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In recent decades, there has been ongoing development in the application of
computer vision (CV) in the medical field. As conventional contact-based
physiological measurement techniques often restrict a patient’s mobility in the
clinical environment, the ability to achieve continuous, comfortable and
convenient monitoring is thus a topic of interest to researchers. One type of
CV application is remote imaging photoplethysmography (rPPG), which can
predict vital signs using a video or image. While contactless physiological
measurement techniques have an excellent application prospect, the lack of
uniformity or standardization of contactless vital monitoring methods limits their
application in remote healthcare/telehealth settings. Several methods have been
developed to improve this limitation and solve the heterogeneity of video signals
caused by movement, lighting, and equipment. The fundamental algorithms
include traditional algorithms with optimization and developing deep learning
(DL) algorithms. This article aims to provide an in-depth review of current Artificial
Intelligence (AI) methods using CV and DL in contactless physiological
measurement and a comprehensive summary of the latest development of
contactless measurement techniques for skin perfusion, respiratory rate, blood
oxygen saturation, heart rate, heart rate variability, and blood pressure.
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1 Introduction

1.1 Computer vision

Computer Vision (CV) is a branch of science that studies how to make machines “see.”
CV aims to generate a high-level understanding of the input images or videos, enabling
computers to have similar levels of human perception and task execution. CV trains
machines to perform these functions, but they rely on cameras, data, and algorithms to do
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their work in less time, unlike humans, who are dependent on the
retina, optic nerve, and visual cortex (Aloimonos and Rosenfeld,
1991). CV is widely used in many industries, such as Medicine,
Energy, Public Utilities, Manufacturing, and Automotive industries.
A key factor driving the growth of these applications is the steady
flow of visual information from smartphones, security systems,
cameras, and other visual inspection devices. The rapid progress
of CV over the past decade is primarily due to three factors: 1) the
maturity of deep learning (DL), 2) strides in Graphic Processing
Unit (GPU), and 3) the open sourcing of large, labeled datasets with
which are used to train these algorithms (Esteva et al., 2021).

1.2 Remote imaging photoplethysmography

Photoplethysmography (PPG) is used to measure blood flow
and evaluate the physiological status of patients. Its principle is
based on the optical intensity change of reflected or transmitted light
from a light source that passes through a microvascular tissue bed
with pulsatile blood flow (Tamura, 2019). The PPG waveform signal
contains two key components: 1) the alternating current (AC)
component, which fluctuates with the change of blood volume
between systole and diastole in the cardiac cycle, and 2) the
direct current (DC) component, which corresponds to the optical
signal transmitted or reflected from the tissue and is dependent on
the tissue structure and the average arterial and venous blood
volumes (Tamura, 2019). Based on this principle, PPG can
represent physiological signs related to blood flow, such as heart

rate, pulse, blood pressure, blood oxygen saturation, and skin
perfusion. While PPG sensors have several advantages over ECG
sensors (easy to use, low cost, convenient, etc.), direct skin contact is
needed to restrict a patient’s movement. It also has limited
application in patients with significant skin conditions (burns/
ulcers/wounds) and immature skin (infants).

As the application of CV in the field of healthcare, remote
imaging photoplethysmography is a new technique based on the
principle of PPG, which can sense the blood flow signal of outer
skin layers (Marcinkevics et al., 2016). Compared to traditional
contact PPG (cPPG), rPPG uses imaging devices (including
industrial cameras, webcams, cell phone lenses, and other
imaging devices) rather than a single sensor (e.g.,
photodiodes). This allows simultaneous assessment of
multiple skin areas remotely. The skin’s absorption and
reflection of light will change according to the patient’s
hemodynamic status. Minor fluctuations of reflected light will
carry specific physiological information, such as
microcirculation perfusion, respiratory rate (RR), Oxygen
saturation (SpO2), pulse rate (PR), heart rate (HR), and
blood pressure (BP), etc., which can be read by traditional
cameras (Jeong and Finkelstein, 2016; Gupta et al., 2020;
Rasche et al., 2020; Lan et al., 2022; Boccignone et al., 2023).
Figure 1 shows the schematic diagram of the rPPG principle.
Presently, a research hotspot in the CV field is on achieving
high-precision rPPG techniques in a low-cost and simplified
way. The development and optimization of algorithms is one
way to accomplish this goal. In search of the most robust

FIGURE 1
The schematic diagram of rPPG principle. The absorption and reflection of light by the skin varies according to the hemodynamic status under light
sources, such as sunlight or lamps. Such changes will be recorded by imaging devices (including industrial cameras, webcams, cell phone lenses and
other imaging devices) in the form of videos or pictures. Through the processing of computer and algorithm, rPPG waveforms that represent
physiological information can be obtained from these videos.
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algorithm for the extraction of the BVP signal from video
recordings, numerous methods have been proposed: color-
space-based [including red-green-blue (RGB), YCbCr, and
hue-saturation-value (HSV)], blind-source-separation-based
[BSS-based, including independent/principal component
analysis (ICA and PCA), ensemble averaging (EA), empirical
mode decomposition (EMD), and singular spectrum analysis
(SSA)], model-based [including chrominance-based (CHROM),
blood-volume-pulse-vector based (PBV), and plane-orthogonal-
to-skin (POS)], and data-based [including spatial-subspace-
rotation (2SR)] (Chaves-gonzalez et al., 2010; Poh et al., 2010;
Sikdar et al., 2016; Wang et al., 2016; Wang et al., 2017a; Yu et al.,
2021; Harford et al., 2022; Haugg et al., 2023). Table 1
summarizes these non-DL rPPG signal extraction methods.

1.3 Deep learning

In recent years, the maturity and ongoing progress in the space
of DL have injected new vitality into the CV field. DL-based CV

techniques have been used in cardiology, pathology, dermatology,
ophthalmology, and gastroenterology (Esteva et al., 2021). DL uses
simple representations to extract abstract and higher-level features
from data and uses artificial neurons as functional units to simulate
human cognitive reasoning. The process of learning to perform tasks
is called model training, and the ultimate goal of training is to
minimize the error between the predicted results of the model and
the ground truth. DL often involves three critical types of deep
neural network (DNN): recurrent neural network (RNN), generative
adversarial network (GAN), and convolutional neural network
(CNN). At present, CNN is the most widely used CV. The
structure of CNN is composed of three layers: 1) an input layer,
2) a hidden layer, and 3) an output layer. The process of CNN image
classification usually includes dataset labeling, model learning, and
performance evaluation (Helmy et al., 2023). This model can train a
deeper network structure, extract more abstract image features, and
reduce the number of neuron parameters to obtain better results
with higher efficiency. DL has been successfully applied in
contactless physiological and pathological measurements in
recent years. Much has been achieved in the CV field,

TABLE 1 Summary of non-DL rPPG signal extraction methods.

Non-DL rPPG
method

Summary

Color-space-
based

RGB Based on the premise of high similarity between the green channel signal and the rPPG signal, the rPPG signal is
characterized by the ratio of the green channel to the other two channels or sum, which can retain all the information of
the RGB three channels (Haugg et al., 2023). However, only two distortions can be eliminated by linear combination of all
three color channels which is usually not sufficient.

YCbCr Skin pixel clustering is performed on the Cb-Cr plane of the YCbCr color space, then the Cb and Cr components are
expanded n times to generate a single BVP signal. This method can effectively reduce the signal distortion caused by the
subtle change of skin color between the frames (Yu et al., 2021).

HSV Skin baseline hue and saturation vary depending on the skin and lighting colors, while HSV color model can best indicate
skin color changes independent of ambient luminance (Chaves-gonzalez et al., 2010).

BSS-based ICA As a multi-dimensional statistic analysis method, independent component analysis can recover independent signals from
a set of observations composed of linear or nonlinear mixtures of the underlying sources, such as BVP signals
representing physiological measurements (Poh et al., 2011; Zhang et al., 2017; Favilla et al., 2019; Qi et al., 2019; Shi et al.,
2023). However, the assumption that ICA depends on the independence of data components may lead to the inaccuracy
of its application to components with correlation.

PCA The function of principal component analysis is to reduce dimensionality and extract major (i.e., of larger energy) and
orthonormal components from signals or data (Lee et al., 2021; Alsheikhy et al., 2023; Lie et al., 2023). However, it may
lose some important information, such as the respiratory signal hidden in the motion artifacts.

EMD Empirical mode decomposition is a powerful analytical tool used to effectively describe non-linear and non-stationary
time series with rapidly varying frequencies (Lv et al., 2021; Shi et al., 2023). However, when there are intermittency
caused by abnormal events (such as discontinuous signals, impulse interference and noise) in the signal, the wrong time-
frequency distribution may be obtained, resulting in inaccurate results.

SSA Self-adaptive SSA is a global analysis method based on phase space reconstruction which decomposes original signal into
multiple variable components and choose appropriate components automatically to reconstruct pulse wave according to
singular value (Wang et al., 2020). However, how to determine the threshold to distinguish signal components from noise
components according to singular values is a problem.

Model-based CHROM Chrominance-based signal processing method explicitly extract pulse signal against specular and motion artifacts. The
RGB channels were projected into a chrominance subspace where the motion component was greatly eliminated (Song
et al., 2020; Song et al., 2021; Zheng et al., 2022; Van et al., 2023).

POS POS defines a plane orthogonal to the temporally normalized skin-tone direction through using 2SR (a data-driven
approach), so require less accurate knowledge of the BVP signature and are more tolerant to the amount of distortions,
and the order in which it eliminates distortions is the opposite of CHROM (Shoushan et al., 2021; Zhang et al., 2023).
CHROM is expected to be more vulnerable due to a (over time) consistent difference between the assumed and actual
directions of the specular distortion for each individual, while POS is expected to be more vulnerable to inhomogeneous
illumination spectra

Abbreviations: rPPG, imaging photoplethysmography; RGB, red-green-blue; ICA, independent component analysis; PCA, principal component analysis; EMD, empirical mode decomposition;

SSA, singular spectrum analysis; CHROM, chrominance; POS, plane-orthogonal-to-skin; HSV, hue-saturation-value; BSS, blind-source-separation.
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particularly in image registration, image retrieval, and image
reconstruction and enhancement. With the support of the ever-
increasing availability of datasets, DL will be pivotal in the rapid
progress in medical image processing and analysis.

2 Peripheral blood perfusion

Changes in skin and flap color, temperature, or overall
appearance (spots, swelling, etc.) often reflect a disease process.
However, these changes are conventionally identified during clinical
examination, which can be subjective and difficult to quantify.
Digital cameras can provide an objective tool for real-time
monitoring of skin changes, and this can be enhanced with rPPG
signal analysis. Studies have shown that the amplitude of AC
components in rPPG waveforms usually fluctuates with changes
in central blood pressure or skin perfusion caused by local
vasoconstriction (Tusman et al., 2019). The objective
measurement of skin and flap blood perfusion can be achieved
through the joint analysis of AC and DC components.

2.1 Skin perfusion

rPPG signals are affected by the wavelength of light, measurement
site, motion artifacts, ambient light intensity, and ambient temperature
(Tamura, 2019). Greenlight PPG signal can accurately reflect the change
of skin blood flow caused by ambient temperature changes, while
infrared light PPG signal does not reflect the change of skin blood flow
under cold stimulation. Thus, skin blood perfusion information can be
obtained using green light signals (Maeda et al., 2011). Furthermore,
RGB color space is easily affected by luminance. By converting RGB
pixel intensity values into the HSV color model, the interference of skin
color changes related to ambient brightness can be eliminated (Chaves-
gonzalez et al., 2010). Based on these, Harford et al. (2022) explored
whether rPPG signals and color measurements could detect skin
perfusion changes induced by drugs (phenylephrine and glyceryl
trinitrate). They confirmed that skin perfusion changes induced by
central (rather than local) administration could be detected from the
rPPG waveforms of the skin. Similarly, rPPG signal intensity positively
correlates with laser speckle imaging (LSI), used as a reference index for
evaluating skin perfusion. This will enable practical evaluation of
autonomic nervous system activity and skin perfusion (Rasche et al.,
2020). In addition, using the rPPG positioning technique with a lock-in
amplification algorithm and volumetric scan of the facial skin using a
handheld swept-source optical coherence tomography (SS-OCT), the
system can display the 3D structure of human skin microvasculature
and obtain high-fidelity video of hemodynamic signals (He and Wang,
2022). The structural design of the exoscope combined with
capillaroscopy and rPPG technique can reliably visualize the skin
micro-vessels and study their local morphological characteristics.
This can be used for the diagnosis and treatment of diseases related
to blood microcirculation disorders (Machikhin et al., 2021). At the
cellular level, vascular endothelial cells regulate vascular tension by
releasing vasoactive substances such as nitric oxide and prostacyclin. As
such, the changes of skin microcirculation perfusion caused by local
heating detected by rPPGmay also be extrapolated and used to evaluate
endothelial function (Kamshilin et al., 2022a).

