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This review aimed to summarize the recent advances and challenges in the field
of regenerative therapies for lumbar disc degeneration. The current first-line
treatment options for symptomatic lumbar disc degeneration cannot modify the
disease process or restore the normal structure, composition, and biomechanical
function of the degenerated discs. Cell-based therapies tailored to facilitate
intervertebral disc (IVD) regeneration have been developed to restore the IVD
extracellular matrix or mitigate inflammatory conditions. Human clinical trials on
Mesenchymal StemCells (MSCs) have reported promising outcomes exhibited by
MSCs in reducing pain and improving function. Nucleus pulposus (NP) cells
possess unique regenerative capacities. Biomaterials aimed at NP replacement
in IVD regeneration, comprising synthetic and biological materials, aim to restore
disc height and segmental stability without compromising the annulus fibrosus.
Similarly, composite IVD replacements that combine various biomaterial
strategies to mimic the native disc structure, including organized annulus
fibrosus and NP components, have shown promise. Furthermore, preclinical
studies on regenerative medicine therapies that utilize cells, biomaterials, growth
factors, platelet-rich plasma (PRP), and biological agents have demonstrated their
promise in repairing degenerated lumbar discs. However, these therapies are
associated with significant limitations and challenges that hinder their clinical
translation. Thus, further studies must be conducted to address these challenges.
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1 Introduction

Lumbar degenerative disc disease (LDDD), an age-associated disease characterized by
severe back pain and disability (Ohtori et al., 2015), is highly prevalent across the world. The
pathogenesis of LDDD involves age-related (Ohnishi et al., 2018) or injury-induced (Wang
et al., 2023) degeneration of the intervertebral discs (IVDs). Decreased hydration, reduced
proteoglycan content, loss of disc height, annular fissuring, and ingrowth of nerve and blood
vessels (Fujii et al., 2019) are observed in degenerating discs. These changes can lead to
structural breakdown, biomechanical dysfunction, instability, herniation, and nerve
compression. Current treatment options, such as medications (Chaparro et al., 2014),
physical therapy (Hayden et al., 2021), cognitive functional therapy (Kent et al., 2023),
epidural injections (Deyo and Mirza, 2016), and spinal fusion procedures (Otsuki et al.,
2023; Shimizu et al., 2021), only provide temporary symptomatic relief. A treatment strategy
that can restore normal disc structure, composition, and function remains to be established.
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Tissue engineering aims to repair and regenerate discs using cells,
biomaterials, growth factors, and platelet-rich plasma (PRP). This
literature review summarized the recent advances and challenges in
the field of regenerative therapies for lumbar disc degeneration.

2 Disc structure and degeneration

IVDs comprise a central gelatinous nucleus pulposus
surrounded by the annulus fibrosus and cartilaginous endplates.
The proteoglycan-rich nucleus is capable of absorbing water and
resisting compressive load. The collagen fibers constituting the
highly organized lamellar annulus fibrosus provide tensile
strength (Sakai and Andersson, 2015). The proteoglycan and
water content of the discs reduces with aging and injury. In
addition, further changes, such as disorganized matrix; loss of
collagen organization; ingrowth of nerves and vessels; decreased
cell viability; and increased inflammatory cytokine (IL-1β, IL-6, and
TNF-α), C-reactive protein levels, and type II collagen levels, have
also been reported (Khan et al., 2017; de Queiroz et al., 2016;
Stürmer et al., 2005; Wang et al., 2010; Goode et al., 2012)
(Figure 1). These molecular changes result in structural
breakdown, reduction in disc height, annular fissuring, radial
bulging, altered biomechanics, nerve compression, instability,
herniation, and lower back pain.

