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Nanocomposite hydrogels are suitable in bone tissue engineering due to their
resemblance with the extracellular matrix, ability to match complex geometries,
and ability to provide a framework for cell attachment and proliferation. The
nanocomposite hydrogel comprises organic and inorganic counterparts. Gelatin
methacrylate (GELMA) is an extensively used organic biomaterial in tissue
engineering due to its excellent biocompatibility, biodegradability, and
bioactivity. The photo-crosslinking of GELMA presents a challenge when
aiming to create thicker nanocomposite hydrogels due to opacity induced by
fillers, which obstructs the penetration of ultraviolet (UV) light. Therefore, using a
chemical crosslinking approach, we have developed nanocomposite GELMA
hydrogel in this study by incorporating citrate-containing amorphous calcium
phosphate (ACP_CIT). Ammoniumpersulfate (APS) and Tetramethylethylenediamine
(TEMED) were deployed to crosslink the methacrylate group of GELMA. The
oscillatory shear tests have confirmed that crosslinking enhances both storage
(G′) and loss modulus (G″) of GELMA. Subsequently, incorporation of ACP_CIT in
GELMA hydrogel shows further enhancement in G′ and G″ values. In vitro analysis of
the developed hydrogels revealed that chemical crosslinking and incorporation of
ACP_CIT do not compromise the cytocompatibility of the GELMA. Hence, for
developing nanocomposite GELMA hydrogels employing APS/TEMED crosslinking
emerges as a promising alternative to photo-crosslinking.
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1 Introduction

The nanostructure arrangement of the extracellular matrix (ECM) provides appropriate
physical and biological properties to bone. Nanocomposites are preferred for mimicking
bone tissue as they provide an appropriate matrix environment and integrate desired
biological properties (Sahoo et al., 2013). Nanocomposites contain organic (hydrogel) and
inorganic (nanofiller) components (Indurkar et al., 2023a). The organic component is
conducive to cell proliferation, nutrient, and waste transport, while the nanofiller enhances
mechanical properties by hydrogen bonding, hydrophobic interaction, or charge
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interactions with the hydrogel (Phogat et al., 2023). Nanocomposite
hydrogels provide superior reinforcement potential, biomolecule
delivery, and tunable degradability compared to pure hydrogel
(Nallusamy and Das, 2021). Therefore, it can be considered a
preferred strategy for bone tissue regeneration.

GELMA is an attractive material in tissue engineering due to its
biocompatibility, biodegradability, bioactivity, and unique
crosslinking properties in developing nanocomposite hydrogels.
The versatile bio-functionality of GELMA arises from the arginine-
lysine-aspartic acid (RGD) motifs essential for cell attachment
(González-Gamboa et al., 2022). A commonly used method for
crosslinking GELMA hydrogels is photo-crosslinking, wherein
ultraviolet (UV) light is used with photoinitiator, which enters
a high-energy radical state and acts on the reactive functional
group of GELMA (Zhang et al., 2023). The major shortcoming of
photo-crosslinking is limited light penetration depth caused by
decreased light intensity along the height of the hydrogel to be
cured. A 5–200 μm layer or up to a few millimeters can be cured
effectively. However, as the height increases, the light intensity
decreases, decaying light intensity within the material according to
the Beer-Lambert law. The photoinitiator absorbs the incident
light at the top of the hydrogel, leading to a top-to-bottom
crosslinking gradient (Klikovits et al., 2022). Moreover, filler
addition deteriorates hydrogel’s transparency, further
complicating the photo-crosslinking process. The incorporation
of filler makes opaque hydrogels, which can reflect, refract, and
absorb light, which decreases the intensity of penetration light
(Gao et al., 2024).

A redox system that uses a chemical initiator (APS and
TEMED) is relatively simple and effective in overcoming
GELMA’s shortcomings in developing nanocomposite
hydrogels. Like photoinitiated crosslinking, the APS/TEMED

crosslinking approach works on free radical polymerization.
The addition of TEMED accelerates the scission of ammonium
persulfate (APS), forming disulfide radicles and hydroxyl radicles
(Seetharaman et al., 2017). These free radicles snatch one electron
from the carbon-carbon double bonds in the methacrylate group
of the GELMA monomer and later become free radicles, which
binds the monomers together to form long aliphatic chains
that are consequently crosslinked (Tsanaktsidou et al., 2019).
The crosslinking mechanism is reported in previous studies
(Park et al., 2018).