For different application scenarios, the imaging modalities and
algorithms are different. Still, the fundamental purpose is to provide
more auxiliary information for clinical diagnosis and treatment
based on the detection of skin microcirculation. However, there
are still some defects in the detection of skin microcirculation
perfusion, such as local vascular disorders that will cause direct
disturbance to the peripheral blood pulsation and contaminate the
quantified measurements of microcirculation. In addition, the
microcirculation situation may differ among individuals, and the
algorithm’s applicability may need to be further optimized, such as
the need for a large number of healthy datasets for correction or even
considering additional imaging modalities to provide trans-regional
calibration for microvascular measurements.

2.2 Flap perfusion

rPPG technique also performs well in post operative tissue
perfusion and wound evaluation (Zaunseder et al., 2018; Mamontov
et al., 2020; Kamshilin et al., 2022b; Lai et al., 2022). A systematic review
published in 2022 evaluated the performance of near-infrared
spectroscopy (NIRS) and hyperspectral imaging (HSI) in testing for
flap failure following reconstructive surgery (Lindelauf et al., 2022).
While both techniques allow for non-invasive skin flap blood supply
monitoring, each modality has limitations. NIRS monitoring of tissue
blood oxygen is achieved through a contact sensor (non-aseptic).While
continuousmonitoring can be achieved, it is unsuitable for all flap types
and intraoperative monitoring. On the other hand, HSI is a contactless
method that monitors flap perfusion. This can be applied to the
intraoperative monitoring of all flap types (e.g., fascio-cutaneous,
muscle, intestinal). However, the main limitation is its insufficient
real-time monitoring ability. This makes postoperative monitoring
tedious and labor-intensive. In recent times, Schraven et al. (2023)
achieved continuous analysis of local flap perfusion based on the rPPG
technique. This study utilized high-resolution and fully digital surgical
microscopy for imaging. It put forward three parameters for evaluating
perfusion quality robustly: perfusion index, correlation coefficient of the
analyzed rPPG signal with a reference rPPG signal (a reference skin
region), and magnitude of the flap. This identified flaps with perfect
post operative reperfusion, specific incidents (e.g., vasospasm) during
reperfusion, and complete failure. This allowed for early, immediate
anastomotic revision to prevent flap failure. This promising result solves
the defect of NIRS contacting the flap and overcomes the limitation that
HSI can not be continuously monitored. However, this study only
explored the practical results of rPPG monitoring during surgical
procedures. Postoperative monitoring is also crucial and more
complicated in clinical practice. Several parameters are used to
distinguish arterial crisis and venous crisis, including flap color, flap
temperature, capillary refill time, and swelling degree of the
flap. However, these parameters are not absolute, and the experience
ofmicrosurgery practitioners is more important. Therefore, establishing
a multi-parameter DL model to identify flap crises and achieve early
warning is a promising way to solve this clinical problem. Figure 2
shows an ideal pipeline for contactless monitoring of flap blood supply.

A Taiwan study developed a smartphone application called
“How’s the Flap” based on Apple’s CoreML framework for early
flap crisis warning (Hsu et al., 2023). The datasets of this study
contain internal training (230 cases of normal vs. 34 cases of
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congestion) and external validation (240 cases of normal vs.
16 cases of congestion), including 840 photographs of flaps with
varying backgrounds, illumination intensity, flap sizes, and shapes.
The accuracy of the model’s training and validation datasets
reached 0.922 and 0.923, respectively. Finally, the Application
was used to analyze 921 photographs to distinguish flap
congestion, and the accuracy was 0.953. Although this study
trains a satisfactory model, it is only suitable for venous crises
that are easy to detect in clinical practice, and it may be more
important to identify critical arterial crises. Therefore, the random
forest ML model was proposed to identify arterial and venous
insufficiency from images (Huang et al., 2023). The model was
trained (80%) and validated (20%) using 805 flap photographs of
176 patients (555 cases of normal, 97 cases of arterial insufficiency,
153 cases of venous congestion), and Shapley Additive
Explanations (SHAP) was used to explain the model. The
results showed that the temperature and RGB values of flap
color could predict the arterial and venous crises, respectively,
and the model’s accuracy was 0.984. However, the photographs
were segmented to enlarge datasets, which may lead to less
generalizability and high homogeneity of the algorithm. In
addition, the proposed model’s robustness is worth discussing
because the flap photographs were taken in a standardized
environment (the same background and illumination intensity).

3 Respiratory rate and oxygen
saturation

3.1 Respiratory rate

RR is a vital sign that aids in detecting and evaluating respiratory
dysfunction. Conventional electrocardiography (ECG) sensors and
respiration belts are reliable methods for monitoring RR. The

change of respiratory-induced rPPG waveform is usually related
to the effect of respiration on cardiac activity, namely, respiratory-
induced variation (RIV). The effect of respiration on the intensity of
BVP, amplitude of cardiac output, and HR will enable rPPG
waveforms to be used to measure RR (Buda et al., 1979).

3.1.1 Conventional methods for contactless RR
estimation

Two main kinds of approaches have been proposed in the
literature to achieve contactless RR estimation: 1) methods based
on the direct extraction of morphological features attributable to
breathing (that is, RIV) (Scully et al., 2012; Nam et al., 2014; Lázaro
et al., 2015; Charlton et al., 2018) and 2) methods aimed at isolating
the motion trend due to HR and RR (Wei et al., 2017; Schrumpf
et al., 2019), implicitly related to RIV. For the first method,
incremental merge segmenting (IMS) is the most utilized
method. It uses several solutions to fuse the morphological
features of respiration (Karlen et al., 2015). The second method
is the most promising, single-channel BSS-based method to separate
RR from HR and noise. The EMD and SSA are commonly used
methods (Huang et al., 1998; Boccignone et al., 2023). Research
shows that the morphological estimation of RIV is more reliable
than those produced by a single-channel BSS-based method
(Boccignone et al., 2023). However, a BSS-based method based
on the selected dual region of interest (ROI) developed by Wei
et al. (2017) obtained facial BVP and the respiratory signals
corresponding to respiratory motion artifacts, thus achieving
contactless synchronous measurement of RR and HR. Unlike
other studies that rely on sophisticated video tracking and
detection algorithms to attenuate motion artifacts, this algorithm
takes advantage of motion artifacts and obtains hidden respiratory
signals. Extension and improvement of this method may have the
potential to detect multiple physiological indicators at
the same time.

FIGURE 2
An ideal pipeline for contactless monitoring of flap blood supply. Firstly, the DL-based method is applied to original videos or images to realize
super-resolution. Then the DL-based method is used to accomplish the preprocessing steps such as ROI selection, segmentation and tracking.
Additionally, RGB signal can be converted into a HSV model with more detailed information. And the raw rPPG signal is obtained through a series of
algorithms. Finally, the DL-based method is used to process the raw rPPG signal to obtain accurate physiological information.
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Unlike visible and near-infrared imaging systems, infrared
thermography (IRT) does not require additional lighting and can
work in a completely dark environment. For people who need to
monitor asleep breathing (e.g., people with a substantial risk of sleep
apnea) and critically ill patients who often wear oxygen masks, the
rPPG signal provided by IRT may be a way of contactless
monitoring of RR (Li et al., 2014a; Chan et al., 2019; Zhu et al.,
2019). The skin of infants is fragile and sensitive to light stimulation.
It is also challenging to use their small noses as an anatomical
marker. In this instance, IRT based on a “black box” algorithm is a
viable choice to evaluate RR (Pereira et al., 2019). However, the
robustness of these algorithms’ development based on ward and
family scenarios may not perform well. In complex public settings,
the robust breath-tracking method based on the mobile thermal
imaging system proposed by Cho et al. (2017) counteracts the
confounding effects of ambient temperature changes and motion
artifacts. This would enable accurate RR assessment in highly
dynamic thermal scenes.

3.1.2 DL model for contactless RR estimation
Hardware improvements only provide limited gains in non-

contact-based measurement accuracy. DL is a way to achieve
high-precision rPPG technique in a simple and low-cost approach
and is a current research hotspot in the CV field. The DL algorithm
with CNN may achieve the purpose of extracting accurate rPPG
signals from low-quality videos. BlazeFace and FaceMesh are face
detection models based on MobileNetV1/V2 architecture, which can
accurately locate the ROI (Bayar et al., 2022; Maity et al., 2022; Jewel
et al., 2023; Kolosov et al., 2023). Accurate remote contactless RR
estimation can be achieved with Eulerian Video Magnification
(EVM) and rPPG techniques (Kolosov et al., 2023). However, the
throughput, power consumption, efficiency, and value (throughput/
cost) may differ when it runs on different commercial off-the-shelf
hardware platforms. In addition, a multi-task temporal shift
convolutional attention network (MTTS-CAN) also achieves
contactless vital measurements and predicts both rPPG and
respiratory signals (Liu et al., 2020). However, it will require
complicated preprocessing. The Multi-task Siamese (MTS) model
proposed by Lee et al. (2022a) combines the advantages of the
Siamese neural network (based on 3D CNN) and multi-task
architecture. This reduced the number of parameters by 16 times
and accurately predicted heart and respiratory signals in a facial-
based video. The MTS model outperformed the single-task model as
well as the conventional multitask learning model for RR estimation,
was computationally lightweight and may be helpful for applications
in smartphones or portable devices. As mentioned, thermal imaging
has many advantages and is one of the essential means to achieve
contactless RR detection. However, due to the lack of information,
selecting and tracking ROI in neonatal thermal images is challenging.
One way around this is using the YOLO5Face (based on CSPNet)
detectionmodel to recognize the ROI in an RGB image and register it
to thermal imaging. This can effectively solve the problem of
extracting RR from neonatal thermal photos (Maurya et al., 2022).
Whether based on the motion signal and rPPG signal in RGB video
or the respiratory signal in thermal imaging video, the DL model can
be trained through rich datasets to realize the dynamic estimation of
RR. The only thing we need to do is to continuously simplify the
algorithms and achieve robust RR estimation in the future.

3.2 Oxygen saturation

SpO2, the relative concentration of oxygenated hemoglobin
relative to total hemoglobin, is one of the vital physiological
indicators commonly used to monitor a patient’s respiratory
function. The traditional finger-type photoelectric sensor is
inconvenient for patients requiring long-term continuous
essential monitoring. With rPPG techniques, remote pulse
oximetry (RPO) can help with contactless vital monitoring. The
principle that RPO can assist in SpO2 evaluation is based on the ratio
of AC/DC ratios between two wavelengths of interest proposed by
Beer-Lambert ‘s law. The limitation of this law is that it only
considers the absorbance of chromophores in skin tissue and
ignores the existence of light scatter (Kocsis et al., 2006). The
robustness of RPO is also related to camera performance, light
wavelength, motion artifacts, ambient light intensity, individual
differences, posture, and temperature (Wieringa et al., 2005;
Humphreys et al., 2007; Kong et al., 2013; Shao et al., 2016;
Moço et al., 2019; Moço and Verkruysse, 2020). For visible light,
different wavelengths penetrate the skin at different depths. The
rPPG signals obtained by using blue and green wavelengths as light
sources come from the arterioles of the upper dermal layers, while
the signals received by using red wavelengths come from subdermal
tissue (Verkruysse et al., 2017). This depth-gap may be more
apparent when the skin properties or physiological conditions
change (e.g., posture and temperature changes), so the robustness
of visible light-based RPO in detecting SpO2 may be reduced (Moço
et al., 2019; Moço and Verkruysse, 2020). However, these factors that
affect the robustness of RPO are challenging to solve simultaneously,
whether the improvement of equipment or algorithm is more aimed
at a particular factor.