3 Current treatments

The first-line treatment options for symptomatic LDDD include
the administration of medications, such as non-steroidal anti-
inflammatory drugs, muscle relaxants, and opioids, to alleviate
pain (Chaparro et al., 2014; Deyo and Mirza, 2016). Physical
therapy aims to strengthen core muscles, thereby improving
ergonomics (Hayden et al., 2021). Short-term pain relief can be
achieved with epidural steroid injections and intradiscal
electrothermal therapy (Deyo and Mirza, 2016). Spinal fusion
procedures using cages and screws have been performed to

stabilize the affected segments in severe cases; however, this can
result in increased stress on adjacent segments (Otsuki et al., 2023;
Shimizu et al., 2021). Discectomy is performed to remove herniated
nucleus material compressing the nerves (Özer and Demirtaş, 2023;
Goparaju et al., 2023). Disc arthroplasty involves the replacement of
degenerated discs with artificial implants (van den Eerenbeemt et al.,
2010; Siepe et al., 2014; Gornet et al., 2017; Park et al., 2018).
Nevertheless, the inability of these approaches to modify the disease
process or restore the normal structure, composition, and
biomechanical function of the degenerated discs underscores the
requirement for developing biological therapies that facilitate disc
regeneration.

4 Cell sources

Cell therapy is an innovative treatment approach that involves
infusing living cells into a patient to repair or replace damaged tissue
or modify the behavior of local cells (Sakai and Andersson, 2015).
Cell-based therapies tailored to facilitate IVD regeneration in
patients with IVD degeneration have been developed to restore
the IVD extracellular matrix (ECM) or mitigate the inflammatory
conditions that are characteristic of disc deterioration (Fujii et al.,
2019; Sakai et al., 2022). Measures should be taken to ensure that the
transplanted cells thrive within the hostile environment of a
degenerating IVD by directly contributing to ECM synthesis and
inducing a reparative shift in native cell activity via paracrine
signaling or by facilitating the arrival of regenerative cells and
preventing the infiltration of harmful cells. This would help
achieve successful treatment outcomes. Animal studies have
demonstrated the potential of cell transplantation to decelerate or
halt degenerative processes in some cases (Hiraishi et al., 2018;
Nukaga et al., 2019). Minimally invasive procedures, such as a needle
injection under image guidance, are used to introduce the cells into
the IVD. The cells can be encapsulated in supportive matrices to
enhance retention and functionality.

Mesenchymal stem cells (MSCs) have attracted considerable
interest in recent years. MSCs derived from the bone marrow

FIGURE 1
The scheme summarizing the modalities of the regenerative therapies and the pathological conditions of the intervertebral disc degeneration.
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(Orozco et al., 2011; Elabd et al., 2016; Henriksson et al., 2019;
Noriega et al., 2017; Amirdelfan et al., 2021), adipose tissue (Kumar
et al., 2017), peripheral blood (Haufe and Mork, 2006), or umbilical
cords (Pang et al., 2014; Lewandrowski et al., 2023) exhibit potential
for chondrogenic differentiation and high proliferative ability.
Furthermore, they can be harvested easily from autologous and
allogeneic sources. MSCs exhibit remarkable versatility, including
the capacity for immunomodulation. This property could be
beneficial in tempering the inflammatory environment of the
IVD (Weiss and Dahlke, 2019). Environmental stressors within
the IVD can affect the proliferation and differentiation capabilities
of MSCs; thus, the adaptability and survival of MSCs within IVDs
require further study (Gay et al., 2019).

Human clinical trials have predominantly focused on MSCs
owing to the promising outcomes exhibited by MSCs in reducing
pain and improving function in patients with IVD degeneration
(Table 1). Trials using adipose- and bone marrow-derived MSCs
have reported improvement in pain and disability scores (Orozco
et al., 2011; Elabd et al., 2016; Henriksson et al., 2019; Noriega et al.,
2017; Amirdelfan et al., 2021; Kumar et al., 2017; Pang et al., 2014;
Lewandrowski et al., 2023). Moreover, the safety profiles of MSCs
are generally favorable, and the incidence of serious adverse events is
rare (Amirdelfan et al., 2021), underscoring the potential viability of
MSC therapies.