Amorphous calcium phosphate (ACP) is the precursor of
hydroxyapatite (HAP) and possesses remineralization potential
(Bian et al., 2024). However, due to ACP’s metastability, it
rapidly converts to HAP, resulting in a loss of remineralization
activity (Yan et al., 2022). To prolong the remineralization capacity
of ACP, stabilizing amorphous nature is of prime importance.
Various organic and inorganic stabilizing agents have been used
previously to prolong the crystallization of ACP (Chen et al., 2014).
In previous studies, citrate was proven to stabilize ACP and delayed
its transformation to HAP (Chatzipanagis et al., 2016; Schweikle
et al., 2019; Degli Esposti et al., 2022; Indurkar et al., 2023c).

Given the metastable nature of ACP, a faster crosslinking
process is required to maintain its remineralization potential, in
contrast to the stable crystalline forms of calcium phosphate.
Therefore, citrate-stabilized ACP (ACP_CIT) was synthesized
and used as an inorganic filler in developing nanocomposite
GELMA hydrogels. Rapid crosslinking was achieved using APS/
TEMED while effectively addressing the limitation of photo-
crosslinking. The impact of APS/TEMED crosslinking on the
morphology of ACP_CIT and the effect of ACP_CIT on the
rheological properties and cytocompatibility of GELMA hydrogel
was also evaluated.
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2 Materials and methods

2.1 Materials

Calcium citrate tetrahydrate (CAS 5785–44–4), trisodium
phosphate (CAS 7601–54–9), sodium hydroxide (CAS
1301–73–2), ammonium persulfate (CAS 7727–54–0), and N, N,
N′, N′-Tetramethylethylenediamine (CAS 110–18–9) were
procured from Sigma Aldrich, Germany. Methacrylate gelatin
(GELMA) with ~50% degree of methacrylate was obtained from
Cellink, Sweden. Hanks balanced salt solution (HBSS) was acquired
from Gibco Life Technologies, Germany.

2.2 Synthesis of ACP_CIT

The synthesis of ACP_CIT was performed according to the
previously reported procedure (Indurkar et al., 2023b). Briefly, the
reaction was performed in a volume of 300 mL. Initially, 150 mL of
50 mM of calcium citrate solution was prepared in Milli-Q® water,

followed by pH adjustment to 11.5 using 2 M sodium hydroxide.
Subsequently, 150 mL of 100 mM trisodium phosphate solution was
added rapidly into 150 mL of 50 mM of calcium citrate solution. The
precipitate was isolated by centrifuging at 3,000 rpm for 5 min, and
the precipitate was washed thrice with Milli-Q® water. Subsequently,
the centrifuge tubes containing the precipitates were immersed in
liquid nitrogen for 15 min, followed by freeze-drying for 72 h. The
obtained powder was preserved in airtight containers for further
characterization.

2.3 Characterization

The phase composition of synthesized ACP_CIT was
determined using X-ray diffraction (XRD) and performed with a
PANalytical Aeris diffractometer (Netherlands). The diffraction
data were collected at 40 kV and 15 mA in a step mode with a
step size of 0.04°, in the 2θ range from 10° to 70°.

Fourier-transformed infrared spectroscopy (FTIR) analysis was
performed using Nicolet iS50 FT-IR spectrometer (Thermo

FIGURE 1
XRD (A), the morphology of synthesized ACP_CIT (B), and FTIR of Non-crosslinked GELMA, radically GELMA (non-crosslinked and crosslinked), and
GELMA-ACP_CIT nanocomposite hydrogel (C).
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Scientific, Waltham, MA, United States). Experiments were
performed in transmission mode from the wavenumber ranging
from 4,000 to 400 cm-1 with a resolution of 4 cm-1 (64 scans).

The morphology and particle size of ACP_CIT were evaluated
by Field Emission Gun Transmission Electron Microscopy (FEG-
TEM, Tecnai G2 F30, United States) operated at 300 kV. The sample
preparation was as follows: a small amount of ACP-CIT powder was
dispersed in isopropyl alcohol and sonicated in an ultrasonic bath.
Further, the samples were placed on a carbon-coated grid and dried
before analysis.