3.2.1 Multi-spectrum for enhancing RPO
robustness

Applying a multi-wavelength light source or multi-spectral
camera can effectively reduce the decline of RPO accuracy caused
by the changes in ambient light. Wieringa et al. (2005) verified the
feasibility of applying a three-wavelength light source to RPO
measurement for the first time, but this method has not been
well applied due to low SNR. Although the joint use of a dual-
wavelength light-emitting diode array and semiconductor camera
can estimate SpO2 measurements, its acquisition frame rate is low
and is not highly accurate (Humphreys et al., 2007). The CMOS
camera with trigger control function alternately records the lip rPPG
signals of two specific wavelengths. This has the best SNR under
orange and near-infrared wavelengths combined illumination.
However, the accuracy of this method is still dependent on many
surrounding environmental factors (Shao et al., 2016). While Kong
et al. (2013) achieved accurate SpO2 measurement in ambient light
using two cameras with narrowband filters to capture rPPG signals
at two different wavelengths; the required equipment is complex and
will not be readily applicable in the clinical setting.

Dynamic spectrum (DS) has the advantage of suppressing
individual differences and measurement conditions. Li et al.
(2014b) applied this theory to extract DS from the frequency
domain of rPPG signals to calculate SpO2. The multispectral
camera plays a significant role in material composition detection
based on spectral imaging and can achieve fast and contactless
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material detection and recognition. Lan et al. (2022) used the multi-
spectral camera to obtain the multi-wavelength rPPG signal from
facial video, extract the DS values of multiple wavelengths, and
obtain SpO2 measurements. This method simultaneously solves the
influence of ambient illumination and individual differences on
rPPG signals. It can potentially meet the needs of contactless SpO2

detection in a convenient and fast way. To further improve the
robustness of RPO when detecting SpO2 under visible light sources,
some calibration methods based on skin color, posture, and
temperature changes have been proposed (Guazzi et al., 2015;
Moço et al., 2019; Moço and Verkruysse, 2020).

3.2.2 Smartphone used for RPO
However, multispectral-based devices (light sources and

cameras) are often inconvenient, expensive, and complex. The
development of RPO based on smartphones has thus attracted
more attention. Smartphones can record and analyze the varying
color signals of a fingertip placed in contact with its optical sensor
and can effectively evaluate HR, RR, and SpO2 (Scully et al., 2012;
Nam et al., 2014; Karlen et al., 2015; Lázaro et al., 2015). Previous
studies have successfully used rPPG signals from smartphones to
estimate SpO2 (based on the traditional Beer-Lambert law) and
introduced a multiple linear regression (MLR) algorithm to calibrate
the RPO robustness decline caused by changes in physiological
conditions (Sun et al., 2021). For special populations (e.g., children),
this method has also been proven to monitor RR and intrathoracic
pressure. It can also assist in diagnosing pneumonia and
stratification of its severity (Lucy et al., 2021). Although the SpO2

detection based on Smartphones generally reflects peripheral tissue
SpO2 and can not simulate the arterial SpO2 provided by the contact
pulse oximetry, the mobile device with the built-in color camera as a
remote sensor and flashlight as illumination is simple and readily
available. With rapid advancements in smartphone technology,
more opportunities for medical applications will arise. This will
help to improve access to medical technology in undeveloped areas,
as well as telehealth care and home health monitoring. Therefore,
integrating accurate RR and RPO monitoring techniques into
smartphones will accelerate the development of telehealth.

4 Heart rate/pulse rate

Cardiovascular pulse can be estimated and finally used in PR
and HR estimation by analyzing the temporal signals of micro-
motion or color variations across time. Studies have shown that
for consumer cameras (e.g., a webcam or mobile camera), facial
video is more reliable for evaluating HR than other body parts
(such as wrists and calves) (Wang C. et al., 2018; Van der kooij
and Naber, 2019). In the past decade, numerous studies have been
conducted on HR detection through rPPG signals provided by
facial video. There is currently a wide variety of model designs,
parameter settings, algorithms, and equipment. Several methods
have been developed for HR estimation using dimensionality
reduction (e.g., BSS-based method), optical modeling (e.g., green
channel), motion-based methods, and machine learning (ML).
These methods are usually applied to face video processing, face
BVP signal extraction, and HR computation phases to achieve
HR detection (Wang C. et al., 2018).

Face video processing includes face detection and tracking, skin
segmentation, and ROI selection. These processes aim to detect the
face, improve the motion robustness, reduce the quantization error,
and prepare the feature signal for further BVP signal extraction
(Huang and Dung, 2016; Gudi et al., 2020; He et al., 2021; Woyczyk
et al., 2021). However, some scholars have proposed a method of
extracting HR from the whole video by ignoring the ROI selection
and tracking process. However, this method is only suitable for
instances with a stable video background environment over time (for
example, sleep monitoring) (Wang W. et al., 2018). BVP signal
extraction includes several postprocessing methods, such as
bandpass filtering, detrending, and wavelet transform. This
improves the accuracy of HR estimation by cleaning, filtering, or
denoise rPPG signal (Huang and Dung, 2016; He et al., 2021). HR
computation methods are divided into time domain analysis (peak
detection methods) and frequency domain analysis (Malik et al.,
1996; Sun et al., 2012). Some studies have tried to put forward
unsupervised clustering-based methods to replace traditional peak
detection, but they are still not as accurate as the improved BVP
signal extraction method (Lee et al., 2019). A system review
published in 2018 concluded that a facial skin area extraction,
ICA, and peak detection pipeline achieved state-of-the-art
accuracy (Wang C. et al., 2018). With the development of CV,
these methods are being optimized and, at times, used to
complement each other. As subtle facial color changes caused by
cardiovascular activity are affected by noise such as ambient light,
facial expressions, breathing, camera parameters, out-of-plane
movements, and unconscious head shaking, researchers in the
field of CV are mainly interested in how to reduce the
interference of external factors and how to extract BVP signals
quickly and accurately. Figure 3 shows the contactless HR
estimation pipeline based on videos (including three phases).

4.1 Denoising for face video signal
processing

4.1.1 Motion artifacts filtering
Motion artifacts are the most common interference factor in

video recordings. A considerable number of methods have been
developed to reduce or eliminate the error caused by motion
artifacts, including Sub-band rPPG, continuous wavelet
transform, bounded Kalman filter technique, and motion
index (MI) indicator (Wang et al., 2017b; Lin et al., 2017;
Finžgar and Podržaj, 2018; Prakash and Tucker, 2018;
Abdulrahaman, 2023). The extent of eliminating the noise
signals from the pulse signal in rPPG depends on the
dimensionality of the acquired video signal. The Sub-band
rPPG method proposed by Wang et al. (2017b) not only
processes the given RGB signal in high dimension but also
suppresses the distortion signals of each component, which
effectively improves the robustness of multi-wavelength rPPG.
Furthermore, the continuous wavelet transform-based Sub-
Band rPPG method (SB-CWT) increases the degrees of
freedom of distortion elimination by exerting wavelet
transform decomposition on RGB video signals (Finžgar and
Podržaj, 2018). This method has a good SNR and can estimate
PR from RGB video signals without significant motion scenes. In
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addition, combined with a blur identification and denoising
algorithm for each frame and a bounded Kalman filter
technique for motion estimation and feature tracking, motion
artifacts such as blur and noise caused by head motion can be
minimized, but its application in complex and widely moving
scenes needs further research (Prakash and Tucker, 2018). Lin
et al. (2017) designed a motion index (MI) indicator to filter
motion artifacts and used complexion tracking to detect the
moving state of the target. At the same time, the near-infrared
camera could achieve a better dark mode measurement of PR but
ignore the diversity of complexion between individuals. The
wavelet transform involves a two-stage denoising method
proposed by Abdulrahman (2023), effectively removes motion
artifacts, can significantly enhance the reconstructed signal, and
can be applied to HR video monitoring of natural motion (not
quick or large motions) scenes at different times of the day.
Therefore, for different motion scenes, the demand for the
algorithm to filter motion artifacts may be different.
Additionally, the potential effects of varying skin colors
caused by complexion or light source must be considered.

4.1.2 Skin color normalization or enhancement
In addition to motion artifacts, skin color is a crucial factor

affecting the robustness of the rPPG signal. The skin color is affected
by the change in light source and complexion, which brings much

noise to the acquisition of the rPPG signal. The anti-interference
performance of the normalized least mean square (NLMS) adaptive
filter can rectify the illuminance variation. Still, it needs the desired
signal established by a smooth rectifier in the background as the
input, which is difficult to realize (Li et al., 2014c). A Distance-PPG
method based on filter banks can weigh the average skin color
changes in different tracking regions of the face and has an excellent
anti-noise performance. Still, the algorithm implemented by this
method is complex and time-consuming, and the pulse wave
extracted by this method can not see apparent dicrotic waves
(Kumar et al., 2015). Based on these limitations, Wang et al.
(2020) first removed baseline offset and high-frequency random
noise. Then, they used a self-adaptive SSA algorithm to extract
details-preserving pulse waves from facial video in real situations.

Color enhancement can magnify subtle skin color changes.
Unlike the traditional video based on RGB color space, the video
based on YCbCr color space can obtain more subtle skin color
changes, thus realizing the accurate extraction of BVP signals (Yu
et al., 2021). Microsoft Kinect (a multi-mode camera) can provide
additional information for RGB data, namely, depth, infrared, and
skeleton frames, and processes the RGB images through the EVM
color augmentation method to magnify the skin color changes
caused by blood flow, so it is developed as a contactless HR
estimation technique (Gambi et al., 2017). By integrating
denoising techniques such as amplitude selective filter (MASF),

FIGURE 3
Contactless HR estimation pipeline based on videos. The contactless HR estimation pipeline is composed of face video processing, face BVP signal
extraction and HR computation. Face video processing includes video super-resolution, face detection and tracking, skin segmentation, and ROI
selection. BVP signal extraction includes the filter denoising methods for motion artifacts filtering and skin color normalization and the conventional
algorithms for raw BVP signals construction. HR computation methods are divided into time domain analysis and frequency domain analysis. DL
algorithms can be divided into end-to-end type and hybrid type. The former directly establish the mapping from video frames to the target HR values or
BVP signals, while the latter use DL model in conjunction with traditional ML methods or different DL models to deal with different stages of HR
estimation. The face image in the schematic diagram comes from Chicago Face Database (Ma et al., 2015).
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wavelet decomposition, and robust PCA on RealSense (an RGB-NIR
dual-modality camera), depth information can be obtained from
short videos and HR information can be obtained accurately (Lie
et al., 2023). Furthermore, Martinez-Delgado et al. (2022) combined
a face detection algorithm based on OpenCV with the EVM
algorithm to achieve a more accurate HR estimation. In addition,
the EVM video amplification technique is usually used in
combination with the DL model or PCA algorithm in HR
estimation (Kolosov et al., 2023; Lin et al., 2023).

These video signal enhancement methods for filtering motion
artifacts and dealing with skin color changes are the prerequisites for
accurate rPPG signal extraction. However, rPPG signals often need
further processing to obtain the components of BVP signals for
accurate HR measurement. This step usually involves many more
advanced algorithms, such as ICA and CHROM.

4.2 Conventional algorithms for contactless
PR/HR estimation

4.2.1 Single ICA
As a commonly used method for BVP signal extraction, ICA

begins with a random initialization of unmixing matrix with just a
single prerequisite of unmixing matrix dimension, depending on the
number of independent components, which is comparatively trivial
than the wavelet transform method. ICA algorithm regards BVP
extraction as a BSS problem, that is, extracting the desired signal
with no or limited information from the mixed signal. Algorithms
such as joint diagonalization approximation of matrices (JADE) and
FastICA, which show motion tolerance to some extent, are based on
the transformation or improvement of ICA (Poh et al., 2011; Shi
et al., 2023). In addition, the multi-channel ICA algorithm is based
on second-order blind identification (SOBI), which was proposed by
Zhang et al. (2017) realizes the possibility of evaluating HR under
low illumination. Similarly, integrating multiple simultaneously
acquired BVP signals extracted by the ICA algorithm can also
measure HR reliably (Favilla et al., 2019). The “Project_ICA”
algorithm uses the skin reflection model to extract the BVP
signal from the facial rPPG signal (Qi et al., 2019). This method
combines advanced techniques such as feature point detection
tracking and skin pixel detection, overcomes the decrease in
robustness caused by motion artifacts and weak light and dark
skin, and performs better than several classical ICA, CHROM, 2SR,
and POS algorithms. However, it still has significant limitations in
the application of black skin. Different algorithms have different
advantages; for example, the ICA algorithm can recover
independent signals from mixed signals, the CHROM algorithm
explicitly extracts pulse signals against specular andmotion artifacts,
and the EMD is a powerful analytical tool used to effectively describe
non-linear and non-stationary time series with rapidly varying
frequencies. The high complexity of algorithms usually requires a
longer running time, and how to combine the advantages of
different algorithms to achieve fast and accurate HR estimation is
a topic that scholars are committed to discussing.