Studies on other types of cells, such as the nucleus pulposus (NP)
cells (Mochida et al., 2015; Beall et al., 2021) and chondrocytes from
articular or hyaline cartilage (Coric et al., 2013; Tschugg et al., 2017),
have elucidated the unique regenerative capacities inherent to cells
native to avascular tissues, such as the IVD. However, the limitations
associated with accessibility and phenotypic stability limit the
widespread application of these treatment strategies. Clinical
application of these cells, although limited, suggests their safety
and potential efficacy in improving the status of the IVD and
patient outcomes.

The treatment outcomes of emerging therapies utilizing less-
defined cell products, such as stromal vascular fraction (SVF)
(Comella et al., 2017) and bone marrow concentrate (BMC)
(Pettine et al., 2015), vary. These complex mixtures, which
comprise various types of cells and bioactive factors, offer a
multifaceted approach to tissue regeneration. The precise
mechanisms of action and individual contributions of these
components are unclear; however, early results suggest a
potential for facilitating significant clinical improvement in
certain cases (Comella et al., 2017; Pettine et al., 2015).
Nevertheless, the heterogeneity of these products hinders
standardization and quality control.

Animal experiments have used iPS cells as a cell source and
induced differentiation into notochordal cells (Sheyn et al., 2019),
nucleus pulposus-like cells (Zhang et al., 2020), or cartilaginous
tissue (Kamatani et al., 2022). These cells were transplanted into
IVDs subsequently. Their application in human beings is anticipated
in the future.

5 Biomaterials and scaffolds

Biomaterials aimed at NP replacement in IVD regeneration,
comprising synthetic and biological materials designed to restore

disc height and segmental stability without compromising the
annulus fibrosus, are predominantly injectable materials (Iatridis
et al., 2013; Mehrkens et al., 2012). The properties of synthetic
materials must match the mechanical properties of the native disc to
achieve successful outcomes. This ensures the integration of the
material with the surrounding structures and the restoration of the
motion characteristics without inducing adverse immune responses.
Furthermore, durability and minimal wear-debris generation are
critical factors affecting clinical viability (Bowles and Setton, 2017; Li
et al., 2022).

Biologically based materials can be remodeled by the body.
Consequently, a different set of criteria, primarily focusing on the
ability to support cell-mediated tissue regeneration, must be satisfied
by these materials to achieve successful outcomes. This category
comprises materials that serve as cell-delivery vehicles to promote
NP tissue regeneration (Bowles and Setton, 2017; Li et al., 2022).

Initial strategies for NP replacement involved the administration
of synthetic polymers that hydrate in situ to mimic the natural
hydration of NP. This approach aimed to restore disc pressure and
height. Copolymeric hydrogel (polyacrylonitrile [PAN] and
polyacrylamide) encased in a polyethylene jacket (PDNTM) is
one such combination (Ray, 2002). Other materials, such as
polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP)
reinforced with a Dacron mesh (NeuDisc™) (Bertagnoli et al.,
2005),hydrating PAN (NucleoFix™

/Gelstix™) (Bowles and Setton,
2017; Ceylan et al., 2019; Koetsier et al., 2022), in situ curing polymer
using inflatable polyurethane balloon (DASCOR™) (Tsantrizos
et al., 2008; Ahrens et al., 2009), in situ curing polymerized
water-in-oil emulsion composite (DiscCell™) (Pelletier et al.,
2016), glutaraldehyde cross-linked elastin and silk polypeptide
(BioDisc™) (Yuksel et al., 2002), and hydrogel of a chemically
cross-linked elastin and silk polypeptide (NuCore™) (Berlemann
and Schwarzenbach, 2009) have also been used. However, these
materials are associated with significant limitations such as
uncontrolled swelling, mechanical complications (e.g., stiffness),
and device migration. Clinical trials have explored various
materials, such as hydrogels and polymers (Ceylan et al., 2019;
Koetsier et al., 2022; Ahrens et al., 2009; Berlemann and
Schwarzenbach, 2009), that can transition into a gel or solid state
in situ, to minimize the damage to the annulus fibrosus during
implantation. Ceylan et al. (2019) reported GelStixTM
demonstrated mean VAS score and ODI score improvement after
implantation. Moreover, RCT is being conducted (NCT 02763956)
(Koetsier et al., 2022). However, progress in the domain of market
approval has been limited (Bowles and Setton, 2017) (Table 2) owing
to the focus on mechanical restoration rather than biological
integration or interaction with local cells.