2.4 Synthesis of the hydrogels

Two sets of hydrogels were prepared: GELMA and
nanocomposite GELMA-ACP_CIT. The GELMA hydrogel was
prepared by dissolving 5 mL of (5% w/v) GELMA in Milli-Q®

water at 50°C. Subsequently, the nanocomposite hydrogel was
prepared by adding 100 mg of ACP_CIT (2% w/v) in 5 mL of
(5% w/v) GELMA solution and stirred for 10 min at 500 rpm.
Subsequently, 100 μL of APS (10% w/v) and 10 μL TEMED were
added to GELMA and GELMA-ACP_CIT solution. After mixing,
each hydrogel was poured into the 12 mm diameter and 2 mm
height silicon molds using a displacement pipette. The hydrogels
were allowed to crosslink for 30 min at 37°C.

2.5 Oscillatory shear tests

Oscillatory shear tests were performed with a TA
HR20 rheometer (United States) to examine the hydrogels’
viscoelastic properties. A 20 mm diameter parallel plate geometry
with a solvent trap was used. Each sample was analyzed in triplicate,

presenting average and standard deviation data. The linear
viscoelastic region (LVE) was analyzed by amplitude sweep
analysis, and complex viscosity was performed under a constant
frequency of 1 Hz and shear stress ranging from 1% to 1,000%. The
loss moduli (G″) and storage moduli (G′) were characterized by the
frequency sweep analysis performed under 1% strain under the
frequency range from 0.1 to 10 Hz. All the analyses were performed
at a constant temperature of 37°C in triplicate, and data is presented
as average with standard deviation.

2.6 Field emission scanning electron
microscopy

The micro and nanostructure of samples were examined using a
high-resolution field emission scanning electron microscope SEM/
STEM (Verios 5 UC, Thermo Fisher). SEM images were acquired
utilizing through-lens (TLD) and Everhart-Thornley (ETD)
detectors, operated at 2 kV. The samples were coated with a
10 nm carbon layer using a LEICA EM ACE 200 coater. A low
current and vector scanning approach with a dwell time of 50 ns was
employed to prevent charging and sample damage. Samples were
transferred onto LacyCarbon support film grids for STEM
measurements. Images were captured using a BF
STEM3 detector, operated at 30 kV.

2.7 In vitro analysis

2.7.1 Cell culture maintenance
An osteoblast precursor cell line derived from mouse (Mus

musculus) calvaria (MC3T3-E1, Sigma Aldrich, Germany) was
employed for cellular analysis after ten passages. MC3T3-E1 cells

FIGURE 2
APS/TEMED crosslinked GELMA (A) and nanocomposite GELMA scaffolds containing ACP_CIT (B). Micro and nanostructure analysis of APS/TEMED
crosslinked GELMA (C–E) and nanocomposite GELMA scaffolds containing ACP_CIT (D–F).
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were maintained in an α-MEM medium containing 10vol% Fetal
bovine serum (Gibco Life Science, United States) and 1vol%
penicillium-streptomycin (Thermo Fisher Scientific, Waltham,
MA, United States) at 37°C in a humidified atmosphere of 95%
air and 5% CO2. The cultures of MC3T3-E1 cells were trypsinized by
adding 3 mL of trypsin-EDTA solution. When the cells were
detached, 9 mL of α-MEM medium was added to the T75 flask.
The cells were counted, and 1 × 105 cells/mL were inoculated into
fresh T-75 flasks, followed by incubation at 37°C in a humidified
atmosphere of 95% air and 5% CO2.

2.7.2 Cell harvesting
Cell culture media was removed from the T-75 flask, followed by

adding 5 mL of sterile Dulbecco’s phosphate buffer saline (DPBS)
(Thermo Fisher Scientific, Waltham, MA, United States) to dislodge
loosely attached cells and remove fractions. Then, the DPBS was

discarded, adding 3 mL of 0.25% Trypsin-EDTA (Thermo Fisher
Scientific, Waltham, MA, United States) solution for 3–5 min and
incubating at 37°C for 3–5 min. After detachment of cells, 9 mL of α-
MEM medium was added and mixed well and then transferred to a
centrifuge tube at 350 rpm for 2 min to acquire cell pellet, followed
by redispersion in 3mL of cell medium andmixed well. 100 μL of the
cell suspension was transferred to 96-well plates, later 100 μL of
trypan blue was added, and cells were further counted using a
Neubauer chamber (Neubauer-improved, Paul Marienfeld Gmbh
and Co.Kg, Germany). A solution containing 25,000 cells per ml was
prepared and centrifuged at 350 rpm for 2 min to acquire a
cell pellet.