4.2.2 Hybrid ICA
As one of the most commonly used and practical conventional

algorithms, the ICA algorithm is often used with other algorithms to

predict HR. Song et al. (2020) combined the advantages of ICA in
independence and CHROM (a model-based method) in dealing
with chromaticity, proposed a Semi-BSS-based rPPG method to
realize the best performance of HR estimation. Still, this method
requires super-high resolution (2.7 k) video. Combined with the
remote ballistocardiography (rBCG) technique, rPPG signals can
realize the combination of color andmotion of BSS-based (EA, PCA,
and ICA), thus effectively reducing the impact of illumination
changes and motion artifacts on HR evaluation (Lee et al., 2021).
In 2021, Lv et al. (2021) proposed an improved ensemble EMD
(EEMD) algorithm, namely, complete EEMD with adaptive noise
(CEEMDAN), and combined it with FastICA to realize remote HR
measurement. However, there is still residual white noise in
CEEMDAN, which leads to decomposition errors. To ensure the
elimination of noise, the number of iterations of the algorithm will
increase, which will lead to an increase in time cost. To solve the
problem of decomposition errors and slow running speed caused by
this residual noise, Shi et al. (2023) improved both EEMD and
FastICA algorithms. By adding zero-mean random white noise
generated according to the input signal to the sampled data, the
Huber derivative approximation function is used instead of the
nonlinear function in the FastICA algorithm to improve further
accuracy, robustness, timeliness, and anti-interference performance.
In addition, an under-complete ICA algorithm was proposed to
restrict motion and illumination variation artifacts (Gupta et al.,
2022). By using a non-linear cumulative density function (CDF)
optimized by customized Levenberg-Marquardt algorithm (LMA)
to estimate the unmixing matrix, this method can retain all the
information of RGB three channels and has an excellent
performance in constrained motion and illumination
variations scenarios.

4.2.3 Other algorithms
Color subspace transformation methods such as CHROM and POS

use orthonormal vector transformations to construct raw signals for
BVP extraction (Wang et al., 2017a). Compared with the conventional
ICA algorithm, it does not lose the critical information in the red and
blue channels. Still, its main disadvantage is that improper weights
assigned to color channels may reduce the BVP information (Gupta
et al., 2022). POS algorithm can not only extract high-precision PR from
videos captured by high-speed cameras but also process BVP signals in
multiple respiratory modes (spontaneous, metronome, and forced) and
video (smartphone and webcam) under different types of body
movements, but it is challenging to achieve synchronization or
desynchronization between HR and RR cycles (Shoushan et al., 2021;
Zhang et al., 2023). A self-adaptive SSA algorithm can obtain cyclical
components, remove aperiodic irregular noise, and extract the pulse
wave that keeps the details from the facial video in real situations (Wang
et al., 2020). The T-SNE-based signal separation (TSS) method can
decompose the observed color traces into pulse-related vectors and noise
vectors and then select the vector with the most significant spectral peak
as the BVP signal for HR measurement (Wang et al., 2022). This
proposed method is suitable for RGB and HSV color spaces and
significantly suppresses the noise caused by head movement. Still, it
is not robust to complex light interference and violent sports interference
scenes. However, without relying on complex mathematical models or
ML algorithms, combining RGB channels alone may also be a way to
obtain robust BVP signals. Research shows that the sum of the green-to-
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red channel and green-to-blue channel ratios (GRGB) not only has lower
computational complexity but also has the same effect as the POS
algorithm, especially suitable for videos with a lot of movements and
indoor lighting (e.g., gym and rotation) (Haugg et al., 2023). Table 2
summarizes these conventional rPPG signal extraction algorithms for
HR estimation. Although there are many mature methods of using CV
techniques based on traditional algorithms to extract rPPG signals used
to estimate HR, the decline in the robustness of HR evaluation caused by
subject motion and ambient lighting variations can still be optimized.
Due to the success of DL in many CV and medical image processing
applications, DLmethods have been considered for rPPG to deal with its
challenges.

4.3 DL for contactless PR/HR estimation

Before the advent of DL, several ML methods were used to
remotely estimate HR, including linear regression, k-nearest
neighbor (kNN) classifier, support-vector regression, adaptive
hidden Markov models, and a general-to-specific transfer
learning strategy named SynRhythm (Hsu et al., 2014; Monkaresi
et al., 2014; Fan et al., 2015; Niu et al., 2018). As with many CV and
signal processing applications, DL methods have shown promise in
mapping complex physiological processes for contactless HR
measurement. The number of research papers utilizing DL
methods for remote HR measurement has increased yearly and is

TABLE 2 Several conventional iPPG signal extraction algorithms for HR measurement.

ROI
selection

Feature
type

Proposed
algorithms

Correlation
coefficient
(compared to pulse
oximeter)

Basic
architecture

HR computation
methods

Measurement

Center 60% width
of the face

RGB JADE (Poh et al., 2011) 1.00, 0.92 (HR, HRV) ICA A custom algorithm to
obtain IBI

HR, HRV

Area containing
eyes

RGB SOBI (Zhang et al.,
2017)

>0.90 ICA Time-domain kurtosis HR

Forehead, cheek Single channel
560 ± 20 nm

FastICA (Favilla et al.,
2019)

≥0.999, ≥0.998 (HR, HRV) ICA A multi-scale algorithm
for peak estimation

HR, HRV

Face skin area RGB Project_ICA (Qi et al.,
2019)

0.76, 0.74, 0.69, 0.47 (stationary,
interaction with computer,
swinging heads, exercise
recovery)

ICA FFT for peak estimation HR

Cheek RGB CHROM, KDICA (Song
et al., 2020)

0.981 vs. 0.968, 0.918 (CHROM
alone, KDICA alone)

CHROM, ICA FFT for peak estimation HR

Face skin area RGB CDF optimizing LMA,
undercomplete ICA
(Gupta et al., 2022)

0.92, 0.94, 0.92 (constrained,
motion, illumination variations
scenarios)

LMA, ICA FFT for peak estimation HR

Forehead, cheek,
nose

RGB ZCA (Iozzia et al., 2016) 0.961 vs. 0.927, 0.911 (CHROM,
ChromICA)

PCA FFT, AR time series
modeling

PRV

Forehead, cheek Green channel Modified EEMD,
modified FastICA (Shi
et al., 2023)

0.85 vs. 0.39, 0.35, 0.75, 0.55, 0.78
(EEMD, ICA, FastICA, EEMD +
FastICA, CEEMDAN +
FastICA)

EMD, ICA FFT for peak estimation HR

Forehead, cheeks,
whole face

RGB — (Zhang et al., 2023) 0.945 POS FT for peak estimation PR

Around mouse
and nose

Green channel TSS (Wang et al., 2022) 0.95 vs. 0.76, 0.74, 0.84, 0.88, 0.93
(ICA, CHROM, POS, SSA,
rPPGNet)

T-SNE Temporal filtering
and FT

HR

Forehead, cheek RGB GRGB (Haugg et al.,
2023)

CRGB > GR > GB G-R ratio, G-B ratio FFT for peak estimation HR

Face exclude
forehead

RGB — (Van et al., 2023) 0.994, 0.971 (POS, CHROM) vs.
0.583, 0.916 (PCA, ICA)

CHROM, POS IBI PRV

Face skin area RGB PVM with GEVD (LI
et al., 2020)

<0.90 PCA, PVM FFT for peak estimation PRV

Face skin area Green channel self-adaptive SSA
(Wang et al., 2020)

0.91 SSA Peak estimation HR

Abbreviations: ICA, independent component analysis; CHROM, chrominance; JADE, joint diagonalization approximation of matrices; SOBI, second-order blind identification; KDICA, kernel

density ICA; CDF, cumulative density function; LMA, Levenberg-Marquardt algorithm; ZCA, zero-phase component analysis; PCA, principal component analysis; EMD, empirical mode

decomposition; EEMD, ensemble EMD; POS, plane-orthogonal-to-skin; T-SNE, T-distributed stochastic neighbor embedding; TSS, T-SNE-based signal separation; GRGB, the sum of green-to-

red channel and green-to-blue channel ratios; PVM, periodic variancemaximization; GEVD, generalized eigenvalue decomposition; SSA, singular spectrum analysis; FT, fourier transform; FFT,

fast Fourier transform; AR, autoregressive; IBI, interbeat intervals.
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expected to grow continuously. The rPPG approaches for HR
estimation based on DL can be generally divided into two types:
1) the end-to-end type and 2) the hybrid type. The former provides
spatial-temporal (ST) visualization of physiological signals via the
attention mechanism and directly establishes the mapping from
video frames to the target HR values or BVP signals. At the same
time, the latter uses the DL model in conjunction with traditional
ML methods or DL models to deal with different stages of HR
estimation (Figure 3).

4.3.1 End-to-end DL model
Amethod is classified as end-to-end if it takes in a series of video

frames as input and directly outputs the rPPG signal or HR without
any intermediate steps (Figure 3). End-to-end DL methods are
indisputably great tools due to their straightforward model
optimization process.

4.3.1.1 Single-stage CNN model
The Single-stage CNNmodel utilizes only one CNN architecture

to extract HR or rPPG signals directly from facial video, even if there
is no need for the preprocessing stage of face detection and tracking
(Bousefsaf et al., 2019). The robustness of HR measurement under
different skin types, facial expressions, and movements can be
improved by integrating different attention mechanisms in CNN
structure, such as motion, appearance, and ST attention model (Hu
et al., 2022; Mcduff et al., 2022; Ouzar et al., 2023). An end-to-end ST
network, X-iPPGNet, based on modified Xception integrated with a
depthwise separable convolution, can realize instantaneous PR
estimation directly from facial video recordings (Ouzar et al.,
2023). Unlike most existing systems, X-iPPGNet has advantages
with high and sharply fluctuating PR, ensuring robust PR prediction
under various conditions (including head motions, facial
expressions, and skin tone). This is because it learns the rPPG
concept from scratch without incorporating prior knowledge or
going through the extraction of BVP signals.

4.3.1.2 Multi-stage CNN model
The Multi-stage CNN model utilizes two or more linear CNN

architectures to achieve more than one phase of HR estimation. A
two-stage CNN named HR-CNN composed of the Extractor and
HR estimator is trained end-to-end through alternating
optimization and is robust to illumination changes and subject
motion (Spetlik et al., 2018). Unlike the commonly used
COHFACE and MAHNOB databases, the datasets used for
training in this study are a new open-source ECG-Fitness
database whose videos are not compressed. Similarly, another
two-stage 3D CNN method comprised of ST video enhancement
network (STVEN) and rPPGNet (composed of an ST convolutional
network, a skin-based attention module, and a partition constraint
module) generalizes well on novel data with only compressed videos
available, which implies the promising potential for real-world
applications (Yu et al., 2019a). In addition, the end-to-end model
proposed by Perepelkina et al. (2020) uses CNN architectures in the
three stages of the HR estimation pipeline. After using RetinaNet
(based on MobileNet) to process facial ROI, HeartTrack (based on a
3D ST attention CNN) obtained the time series. Finally, 1D CNN
was used to calculate HR. Furthermore, an utterly self-supervised
training method based on pre-trained ResNet18 and 3D PhysNet

CNNwas designed to get rid of expensive ground truth physiological
training data (Gideon and Stent, 2021).

4.3.1.3 Multi-scale network
We define a multi-scale network as a phase of HR estimation

that uses more than one DL architecture; that is, the three-phase
linear structure of the HR estimation pipeline is extended by multi-
scale DL architecture. The Siamese-rPPG network proposed by Tsou
et al. (2020) contains two 3D CNN architectures, which can not only
extract the rPPG signal from the two face ROIs (without
preprocessing) simultaneously but also effectively retain the ST
characteristics of the rPPG signal. Furthermore, multi-task
Siamese (MTS) combines the advantages of Siamese neural
network and multi-task architecture to accurately predict cardiac
signals while significantly reducing parameters (Lee et al., 2022a). Li
et al. (2022) proposed a short-time end-to-end HR estimation
framework based on facial features and temporal relationships of
video frames. In the proposed method, a deep 3D multi-scale
network with cross-layer residual structure is designed to
construct an autoencoder and extract robust rPPG features by
transferring the lost information in scale transformation. Then,
an ST fusion mechanism is proposed to help the network focus
on features related to rPPG signals. Yin et al. (2022) proposed an
end-to-end multi-task learning model named PulseNet, combining
the advantages of signal-based methods and DLmethods, which can
achieve accurate HR estimation in scenes that include changes in
lighting and head movement. PulseNet uses (2 + 1)D convolution to
decouple ST information and a skin-based attention mechanism to
suppress background noise.

