulating Clostridia is also necessary, especially for strains
which are recalcitrant to the currently available methods (e.g.,
Clostridium diolis) or which shows low genetic tractability (e.g.,
C. cellulovorans).

Apart from strain improvement by metabolic engineering
(enhancement of product yield, titer, productivity; increase of
tolerance to toxic products), research aimed to optimize the
fermentation process (e.g., growth media and conditions,
fermentation mode, bioreactor configuration, use of syntrophic
co-cultures) including extraction and purification of products will
be essential to achieve the efficiency required by industrial
application. Coping with the different feedstocks (e.g., insoluble
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solids such as lignocellulose versus gaseous substrates) and products
(e.g., acids versus hydrophobic solvents versus gaseous products)
described in the present review will certainly require far different
process optimization. The efficiency of gas fermentation in
inherently limited by the low solubility of CO/CO2 in water.
Developing suitable systems for improving gas-liquid mass
transfer is among the priority of this research area. Accumulation
of acids (e.g., lactic acid) or solvents (e.g., butanol, hexanol, medium
chain esters) reduces Clostridium fermentation efficiency due to
limited tolerance of cells these chemicals. Both strain improvement
by metabolic engineering and process engineering (e.g.,
pH regulation, in situ recovery of solvents) should synergistically
provide a cost sustainable solution. As regards biological production
of H2, the improvement of systems for reducing H2 partial pressure
in the bioreactor (e.g., stirring the growth medium, sparging the
growth medium with inert gas, removing gas by a vacuum pump,
selectively removing H2 by active membranes) is essential for
overcoming thermodynamic barriers of biological H2 production.
We are confident that thanks to the contribution of these different
approaches a rapid improvement of Clostridium-mediated
biorefinery processes suitable for their industrial application will
be possible.
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