2.7.3 Cell encapsulation
For the cellular analysis, sterile synthesis of ACP_CIT and GELMA

was performed. All the reagents were passed through 0.22 μmMillipore

FIGURE 3
The viscoelastic properties of the hydrogels were analyzed using oscillatory shear tests: the LVE region of the hydrogel was analyzed by amplitude
sweep (A–C). Investigation of storage and loss modulus of the hydrogels by frequency sweep (D–F). Tan δ analysis (G), and complex viscosity test
analyzing the flow properties of the hydrogels (H).
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filters, whereas calcium citrate and Milli-Q® water were autoclaved
at 121°C for 15 psi for 30 min. The obtained cell pellet
(Section 2.7.2) was mixed in 5% (w/v) GELMA solutions and
crosslinked with sterile filtered 100 μL of APS (10% w/v) and 10 μL
TEMED. The hydrogel was poured into the silicon molds and
allowed to crosslink for 30 min at room temperature. The same
procedure was performed for encapsulation in ACP_CIT-GELMA
hydrogels. The hydrogels were incubated in the α-MEMmedium at
37°C in a humidified atmosphere of 95% air and 5% CO2. The cell
culture analysis was performed for 7 days, and the medium was
changed every 2 days.

2.7.4 Rhodamine phalloidin/DAPI staining
Cell morphology in hydrogels was examined under a

fluorescence microscope (Axio, Carl Zeiss, Jena, Germany).
Samples (n = 3) were treated with 4% formaldehyde solution
for 5 min in the dark. Subsequently, the samples were treated
with 0.1% Triton-X solution for permeation. Further, the samples
were washed twice with HBSS. Afterward, the samples were stained
with 5 μL/mL solution of Rhodamine-Phalloidin staining
(Thermofisher Scientific, United States) for 1 h followed by
1 μL/mL DAPI (Thermofisher Scientific, United States) solution
for 5 min in the dark. Further, the samples were washed, immersed

in HBSS solution, and analyzed under a fluorescence microscope
(Primo Vert Axio, Zeiss, Oberkochen, Germany).

3 Result and discussion

3.1 Characterization

The lack of crystalline order confirms the formation of ACP_
CIT, as shown in Figure 1A. Detailed characterization of ACP_CIT
was reported in our previous publication (Indurkar et al., 2023b).
The FEG-TEM analysis in Figure 1B reveals the spherical
morphology and particle size of ~40 nm of synthesized ACP_CIT.

The FTIR analysis of non-crosslinked GELMA and APS/
TEMED crosslinked hydrogels (GELMA and GELMA-ACP_CIT)
are shown in Figure 1C. The characteristic peaks of O-H and N-H
group stretching vibrations were observed at 3,300 cm-1. The peaks
in the regions 3,100–2,800 cm-1 correspond to the CH2 stretching
vibrations. The characteristics of amide bands of gelatin were
observed around i) 1,632 cm-1 representing C=O stretching of
amide I, ii) 1,533 cm-1 representing N-H bending coupled with
C-H stretching of amide II, iii) 1,232 cm-1 was denoted to C-N
stretching and N-H bending of amide III, iv) 922 cm-1 indicating -C-

FIGURE 4
Fluorescent microscopy of rhodamine-phalloidin (red) and DAPI (blue) staining of MC3T3-E1 cells embedded in GELMA and GELMA-ACP_
CIT hydrogels.
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C- the skeletal stretch of amide IV and v) 615 cm-1 corresponds to
the CH out-off plane skeletal stretch of amide V (Elsayed et al.,
2018). The results indicate that all the amide bands of gelatin remain
intact after crosslinking. It is worth noting that the characteristic
peak around 1,640 cm-1 in the GELMA spectrum corresponds to the
C=C stretching of the methacrylate group, which is too close to C=O
amide-I stretching. Therefore, it is difficult to distinguish and verify
the disappearance of C=C after crosslinking (Fonseca et al., 2020).