The central difference convolution (CDC) operator has potential
advantages for rPPG feature extraction due to its ability to enrich
temporal context. The 3D CDC network can achieve accurate HR
measurement by combining the attentionmechanism of ST, motion,
and appearance, for example, the proposed CDCA-rPPGNet and
AutoHR (Yu et al., 2020; Zhao et al., 2021; Liu et al., 2022). AutoHR
proposed by Yu et al. (2020) is composed of neural architecture
search (NAS) and the 3D temporal difference convolution (TDC).
By combining a hybrid loss function considering constraints from
both time and frequency domains and ST data augmentation
strategies, AutoHR realizes accurate HR measurement. More
complicatedly and accurately, a 3D ST convolutional network
with multi-hierarchical fusion, including low-level face feature
generation (LFFG), 3D ST stack convolution (STSC), multi-
hierarchical feature fusion (MHFF), and signal predictor (SP),
can reconstruct the rPPG signal representing HR from facial
RGB video (Li et al., 2023).

4.3.1.4 Transformer
Transformer, a recently developed DL model, differs from the

convolution structure of CNN based on local connection and weight
sharing. It is based on self-attention mechanisms (Vaswani et al.,
2017). Although the structure of the Transformer model is complex
and requires many parameters, it can handle data noise and
deformation better than the CNN structure. Yu et al. (2022) first
proposed an end-to-end video transformer architecture,
PhysFormer, for remote physiological measurement. On the one
hand, the cascaded temporal difference Transformer blocks in
PhysFormer benefit the rPPG feature enhancement via global ST
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TABLE 3 Application of end-to-end DL methods in contactless HR estimation.

Publication
year

DL name/
components

Attention
mechanism

ST
feature

Data
preprocessing

Learning
rate

Batch
size

Loss
function

Datasets Measurement Advantages

Single-
stage CNN

2019 3D CNN No No Synthetic rPPG video
generator approach
including five steps

10–3 25 CCE UBFC-rPPG PR Training procedure
employs only synthetic
data without any special
image preprocessing

2020 3D CNN No Yes Downsampleing and
adding random uniform
noises for data
augmentation

— 1 MAE MAHNOB-
HCI,
Fraunhofer
Driver Emotion
Study Dataset

HRV Suitable for affective
sensing

2022 CAN Motion and
appearance

No Changing subsurface
color and subsurface
scattering for
synthesizing videos with
pulse signals

— 36 MSE AFRL, MMSE-
HR, UBFC-
rPPG

HR Improve robustness to
skin type and motion

2022 2D and 3D CNN ST Yes MTCNN to detect and
crop coarse face areas and
remove background

10–2 on PURE,
5 × 10−4 on
COHFACE

128 NegPCC PURE,
COHFACE

HR Reduce highly
redundant spatial
information
and motion noise

2023 X-iPPGNet No Yes Performing face
segmentation for
eliminating the
background and non-skin
areas

10–6 128 MSE BP4D+,
MAHNOB-
HCI, MMSE-
HR, UBFC-
rPPG

PR No need to extract IPPG
signal, no prior
knowledge; fast
convergence speed, and
low computational cost

Multi-
stage CNN

2018 HR-CNN No No — 10–4 on
extractor, 10–1

on HR
estimator

128 MAE COHFACE,
MAHNOB,
PURE, ECG-
fitness

HR Propose a robust
uncompressed video
database

2019 STVEN, rPPGNet Skin Yes Viola-Jones face detector
to detect and crop coarse
face areas and remove
background

10–4 128, 64 NegPCC OBF,
MAHNOB-
HCI

HR, HRV Especially suitable for
highly compressed
videos

2020 HeartTrack ST Yes Increasing videos’ fps
with intermediate frame
synthesis

3 × 10−5 32 MSE UBFC-rPPG,
MoLi-ppg-1,
MoLi-ppg-2

HR Creat real-life MoLi-
ppg-1 and MoLi-ppg-
2 datasets

2021 ResNet18, PhysNet No Yes Estimating a bounding
box around the face and
adding an 50% scale
buffer to the box for
ensuring relative stability
of the video

10–5 4 MCC PURE,
COHFACE,
MR-NIRP-Car,
UBFC-rPPG

HR Fully self-supervised
training, no reliance on
ground truth data

(Continued on following page)
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TABLE 3 (Continued) Application of end-to-end DL methods in contactless HR estimation.

Publication
year

DL name/
components

Attention
mechanism

ST
feature

Data
preprocessing

Learning
rate

Batch
size

Loss
function

Datasets Measurement Advantages

Multi-scale
Network

2019 PhysNet No Yes Viola-Jones face detector
to crop the face area at the
first frame and fix the
region through the
following frames

10–4 2 NegPCC OBF,
MAHNOB-
HCI

HR, HRV First work to use deep
ST networks for
reconstructing precise
rPPG signals

2020 Siamese-rPPG
Network

No Yes No 10–4 2 NegPCC UBFC-rPPG,
PURE,
COHFACE

HR Simultaneously learn
different features from
two facial regions

2020 AutoHR No Yes No — 2 NegPCC
and SNR

VIPL-HR,
MAHNOB-
HCI,
MMSE-HR

HR Find out three key
factors (i.e., network
architecture, loss
function and data
augmentation strategy)
influencing the
robustness and
generalization ability of
end-to-end rPPG
networks heavily

2021 3DCDC-T Motion and
appearance

Yes No 5 × 10−2 12 Huber loss UBFC-rPPG,
PURE,
COHFACE

HR, RR Avoid pre-processing
steps; enhance
spatiotemporal
representation with rich
temporal context

2022 MTS Channel and
spatial

Yes Dlib to extract cheek and
forehead for fixing the
input size

10–4 1 PCC COHFACE HR, RR Simultaneously predict
HR and RR; a small
number of parameters

2022 3D residual CNN ST Yes A face detector to locate
the rough face position
and a skin segmentation
algorithm to preserve the
skin region for better
removal of background
interference

10–4 8 Branching
loss

OBF,
COHFACE,
UBFC-rPPG,
PHY-100

HR Construct a new dataset
PHY-100; require fewer
video frames

2022 PulseNet Skin Yes Dlib to detect faces and
downsample and a
segmentation algorithm
to generate a binary face
mask as the ground truth
of skin segmentation

10–4 64, 128 MAE UBFC-rPPG,
PURE,
COHFACE,
MAHNOB-
HCI

HR Combine skin
segmentation and
attention mechanisms
to suppress background
noise; mutual
constraints between
iPPG signals and
average HR values

2022 CDCA-rPPGNet ST Yes OpenFace to get facial
landmarks

2 × 10−4 8 NegPCC UBFC-rPPG,
PURE

HR Better capture the subtle
color changes

(Continued on following page)
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TABLE 3 (Continued) Application of end-to-end DL methods in contactless HR estimation.

Publication
year

DL name/
components

Attention
mechanism

ST
feature

Data
preprocessing

Learning
rate

Batch
size

Loss
function

Datasets Measurement Advantages

2022 ESA-rPPGNet Spatial and
channel

Yes MTCNN for face
detection

10–3 8 NegPCC UBFC-rPPG,
PURE

HRV Effectively capture
interchannel
dependencies and pixel-
level dependencies;
greatly reduce the time
complexity of the
network

2023 LFFG, STSC,
MHFF, SP

Skin and motion Yes Cascading the ensemble
of regression trees (ERT)
algorithm to
approximately crop the
redundant background of
the videos

10–4 32 NegPCC UBFC-rPPG,
COHFACE,
FaceBio-v1

HR Strengthen the ST
correlation of multi-
channel features;
construct a new dataset
FaceBio-v1

2023 3D CNN, BiLSTM Region Yes Video re-sampling to
generate positive and
negative samples

10–5 4 Series of
frequency-
inspired
losses

UBFC-rPPG,
PURE, DEAP,
MMVS, BP4D+

HR, HRV, RR A novel frequency-
inspired self-supervised
framework without the
need of ground truth

Transformer 2022 PhysFormer ST Yes MTCNN face detector to
crop the enlarged face
area at the first frame and
fix the region through the
following frames

10–4 4 Curriculum
learning
guided
dynamic loss

VIPL-HR,
MAHNOB-
HCI, MMSE-
HR, OBF

HR, HRV, RR Recognize fine-grained
temporal skin color
differences; alleviate the
overfitting issue;
complement the weak
temporal supervision
signals

2023 PhysFormer++ ST, cross- and
self-attention

Yes MTCNN face detector to
crop the enlarged face
area at the first frame and
fix the region through the
following frames

10–4 4 Curriculum
learning
guided
dynamic loss

VIPL-HR,
MAHNOB-
HCI, MMSE-
HR, OBF

HR, HRV, RR Better exploit the
temporal contextual and
periodic rPPG clues

Abbreviations: DL, deep learning; HR, heart rate; HRV, heart rate variability; RR, respiratory rate; ST, spatio-temporal; CAN, convolutional attention network; CNN, convolutional neural network; STVEN, spatio-temporal video enhancement network; MTS, multitask

Siamese; LFFG, low-level face feature generation; STSC, spatio-temporal stack convolution; MHFF, multi-hierarchical feature fusion; SP, signal predictor; CCE, categorical cross-entropy; MAE, mean absolute error; MSE, mean squared error; NegPearson, negative

Pearson correlation coefficient; PCC, pearson correlation coefficient; MCC, maximum cross-correlation; SNR, signal-to-noise ratio.
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attention based on the fine-grained temporal skin color differences.
On the other hand, to alleviate the interference-induced overfitting
issue and complement the weak temporal supervision signals,
elaborate supervision in the frequency domain is designed, which
helps PhysFormer learn more intrinsic rPPG-aware features. To
better exploit the temporal contextual and periodic rPPG clues, the
PhysFormer was extended to the two-pathway SlowFast-based
PhysFormer++ with temporal difference periodic and cross-
attention Transformers (Yu et al., 2023). However, the
application of the Transformer to the physiological measurement
of rPPG is still in its infancy, and future research should focus on
designing a more efficient architecture while exploring a more
accurate and efficient ST self-attention mechanism, particularly
for long-sequence rPPG monitoring. Table 3 summarizes the
application of end-to-end DLmethods in contactless HR estimation.

Although the end-to-end DL model shows great potential in HR
estimation, it often results in a mysterious black box model that is
difficult to understand. Therefore, optimizing the algorithm based
on various factors that affect the robustness of rPPG is necessary. In
addition, multiple DL models applied at different stages of HR
measurement may increase the interpretability of the process.

4.3.2 Hybrid DL model
HR estimation is classified into three phases: face video

processing, face BVP signal extraction, and HR computation.
Using DL model(s) in one phase or different DL models in
various phases is defined as hybrid DL, while the other phases
still use the non-DL algorithms (Figure 3).

4.3.2.1 DL for face video processing
BlazeFace is a face detection model based on MobileNetV1/

V2 architecture developed by Google, while FaceMesh integrates a
face landmark model based on BlazeFace. These two models can
eliminate any facial redundant areas that have no impact on HR or
RR estimation to accurately locate an ROI (Bayar et al., 2022; Maity
et al., 2022; Pagano et al., 2022; Jewel et al., 2023; Kolosov et al., 2023;
Odinaev et al., 2023). The proposed cascade residual CNN-FPNR
technique used for preprocessing and SNR enhancement facilitates
segmentation in low-light ambient videos and provides high frame
quality for HR estimation (Gupta et al., 2023). The AND-rPPGmethod
based on a 2D temporal convolution network (TCN) architecture
enables denoise temporal signals and action units from facial videos
(Lokendra and Puneet, 2022). Then, the denoised temporal signals from
all the facial regions are consolidated to compute the rPPG signal and
estimate the HR. As a component of a two-stage DL model, rPPGRNet
based on recurrent back projection network (RBPN) can form super-
resolution images and then be used for HR estimation of subsequent
THRNet (based on 3D ResNet-10) (Yue et al., 2021). The proposed
DeepMag based on CNN architecture enables automatedmagnification
of subtle color and motion signals from a specific source, even in the
presence of large motions of various velocities (Chen and Mcduff,
2020). Themagnified videos produced byDeepMag have fewer artifacts
and blurring than the traditional EVM method.