3.2 Hydrogel characterization

The synthesized hydrogels are shown in Figures 2A, B. The
GELMA forms transparent hydrogels, therefore making it suitable
for photo-crosslinking. However, the incorporation of ACP_CIT
makes GELMA hydrogels opaque.

Recent studies have revealed that the opacity of the hydrogel
obstructs the photo-crosslinking potential of GELMA.
Nanocomposites GELMA hydrogel containing nanohydroxyapatite
(nHA) revealed incomplete crosslinking of GELMA/nHA inside a
multilayer scaffold (Liu et al., 2019). Similarly, incorporating
amorphous magnesium phosphate in GELMA leads to opaque
hydrogels, making crosslinking difficult and affecting the stiffness of
the hydrogel (Dubey et al., 2020). Crosslinking is essential to maintain
the structural integrity of hydrogel or scaffold. Due to the limitation of
photo-crosslinking, there is a pressing need to develop a chemical
crosslinking approach for creating nanocomposite GELMA hydrogel.
The APS/TEMED chemical crosslinking is a simple approach that
results in quick crosslinking of nanocomposite GELMA hydrogel
containing ACP_CIT, as shown in Figure 2B.

The surface microstructure of APS/TEMED crosslinked
GELMA and nanocomposite GELMA scaffolds containing ACP_
CIT is shown in Figures 2C, D. The nanostructure of the hydrogel
was examining the morphology of the ACP_CIT. The ACP_CIT
nanoparticles maintain their spherical morphology and are well
embedded into the GELMA matrix, as shown in Figure 2F. The
structural analysis has indicated that the APS/TEMED crosslinking
does not hamper the spherical morphology of ACP_CIT.

3.3 Oscillatory shear tests

Analyzing the linear viscoelastic region of the hydrogels (LVE) is the
first step in evaluating the viscoelastic properties shown in Figures 3A–C.
The storage modulus (G′) represents the elastic property of viscoelastic
material, indicating the stored deformation energy. In contrast, the loss
modulus (G″) corresponds to the viscous property of viscoelastic,
indicating deformation energy lost through internal friction when
flowing. When G′>G″, the material possesses viscoelastic solid-like
properties. On the other hand, when G′<G″ the material possesses
viscoelastic fluid-like behavior (Indurkar et al., 2020). The GELMA
(non-crosslinked), GELMA and GELMA-ACP_CIT exhibits G′>G″
corresponding to viscoelastic gel-like behavior with LVE region
falling within 10% of strain. On increasing the strain, the crossover
point is reached where G′ = G″. After the crossover point, the three-
dimensional hydrogel network completely ruptures (Pereira et al., 2022).

The polymeric chain in the non-crosslinked hydrogel is free and
exhibits a high degree of freedom. Therefore, the ability to withstand

irreversible strain-induced deformation is high, so the crossover point of
GELMA was observed at 501% strain. However, after crosslinking with
APS/TEMED, the polymeric chains are linked together, observed from
enhancement in G′ and G″; therefore, the ability to withstand
irreversible strain-induced deformation is reduced. Incorporating
ACP_CIT in GELMA hydrogel enhances the crossover point to
158%, imparting the ability to withstand higher stains.

The frequency sweep analysis was performed at a constant strain of
1% within the LVE region. The G′ and G″ were analyzed against
frequency, as shown in Figures 3D–F. At lower frequencies, the G″ of
non-crosslinked GELMA hydrogel dominates over the G′ value
corresponding to the sol-gel behavior. With increased frequency, the
G′ drastically increases and takes over G″ values. Conversely, theG′ and
G″ of GELMA andGELMA-ACP_CITwere independent of frequency.