4.3.2.2 CNN for face BVP signal extraction/feature decoder
A depth-wise separable convolution based on 3D MobileNet

enables an estimate of HR from the feature images formed by
spatial decomposition and temporal filtering of EVM (Qiu et al.,

2019). Similarly, the proposed cross-verified feature disentangling
strategy (CVD, based on CNN) enables disentangling the
physiological features with non-physiological representations existing
in a multi-scale ST map, which realizes robust multi-task physiological
measurements (Niu et al., 2020a). In addition, a DL model based on
ResNet-18 architecture is used to judge the quality of the ST feature
image extracted by the conventional CHROM algorithm and to
determine whether it is used in the fast Fourier transform (FFT) of
subsequent HR estimation (Zheng et al., 2022). Similarly, for the ST
images or time-frequency representation extracted by traditional
algorithms, the CNN model can achieve robust HR estimation in
continuous motion scenes (Hsu et al., 2017; Jaiswal and Meenpal,
2022; Chen and Li, 2023). Chen and Li (2023) applied CNN model
based on ResNet101 architecture to HR reality monitoring in aerobics
training with high accuracy. Jaiswal and Meenpal (2022) proposed a
video-based noise-less cardiopulmonary measurement, which converts
the 3D videos into 2D ST Images by wavelet decomposition,
suppressing the noise while preserving temporal information of the
rPPG signal. ST images are provided as input to CNN, which enables
mapping the corresponding HR values under heterogeneous lighting
conditions and continuous motion. Similarly, short-time Fourier
transform (STFT) can transform the 1D color signal and frequency
signal extracted from RGB videos to 2D time-frequency representation,
subsequently used to train a VGG15 DL network to estimate the pulse
(Hsu et al., 2017).

Temporal and spatial features are the key to accurately
extracting rPPG signals from facial video. In addition to
processing the ST signals obtained by traditional methods, CNN
itself can also integrate the ST modular to improve the anti-noise
ability, which is often realized by added attention mechanism or
convolution modular, for example, the proposed DeeprPPG and
ETA-rPPGNet networks (Niu et al., 2019; Liu and Yuen, 2020; Hu
et al., 2021). Niu et al. (2019) input the ST map extracted from the
video into the ResNet-18 CNN architecture integrated with channel
attention and ST attention mechanism, thus outputting robust HR
estimation. DeeprPPG, as a lightweight rPPG estimation network
without preprocessing, is based on ST ConvNets (full 3D
convolution/spatial 2D convolution + temporal 1D convolution),
allows flexible ROI selection with different locations and sizes, and
obtains the robust rPPG signal frommultiple input skin regions (Liu
and Yuen, 2020). The ETA-rPPGNet proposed by Hu et al. (2021) is
comprised of a time-domain segment subnet and backbone net. The
feature maps of the video generated by the time-domain segment
subnet can effectively reduce redundant information. At the same
time, the integrated time-domain attention mechanism in the
backbone net can significantly improve the model’s anti-noise
(insufficient light conditions and head movement) ability. ETA-
rPPGNet shows superior performance in compressed datasets
(compared with DeepPhys). Still, its short-term estimation
performance is not as good as that of EVM-CNN because it
needs to deal with redundant information. Furthermore, a novel
global-local interaction and supervision network (GLISNet) utilizes
the local path to learn the representations in the original scale and
the global path to learn the representations in the other scale, thus
capturing multi-scale information (Zhao et al., 2023). GLISNet can
extract and fuse pulse signals from multi-scale ROIs without heavy
computational load and preserve the rich temporal features of rPPG
video to achieve accurate HR estimation.
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4.3.2.3 RNN (+CNN) for face BVP signal extraction/
feature decoder

Long short-term memory (LSTM), a typical RNN architecture,
enables filter rPPG signal obtained by conventional methods (POS,
PCA, CHROM, CWT, etc.), can more accurately identify the
changes of HR and further evaluate the mental state or physical
function of the population (Slapnicar et al., 2019). A two-layer
LSTM was designed for regression from raw signals after
normalization to estimate pulse wave signals and generate a large
scale of synthetic HR signals which is used to pre-train the LSTM
network to prevent over-fitting (Bian et al., 2019). This algorithm
can effectively alleviate the problem of insufficient HR public
database and achieve better performance than the baseline
method (GREEN, ICA, CHROM, and POS). Maity et al. (2022)
proposed a bi-directional LSTM (Bi-LSTM) network to filter the
motion distortions in the rPPG signals, which shows better-filtering
capability over the discriminative signature-based filtering during
HR estimation.

Combined with CNN architecture, LSTM may realize more
advanced performance. The proposed HR evaluation method
named Meta-rPPG was comprised of ResNet (2D CNN) for
feature extraction and an LSTM network for rPPG estimation,
whose performance of HR estimation was better than that of
EVM in different datasets (Lee et al., 2020; Pagano et al., 2022).
As the most common CNN architectures, U-Net or ResNet
combined with LSTM outperform the widely used prior-
knowledge rPPG methodology in PR estimation, for example, a
combination of POS and CWT (Niu et al., 2020b; Lampier et al.,
2022). Furthermore, the combination of AlexNet, ResNet50V2, and
LSTM can extract HR information from the rPPG signal obtained by
the PCA algorithm (Alsheikhy et al., 2023).

4.3.2.4 GAN for face BVP signal extraction/feature decoder
GAN-based pulse feature disentanglement network (PFDNet)

can extract the common robust features of rPPG and PPG pulse
signals, and further recognize atrial fibrillation from facial videos
with typical facial motions (Liu et al., 2023). The cbPPGGAN
framework based on CycleGAN was used to enhance raw pulse
signals extracted using traditional approaches while estimating more
accurate HR under illumination variation (Yang et al., 2023).
Furthermore, the proposed Dual-GAN model uses two GAN
models to learn the mapping from the ST map to BVP and
simulate noise distribution, respectively (Lu et al., 2021). The
Dual-GAN structure allowed for indirect supervision for noise
distribution and achieved better feature disentanglement for the
BVP signal. This resulted in better prediction performance for HR,
HRV, and RR. Table 4 summarizes the application of hybrid DL
methods in contactless HR estimation.

The interest in contactless or remote HR measurement has
steadily grown in healthcare and sports applications. Contactless
methods involve the utilization of a video camera and image
processing algorithms. Due to rapid development in ML, DL
methods have shown significant promise in improving the
performance of conventional algorithms for contactless HR
estimation. As large labeled open-source datasets are used to
train these algorithms, high-quality and diverse datasets are
crucial for proper benchmarking and analysis of different
methods and the future development of more complex DL

models and architectures. In the longer term, the continuous
update and iteration of smartphones and the popularity of robots
in public places will provide a stronger foundation for HR
contactless monitoring (Siddiqui et al., 2016; Poh and Poh, 2017;
Lee et al., 2022b).

5 Heart/pulse rate variability

Heart rate variability (HRV) refers to the change of interval
time between continuous heartbeats, while pulse rate variability
(PRV) refers to the change of pulse interval time in relation to the
BVP signal, indicating the change of instantaneous PR/HR. Both
HRV and PRV reflect the ability of the autonomic nervous system
to maintain the balance of the internal environment. The
difference between the two methods is that HRV is usually
calculated by ECG, while PRV is obtained by PPG signal. The
analysis of HRV and PRV is a useful tool for a comprehensive
description of autonomic dynamics and can provide useful
information about changes in vagus nerve activity (which can
be used to monitor stress and mood changes) (Rajendra acharya
et al., 2006).

5.1 Relevance between HRV and PRV

The HRV standard defines the HRV evaluation of long-term
(LT; 24 h) and short-term (ST; 5 min) through time-domain,
frequency-domain, and non-linear metrics (Malik et al., 1996). In
recent years, to achieve the lowest possible power consumption and
computing load, the HRV evaluation index of ultra-short term
(UST; less than 5 min) has been proposed. By combining UST
with wearable technology or smartphone applications, one can
assess a person’s wellbeing (mood, stress, health) while being
user-friendly (speed and comfort) (Nussinovitch et al., 2011;
Munoz et al., 2015; Castaldo et al., 2019; Finžgar and Podržaj,
2020). Studies have shown that PRV can be used as an effective and
accurate index for estimating HRV in healthy subjects at rest as this
helps simplify the recording of the signals used in HRV assessment.
However, under physical or mental stress, motion artifacts would
lead to a decrease in the level of consistency between HRV and PRV,
amongst which UST-HRV and ST-HRV may be more affected
(Schäfer and Vagedes, 2013; Iozzia et al., 2016). It has been
shown that it is possible to use rPPG signals to generate HRV
information in subjects with autonomic nerve excitation. Moreover,
the rPPG signal extracted by POS and CHROMmethods is the most
accurate in predicting autonomic dynamics (Van et al., 2023). In
addition, the multiple simultaneously acquired BVP signals
extracted by the ICA algorithm seem to be able to evaluate HRV
reliably (Favilla et al., 2019). A PhysioCam system developed by
Davila et al. (2017) extends the application scenario of PRV
characterization of HRV based on the rPPG signal. Its
performance is similar to that of standard signals (ECG and
PPG) in three physiological conditions (rest, single deep breath,
and continuous fast and shallow breathing). However, the balance of
achieving user-friendly and accurate PRV assessment (consequently
HRV) in patients with multiple comorbidities is still a difficult one to
strike at this point.
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TABLE 4 Application of hybrid DL methods in contactless HR estimation.

Publication
year

DL
name

Backbone
network

Attention
mechanism

ST
feature

Data
preprocessing

Learning
rate

Batch
size

Loss
function

Datasets Measurement Advantages

DL for
video
processing

2020 DeepMag 2D CNN — — — — — — Dataset from
Estepp et al.

HR, RR Enable automated
magnification of subtle
color and motion
signals

2021 rPPGRNet RBPN — — — 10–4 8 MAE MMVS, DEAP HR Recover the rPPG
information during
video super-resolution
processing

2022 AND-rPPG 2D TCN — — — 10–3 — SNR UBFC-rPPG,
COHFACE

HR Mitigate the facial
expression-based noise
from the temporal
signa

2023 BlazeFace,
FaceMesh

MobileNetV1/V2 — — Format the incoming
frame to be compatible
with the target CNN
requirements

— — — — HR, RR Eliminate any
redundant areas of the
face that do not
contribute to HR or RR
estimation

2023 ICNet Cascade CNN — — EVM using the adaptive
filter to raise the frame rate
and SNR

10–2 — — UBFC-rPPG HR, RR Achieve strong
segmentation in low-
light ambient videos

CNN for
BVP signal
extraction

2017 — 15-layered VGG No Time-
frequency

The second order
derivatives, the detrend
filtering, and the
chrominance filtering to
enhance the averaged ROI
signal

10–2 64 — PURE,
MAHNOB-
HCI

HR Pioneering CNN
framework for real-
time pulse estimation;
developed a pulse
database called the
Pulse from Face (PFF)

2019 EVM-CNN 3D MobileNet No Yes A regression local-binary-
features-based approach
for face detection and
tracking

— — Euclidean
distance

MMSE-HR HR HR is directly
estimated from a
feature image obtained
by using spatial
decomposition and
temporal filtering

2019 — ResNet-18 Channel and ST Yes Downsampling for data
augmentation

1.5 × 10−3 100 MAE VIPL-HR,
MMSE-HR

HR Places focus on the
salient features
included in rPPG-
signals

2020 CVD 3D CNN No Yes SeetaFace to detect the
facial landmarks

5 × 10−4 — MAE, PCC VIPL-HR, OBF,
MMSE-HR

HR, HRV, RR Disentangle the
physiological features
with non-physiological
representations; realize
robust multi-task
physiological
measurements

(Continued on following page)
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TABLE 4 (Continued) Application of hybrid DL methods in contactless HR estimation.

Publication
year

DL
name

Backbone
network

Attention
mechanism

ST
feature

Data
preprocessing

Learning
rate

Batch
size

Loss
function

Datasets Measurement Advantages

2020 DeeprPPG Full 3D CNN or
spatial 2D CNN +
temporal 1D CNN

No Yes ROI video clips pre-
obtained

2 × 10−4 64 NegPCC PURE,
COHFACE,
MAHNOB-
HCI

HR Suitable for unseen
skin regions and
unseen scenarios

2021 THRNet 3D ResNet-10 Temporalwise Yes rPPGRNet for super-
resolution processing and
rPPG information
recovery

10–4 32 MSE MMVS, DEAP HR Solve the key rPPG
information loss
problem

2021 ETA-
rPPGNet

3D cascade CNN Time-domain Yes Locating the ROI area and
segmenting skin to
overcome the noise

5 × 10−3 — NegPCC, MSE PURE,
COHFACE,
UBFC-rPPG,
MMSE-HR

HR Reduce the noise
interference from
illumination variation
and head movement

2022 — ResNet-18 No Yes Dlib to locate cheek area
on generated mask
datasets

10–4 — Cross-entropy Self-made mask
dataset,
COHFACE

RR Judge whether the
input signal is correct
and further filter the
measured outliers

2022 — ResNet-18 No Yes Dlib to detect face and
KLT algorithm to
track ROI

5 × 10−4 — MSE, MAE MAHNOB-
HCI, VIPL-HR,
UBFC-rPPG,
MMSE-HR

HR Preserve the feature
vector of each frame in
the video

2023 — ResNet101 No No Denoise and enhance for
the captured actions
by CNN

— — MSE Aerobics
training

HR, movement Use the jump
connection operation,
and embed a
lightweight module

2023 WaveHRV Complex-
valued CNN

No No Came up with criteria
based on biological
restrictions and data
analysis to filter out noisy
ground truth data

— — MAE Stroop, UBFC-
rPPG, VIPL-
HR,
MAHNOB-
HCI

HRV Preprocess noisy
contact-based PPG
signals

2023 GLISNet 2D convolution
block and global-
local interaction
block

Hierarchical Yes — 2 × 10−4 — NegPCC, MSE PURE, UBFC-
rPPG

HR Extract and fuse pulse
signals from multi-
scale ROIs with
lightweight
computational load

RNN
(+CNN) for
BVP signal
extraction

2019 LSTM-POS,
CNN-POS

LSTM, CNN No No Viola-Jones algorithm for
face detection and HSV
masking approach for skin
segmentation

10–3 — MSE DEAP HR Aim to monitor people
with profound
intellectual and
multiple disabilities

2019 two-layer
LSTM

LSTM No No Dlib to detect facial
landmarks

— — MSE MMSE-HR HR Overcome the problem
of insufficient HR
public database

(Continued on following page)

Fro
n
tie

rs
in

B
io
e
n
g
in
e
e
rin

g
an

d
B
io
te
ch

n
o
lo
g
y

fro
n
tie

rsin
.o
rg

18

C
h
e
n
e
t
al.

10
.3
3
8
9
/fb

io
e
.2
0
2
4
.14

2
0
10

0

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1420100


TABLE 4 (Continued) Application of hybrid DL methods in contactless HR estimation.

Publication
year

DL
name

Backbone
network

Attention
mechanism

ST
feature

Data
preprocessing

Learning
rate

Batch
size

Loss
function

Datasets Measurement Advantages

2020 Meta-rPPG 2D ResNet, LSTM No Yes Dlib to detect face and
OpenCV to track

10–3 — Ordinal
regression loss

MAHNOB-
HCI, UBFC-
rPPG

HR Propose a transductive
meta-learner to cope
with the unforeseeable
distributional changes
during deployment

2020 RhythmNet ResNet-18, RNN No Yes SeetaFace to detect face
and localize landmarks,
skin segmentation to
remove the non-face area

10–3 — Smooth MAE MAHNOB-
HCI, MMSE-
HR, VIPL-HR

HR Consider the
relationship of adjacent
HR measurements
from a video sequence;
build a large-scale
multi-modal HR
database named
VIPL-HR1

2022 RobustPPG Bi-LSTM No No Weighting mask to remove
facial hair or specular
regions on non-
Lambertian surfaces

— — MSE PURE, RICE-
Motion

HR Filter the motion
distortions in the rPPG
signals

2022 RGB-to-
PPG DNN

U-Net, LSTM No No Downsampling and
interpolating for data
augmentation

— — — DEAP PR Need fewer data to
extract reliable and
faster PR

2023 — AlexNet,
ResNet50V2,
LSTM

No No Taking images of captured
video streams

10–2 — MSE, MAE — HR Applied anywhere and
anytime without
needing equipment or
special hardware

GAN for
BVP signal
extraction

2021 Dual-GAN GAN, CNN Channel Yes — 10–4 32 NegPCC,
Cross-entropy

UBFC-rPPG,
VIPL-HR,
PURE

HR, HRV, RR A jointly model both
BVP predictor and
noise distribution;
obtain more robustness
BVP representation
against unseen noises

2021 PulseGAN Speech
enhancement
GAN

No Time-
frequency

Data augmentation to
balance the reference HR
distributions of training
and testing databases

10–3 — Adversarial,
Spectrum, and
Waveform
loss

PURE, VIPL-
HR, BSIPL-
RPPG, UBFC-
RPPG,
MAHNOB-
HCI

HR, IBI, HRV The error losses
defined in time and
spectrum domains are
both employed with
the adversarial loss to
enforce the model

2023 PFDNet GAN, CNN,
LSTM

Self-attention Yes Viola-Jones algorithm for
face detection, DRMF for
location, KLT algorithm
for tracking

10–3 16 MSE, Cross-
entropy

COHFACE,
PURE,
VIPL-HR

HR, HRV Discover the common
features of VPPG and
PPG pulse signals for
atrial fibrillation
detection

(Continued on following page)
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5.2 Conventional methods for contactless
HRV/PRV estimation

Unlike the evaluation of HR or PR, the measurement of HRV or
PRV requires accurate peak detection of BVP signals and
continuous extraction of PR and BVP signals. This usually has a
higher noise level and lower temporal resolution than cPPG thus
rendering contactless remote measurement of PRV to be more
complex. To achieve accurate measurement of PRV, some CV
researchers have tried to improve the performance of the camera.
This often makes the process more complex, expensive, and not
applicable in daily life (Sun et al., 2012; Mcduff et al., 2014; Mcduff
et al., 2018). It seems to be a potential method to improve the
algorithms, such as improving BVP peak recognition, improving
time-domain resolution, magnifying the subtle changes of
respiration and skin color, and combining face detection and
tracking (Sun et al., 2012; Melchor Rodríguez and Ramos-Castro,
2018; Li et al., 2020; Pai et al., 2021; Yu et al., 2021).

Using the periodic variance maximization (PVM) method to
extract the BVP signal on rPPG, and using the event-related two-
window algorithm to improve BVP peak recognition, contactless
and accurate PRV detection based on rPPG can be realized (Li et al.,
2020). Interpolating can compensate for the negative effects of a low
initial sample rate and improve time-domain resolution and PRV
measurements, thus providing further strong support for the low-
cost webcam-based rPPG technique (Sun et al., 2012). A method
based on YCbCr chromatic aberration developed by Yu et al. (2021)
magnifies the subtle changes of skin color to make it easier to
identify, and realizes the continuous extraction of BVP signals,
which breaks away from the limitation that conventional rPPG
techniques only measure a single PR instead of the whole signal.
Furthermore, Melchor Rodríguez and Ramos-Castro (2018) utilized
the Viola-Jones face detection algorithm and Kanade-Lucas-Tomasi
(KLT) tracking algorithm to process the video obtained by webcam,
and achieve robust rPPG PRV analysis under small-range motion
conditions. Still, this method does not take into account more
extensive and complex motion types. Pai et al. (2021) have
developed an HRVCam algorithm based on a frequency
demodulation framework (a combination of a new automated
adaptive bandpass filter and the discrete energy separation
algorithm (DESA)) for subjects with large changes in respiration
and skin color, which was used to estimate the instantaneous
frequency of the rPPG signal, thus improving the accuracy of
estimated time-domain HRV metrics. These improved algorithms
have achieved good results on the datasets based on traditional low-
cost cameras and may be suitable for the promotion of rPPG
monitoring physiological signs. Table 2 summarizes these
conventional rPPG signal extraction algorithms in contactless
HRV/PRV estimation.

5.3 DL model for contactless PRV estimation

5.3.1 End-to-end DL model
The measurement of HRV/PRV is based on the accurate

detection of HR/PR, and the DL model involved can be roughly
divided into end-to-end and hybrid DL. PhysNet, an end-to-end ST
network constructed by 3D CNN or 2D CNN + RNN, can accuratelyT
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evaluate the measurement metrics characterizing HRV however is
highly complex and time-consuming (Yu et al., 2019b). In addition,
a 3D CNN architecture without skin segmentation or other
preprocessing was developed to realize HRV measurement
(Luguev et al., 2020). More recently, an efficient ST attention
network (ESA-rPPGNet) was developed, which is composed of
ESA (based on MobileNet v3), 3D shuffle attention, and gated
recurrent unit (GRU) (Kuang et al., 2022). ESA-rPPGNet can
recover high-quality rPPG signals to accurately locate the peak of
each heartbeat, thus improving the accuracy of HRV analysis and
reducing the time complexity of the network. However, these
methods are trained in a supervised manner, where PPG signals
are recorded synchronously with facial videos for supervision. A
novel frequency-inspired self-supervised framework for facial video-
based remote physiological measurement was proposed, which
learns to optimize rPPG estimation from multiple augmented
videos of different signal frequencies and across temporally
neighboring videos of similar signal frequencies, while there is no
demand for PPG signal originating from ground truth (Yue et al.,
2023). It has three main stages: data augmentation (involving a 3D
Convolution layer, 3D Res-blocks, and Bi-LSTM), signal extraction
(based on 3D ResNet-10), and network optimization. Its
performance was better than most advanced self-supervised
methods and equivalent to the most advanced supervised
methods in HR, HRV, and RR estimation. Figure 4 shows the
difference between supervised and self-supervised learning in

rPPG signal prediction. Table 3 summarizes the application of
end-to-end DL methods in contactless HRV estimation.

5.3.2 Hybrid DL model
Wavelet scattering transform, a complex-valued CNN model, can

denoise an extracted rPPG signal (Odinaev et al., 2023). Combined with
adaptive bandpass filtering and inter-beat-interval (IBI) analysis, the
contactless detection of HRV can be achieved. This transformation has
been verified on different public datasets with satisfactory results. The
proposed PulseGAN framework employs a combination of waveform,
spectrum, and adversarial losses to enable extraction of high-quality
rPPG pulse waveforms from rough input signals obtained by
conventional methods (e.g., CHROM) to infer reliable cardiac
features (e.g., HRV) (Song et al., 2021). In addition, the cbPPGGAN
predicts a more realistic pulse waveform and a more accurate HRV
estimation (Yang et al., 2023).

Cardiovascular disease is one of the most common diseases, and
HRV may be a valuable indicator for predicting sudden cardiac death
and arrhythmias. With increasing societal pressures, the youth will
increasingly experience mental health and emotional stressors. As a
physiological index reflecting stress and emotional changes, HRV
monitoring helps evaluate the mental health of adolescents and
prompts early intervention from psychiatrists. Real-time monitoring
of HRV in various scenarios helps detect the occurrence of
cardiovascular diseases and mental diseases, thus providing an early
detection mechanism for a variety of global health problems.

FIGURE 4
Supervised and self-supervised learning in rPPG signal prediction. A video clip is sampled from the source video first, then passed through the
saliency sampler to generate the warped anchor. The anchor is passed through a PPG Estimator to get rPPG signal. If supervised training is employed, we
employ a maximum cross-correlation (MCC) loss between the ground truth (cPPG) and predicted rPPG signal. If contrastive training is used, a random
frequency ratio is sampled from a prior distribution. The warped clip is passed through the frequency resample to produce the negative sample,
showing a subject with an artificially higher heart rate. This sample is passed through to produce the negative example PPG. The negative sample is again
resampled with the inverse of random frequency ratio to produce a positive example PPG. Finally, the contrastive loss, multi-view triplet loss, is applied to
the PPG samples, using a PSE MSE distance metric. The face images in the schematic diagram come from the Chicago Face Database (Ma et al., 2015).
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TABLE 5 Application of DL model in contactless BP estimation.