The G′ and G″ of each sample were analyzed at 1 Hz frequency.
The non-crosslinked GELMA hydrogel has very low G′ of 0.12 Pa and
G″ of 0.016 Pa, indicating its fragile nature (Dulong et al., 2024). The
moduli of theGELMAhydrogel were found to be frequency-dependent.
G″ dominates G′ at lower frequencies while at higher frequencies G′
exceeds G″ reflecting its viscoelastic liquid-like behavior (Figure 3D).
Upon crosslinking, the moduli of both GELMA and GELMA-ACP_
CIT become independent of frequency exhibiting viscoelastic gel-like
properties (Ramli et al., 2022). The crosslinking significantly enhanced
the moduli of the GELMA, with G′ increasing to 82.58 ± 13 Pa and G″
of 2.25 ± 0.5 Pa (Figure 3E). Furthermore, incorporation of ACP_CIT in
GELMA has resulted in further increase with G′ reaching to 318.8 ±
6.5 Pa and G″ of 11.3 ± 0.2 Pa, thus confirming the reinforcement effect
(Figure 3F). The moduli of GELMA and GELMA-ACP_CIT were
independent of frequency; therefore, further analysis was performed on
these two samples.

Tan δ is the G″ to G′ ratio often used to analyze the damping
factor of the hydrogels represented in Figure 3G. When the tan δ >
1 sample behaves like a viscous liquid, the tan δ < 1 sample behaves
more like an elastic solid (Yan and Pochan, 2010). At 1 Hz, the tan δ
of GELMA was 0.035 ± 0.0006. On incorporating ACP_CIT, the
polymer movement may have been confined, thus decreasing the tan
δ (0.027 ± 0.002) of GELMA-ACP_CIT (SudarshanRao, 2021).

Shear-thinning or pseudoplastic flow behavior is essential to
pressure or mechanically assisted extrusion-based biofabrication
systems. For example, during extrusion, the hydrogel or bioink
undergoes stress through a small orifice, adversely affecting the
viability of the suspended cells and the shape fidelity of the printed
construct. However, shear-thinning properties reduce the shear
stress, diminishing the risk of cell death and maintaining the
printed construct’s pattern fidelity (Moon et al., 2024). The flow
behavior of hydrogel shown in Figure 3H demonstrates the shear-
thinning behavior of the GELMA and GELMA-ACP_CIT hydrogels
(Vlachopoulos and Strutt, 2016). Therefore, these hydrogels can
effectively be utilized as biomaterials for pressure or mechanically
assisted extrusion-based biofabrication systems.

3.4 Rhodamine phalloidin and DAPI staining

In vitro analysis evaluated the effect of the APS/TEMED crosslinking
and ACP_CIT incorporation in GELMA hydrogel. The fluorescent
microscopy images are presented in Figure 4, which show the
cytoskeleton (red) and the nucleus (blue) of MC3T3-E1 cells. Cell

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Indurkar et al. 10.3389/fbioe.2024.1421415

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1421415


attachment was observed on the first day, and by the seventh day, the
cells were spread and distributed well on the hydrogel, confirming the
cytocompatibility of APS/TEMEDcrosslinking. The preliminary analysis
indicates that APS/TEMED crosslinking and incorporation of ACP_CIT
have not shown adverse effects on the cytocompatibility of GELMA.

4 Conclusion

The nanocomposite hydrogels of GELMA containing ACP_CIT
were developed successfully using chemical crosslinking. The FTIR
analysis revealed that the APS/TEMED crosslinking did not alter the
functional groups of GELMA. Subsequently, the oscillatory shear
tests revealed that the non-crosslinked GELMA possesses very low
G′ and G″ values (less than 0.1 Pa). On crosslinking, G′ (82.58 ±
13 Pa) and G″ (2.25 ± 0.5 Pa) were significantly enhanced imparting
structural integrity to the scaffold. On incorporation of ACP_CIT in
GELMA, a further enhancement in G′ (318.8 ± 6.5 Pa) and G”
(11.3 ± 0.2 Pa) confirms the reinforcement potential. Finally, the
in vitro analysis has concluded that APS/TEMED and ACP_CIT do
not obstruct the growth of MC3T3-E1 cells. The preliminary
analysis has shown the cytocompatibility of chemical crosslinking
and ACP_CIT incorporation in GELMA hydrogel. Therefore, the
APS/TEMED crosslinking can be further explored in various
processing approaches (bioprinting, electrospinning, electro-
spraying, freeze-dyring) to develop GELMA-based nanocomposites.
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