Publication
year

DNN
type

Backbone network Data preprocessing Learning
rate

Batch
size

Loss
function

Datasets BP
computation
methods

Purpose

2021 CNN U-Net Dlib to locate forehead 10–4 16 MSE Self-constructed PWA Convert iPPG signals measured
using a camera into cPPG signals
measured by contact sensors

2022 CNN ResNet, CBAM ICA to separate components then
remove shading

10–2 256 MSE Self-constructed PWA Estimate continuous BP based on
spatial information of a pulse-
wave as a function of time

2022 CNN ResNet RetinaFace and Dlib for location 5 × 10−2 — MSE Morph-II, Self-
constructed

PTT Evaluate algorithms with large
enough datasets to be effective

2023 CNN — Face and neck respectively are
extracted, tracked, and magnified, then
PCA for BSS

— — RMSE, MAPE Self-constructed PTT Solve the common problems of
rPPG including weak extracted
signals, body movements, and
generalization with limited data
resources

2023 CNN ResNet50, ResNet18,
GoogleNet, VGG16

Dlib to track and annotate five regions
based on TCM face diagnosis (heart,
liver, spleen, lung, and kidney)

— — MAE Self-constructed PWA Screen the best performed
prediction model; investigated
the impact of face reflex regions
selection on BP prediction model

2023 CNN 1D CNN, MLP, FCL Data elimination, downsampling,
segmentation, normalization, and
balancing

10–4 64 — VitalDB PWA Realize subject-independent and
highly varying BP estimation

2023 CNN,
RNN

Xception, DenseNet121,
VGG16, Resnet50V2,
InceptionV3, EfficientNet,
FCL, LSTM

3D Total Solution 3DDFA framework
to segment the faces and extract the
forehead, right cheek, and left cheek
regions

10–4 — MSE V4V, Self-
constructed

PWA Present an innovative,
inexpensive, and time-efficient
method to estimate blood
pressure using only a smartphone
camera

2023 CNN,
GAN

Multitask cascade CNN,
InfoGAN

MTCNN to locate five facial landmarks,
skin detector to filter out non-skin
parts, upsample and interpolate to
enhance the physiological information

2 × 10−3 — — rPPG, Dynamic,
TVGH, Self-
constructed

PWA Prevent overfitting and
compensate for the lack of data

2023 CNN,
RNN

1D CNN, BiGRU Wavelet transforme to remove the
baseline drift, Butterworth bandpass
filter to remove the high-frequency
noise

10–3 32 CCE Self-constructed PWA Consider the physiological
relationship between diastole and
systole

Abbreviations: DL, deep learning; BP, blood pressure; DNN, deep neural network; CNN, convolutional neural network; RNN, recurrent neural network; GAN, generative adversarial network; LSTM, long short-term memory; PWA, pulse wave analysis; PTT, pulse

transit time; CBAM, convolutional block attention module; MLP, multilayer perceptron; FCL, fully connected layer; BiGRU, bidirectional gated recurrent unit; CCE, categorical cross-entropy; MAE, mean absolute error; MSE, mean squared error; RMSE, root mean

squared error; MAPE, mean absolute percentage error; TVGH, Taipei Veterans General Hospital.
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6 Blood pressure

In the field of remote healthcare, non-invasive continuous BP
measurement has become a growing topic. Classic non-invasive BP
measurement techniques can obtain spontaneous systolic blood
pressure (SBP) and diastolic blood pressure (DBP) at a point in
time while invasive BP measurement techniques provide continuous
BP monitoring. These techniques are however not suitable for long-
term monitoring due to discomfort and are generally used in intensive
care units. With the development of telemedicine, the demand for non-
invasive continuous BP monitoring will continue to increase.

6.1 rPPG for contactless BP estimation

The research shows that the pulse transit time (PTT) determined
by BP can be expressed not only by the time lag between the R wave
of ECG and a subsequent pulse wave but also by the time lag between
two PPG’s measured at different body locations. The principle of
measuring BP by rPPG technology is based on its recognition of PTT
(Geddes et al., 1981; Nitzan et al., 2002; Mukkamala et al., 2015;
Sugita et al., 2015; Jeong and Finkelstein, 2016; Secerbegovic et al.,
2016; Zhou et al., 2019; Fan et al., 2020). In addition to PTT-based
methods, cuffless BP measurements are implemented by pulse
arrival time (PAT, which requires an ECG sensor and a PPG
sensor), pulse wave velocity (PWV, which requires two PPG
sensors), and pulse wave analysis (PWA, which requires a PPG
sensor) (Mccombie et al., 2006; Kim et al., 2015; Liu et al., 2017; El-
Hajj and Kyriacou, 2020). On devices, it seems feasible for near-
infrared cameras and smartphones to obtain rPPG signals that can
characterize PTT. The accuracy is however affected by noise and
motion artifacts (Krejcar et al., 2009; Chandrasekaran et al., 2013;
Visvanathan et al., 2013). The development and optimization of
algorithms is an effective means to achieve accurate contactless BP
measurement. The development of AI represented by DL has
brought revolutionary changes to contactless BP measurement.

6.2 DL model for contactless BP estimation

Research shows that artificial neural networks (ANN) can extract
BP signals from face and finger videos (Lamonaca et al., 2013; Gonzalez
et al., 2018; Luo et al., 2019). BP estimation algorithm based on DNN is
one of the main research directions of continuous non-invasive BP
monitoring by feeding features or waveforms to a neural network.
Comparedwith the conventionalML-basedmeasurementmethods, DL
models have a stronger ability to learn high-dimensional features and a
better fit for complex nonlinear relationships.

6.2.1 Single CNN model
Using only one CNN model in one phase to realize BP

estimation is defined as a single CNN model. The abilities of
various DL algorithms (RhythmNet, GoogleNet, CNN with
network regularization and attention module, ResNet50,
ResNet18, VGG16 with BN layer, Small-rPGGNET, lightweight
VGG16) to deal with RGB green channel 1D signal are
compared (Xing et al., 2023). Among them, the simplified
lightweight VGG16 network has the advantages of fewer network

layers and rapid training convergence. It can achieve its best
performance of BP estimation from facial videos. The DL
algorithm based on the U-Net structure developed by Bousefsaf
et al. (2021) can convert the rPPG signal acquired by wavelet
transform into the cPPG signal, and successfully estimate BP
from the cPPG signal. However, the videos involved in this study
were captured by a fast camera, whose signals do not completely
reflect those constituted from frames delivered by conventional
cameras or webcams. Lin et al. (2023) proposed a method based
on video magnification and DL which reduces the influence of
interferences from human skin characteristics, breathing, and the
external environment by extracting dual-path time series from facial
video. This resulted in a highly precise estimation of vital signs. In
this model, although the learning-based video motion magnification
(VMM) algorithm can achieve the best accuracy, EVAM can better
balance the running time and accuracy, while the small two-stage
CNN algorithm can predict BP by extracting features from stable
time series rather than the whole image, thus maintaining the
effectiveness of training under limited samples.

6.2.2 Hybrid CNN model
Using different CNN models in one phase or different phases is

defined as a hybrid CNN model. Iuchi et al. (2022) proposed a CNN
architecture based on ResNet and CBAM, which established the
relationship model between spatial information of facial pulse waves
and BP, while the pattern of pulse contour-wise contribution pattern
reflects the relationship between percussion wave and dicrotic wave. It
was able to achieve its purpose of extracting continuous BP from RGB
video. Wu et al. (2022) proposed three customized CNNs (Feature-
Based Networks, Signal-Based Networks, and Feature-Signal-
Combined Networks) based on residual blocks from ResNet, which
use physiological indicators (including HR, HRV, BMI, and PTT) and
multi-channel rPPG signals as model inputs. These calibration-free
characteristics greatly improve the convenience, expand the application
scope, and are widely verified in a large number of datasets of real
patients who require BPmonitoring. However, a single training dataset,
long BP measurement time, and video resolution are vital factors that
limit the generalization ability of the model. Joung et al. (2023)
developed the PPG2BP-Net [(comprises a comparative paired 1D
CNNs, one multi-layer perceptron (MLP), and one fully connected
layer (FCL)] based on the large sample database with highly varying
intrasubject BP which enabled the measurement of varying BP
accurately in new daily users as the proposed subject-independent
approach is regenerative for a new subject.

6.2.3 Hybrid DL model
Using CNN and DNN models at the same time to realize BP

estimation is defined as a hybrid DL model. Hybrid DL models,
including CNN, LSTM, and FCL, developed by Hamoud et al.
(2023), can predict BP from images of ROI cropped from each
frame of the video with just a smartphone. While this hybrid model
establishes a link between BP and RR, there is a lack of datasets
including populations with skin color changes and hypertension for
verification. Cheng et al. (2023) proposed a multi-stage DL model
based on rPPG signal, which combines CNN and bidirectional GRU
(a variant network of LSTM) neural networks to automatically
extract different morphological features of SBP and DBP
waveforms. The proposed bidirectional GRU can establish the
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feature association between future information and past
information, which solves the time series data features that are
forgotten, thus reducing workload and improving the accuracy of BP
measurement. Wu et al. (2023) proposed a multi-model structure,
including face rPPG signal extraction (using multi-task cascade
CNN), time difference feature extraction, the DL model
architecture, model selection with subject information
(considering the influence of BMI and age on BP), and synthetic
data generation with InfoGAN (generates specified data by learning
mutual information between latent noise and observations) to
eliminate overfitting by the DL model and compensate for the
lack of data. It was able to achieve good BP estimation on
multiple rPPG datasets. Table 5 summarizes the application of
the DL model in contactless BP estimation.

Hypertension is the leading cause of death worldwide and a key
risk factor for many serious diseases, including cardiovascular diseases
such as stroke and heart failure. BP is a major vital sign and must be
monitored regularly for early detection, prevention, and treatment of
cardiovascular disease. Conventional BP measurement techniques
(invasive or cuff-based) are impractical, intermittent, and
uncomfortable for patients. The method based on rPPG can realize
the contactless monitoring of BP with improved patient comfort and
mobility. CV-based methods can fully combine the advantages of
computer algorithms and can extract key information characterizing
BP from simple images or videos. With the development of DL, an
exciting new field for contactless and continuous BPmonitoring based
on rPPG has been opened up. This will have a significant and
transformative impact on monitoring the vital signs of patients,
particularly those with high cardiovascular risk factors or diseases.
It is encouraging to see a great amount of interest from both
researchers and industry alike. While there are still challenges
ahead, the continuous and relentless momentum of research
provides hope for future PPG-based non-invasive, cuff-less, and
continuous BP monitoring devices in the near future.

7 Limitations, prospects, and
conclusion

There is already a tremendous amount of real-world applications
for CV, and the technology is still young. Besides Healthcare,
Autonomous vehicles, Google Translate app, Facial recognition,
Real-time sports tracking, Agriculture, and Manufacturing are
inseparable from the popularization of CV. As humans and
machines continue to partner, the human workforce will be freed
up to focus on higher-value tasks because the machines will automate
processes that rely on image recognition. However, the popularity of AI
will bring some problems. Data privacy issues are particularly common
and prominent in the field of CV. With the open-source of a large
number of datasets such as COHFACE, MAHNOB, and PURE,
extensive videos and photographs containing face or identity
information are disclosed. In the context of big data, in addition to
adopting technical measures including anonymization, differential
privacy, local differential privacy, and homomorphic encryption,
strengthening data management is a another vital means to balance
medical data sharing and privacy security. However, the application of
these data privacy protection technologies needs to consider their
efficiency and impact on data availability. The security management

of medical and health data involves many departments, including
medical institutions, AI suppliers, medical information management
departments, etc. They are responsible for data collection, mining,
storage, application and transmission. Therefore, the relevant
departments are supposed to establish a security management
system, series standard operating procedures, and a credible network
security environment, strengthen supervision, reasonably utilize
medical and health data in accordance with regulations, strictly
standardize data use rights and data access control to protect data
privacy and data security. Besides the concern about data privacy,
another factor that influences remote contactless physiological
monitoring must be considered, that is, the poor generalization of
current task-specific algorithms, which causes weak accessibility for
underserved populations. Generalist medical AI (GMAI), as a new
concept proposed in recent years, can perform a variety of tasks using
minimal or no task-specific labeled data (Moor et al., 2023). However,
the development of GMAI usually founds on massive datasets, which
brings about privacy issues. Therefore, when applyingGMAI to the field
of CV, wemust consider the ethical issues and security risks involved, so
that it can develop in a direction beneficial to accessible remote
physiological monitoring for human health.

This paper aims to provide an in-depth and comprehensive
literature review of the existing and proposed Artificial Intelligence
methods with a focus on computer vision and deep learning in
contactless physiological monitoring. Contactless physiological
monitoring techniques based on images or video represented by
rPPG have been applied in the evaluation of microcirculation
perfusion, respiratory rate, oxygen saturation, heart rate, heart
rate variability, and blood pressure while overcoming the
limitations of conventional contact physiological measurements.
The development of deep learning has injected new vitality into
this field. Alongside continuous optimization of traditional
algorithms, the gradual maturity of deep learning algorithms, and
the miniaturization of imaging equipment, there is hope that these
advancements will contribute greatly to comfortable, portable, and
cost-effective remote healthcare services in the near future.
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