Engineering complete IVD replacements using materials that
facilitate cellular survival and matrix remodeling has garnered
interest in recent years, indicating a trend toward the use of
more biologically integrated solutions. Composite IVD
replacements that combine various biomaterial strategies to
mimic the native disc structure, including organized annulus
fibrosus and NP components, have shown promise (Mizuno
et al., 2006; Sakai et al., 2006; Nesti et al., 2008; Nerurkar et al.,
2010; Zhuang et al., 2011; Bowles et al., 2011; Park et al., 2012;
Martin et al., 2014; Choy and Chan, 2015; Chik et al., 2015; Ukeba
et al., 2021) (Table 3). This strategy aims to replicate the appearance
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TABLE 1 Cell therapies for degenerative disc disease.

Author Year Trial Cells Cell number Number
of patients

Outcomes Follow-up
period

(months)

Adverse
events

Orozco (Orozco et al.,
2011)

2011 Phase
1/2

Autologous BM-
MSCs

1.0 × 107 10 Significant
improvement in
VAS, OD,SF-36

12 None

Elabd (Elabd et al.,
2016)

2016 case
series

Autologous BM-
MSCs

1.5 × 107–5.2 × 107 5 Improvement in
strength andmobility

48–60 None

Henriksson
(Henriksson et al.,
2019)

2019 case
series

Autologous BM-
MSCs

1.0 × 106 4 Not mentioned 8–28 One
deterioration in
low back pain

Noriega (Noriega et al.,
2017)

2017 RCT,
Phase
1/2

Allogenic BM-
MSCs

2.5 × 107 12 Significant
improvement in VAS

and OD

12 None

Amirdelfan
(Amirdelfan et al.,
2021)

2021 RCT,
Phase 2

Allogenic BM-
MSCs

6.0 × 106–1.8 × 107 60 Improvement in VAS
and ODI

36 One
implantation
site infection

Kumar (Kumar et al.,
2017)

2017 Phase I Autologous AD-
MSCs

2.0 × 107–4.0 × 107 10 Significant
improvement in
VAS, ODI, SF-36

12 None

Haufe (Haufe and
Mork, 2006)

2006 case
series

Autologous
HSCs

NA 10 No improvement in
pain

12 None

Pang (Pang et al.,
2014)

2014 case
series

Allogenic UC-
MSCs

1.0 × 107 2 Improvement in VAS
and ODI

24 None

Lewandrowski
(Lewandrowski et al.,
2023)

2023 case
series

Allogenic UC-
MSCs

5.0 × 106 33 Significant
improvement in VAS

and ODI

24 None

Mochida (Mochida
et al., 2015)

2015 case
series

Autologous NP
cells

1.0 × 106 9 Improvement in JOA
score and lumbar

back pain

36 None

Beall (Beall et al., 2021) 2021 RCT Allogenic spine-
derived cells

>6.0 × 106 123 Significant
improvement in ODI

and VAS

12 2/141 SAEs

Coric (Coric et al.,
2013)

2013 Phase 1 Allogenic
chondrocytes

1.0 × 107–2.0 × 107 15 Significant
improvement in

NRS, ODI, and SF-36

12 None

Tschugg (Tschugg
et al., 2017)

2017 RCT,
Phase
1/2

Autologous disc-
derived

chondrocytes

3.6 × 106–4.4 × 106 12 Not mentioned 1.5 6/12 TEAEs

Comella (Comella
et al., 2017)

2017 case
series

Autologous SVF
cells/PRP

3.0 × 107–6.0 × 107 15 Significant
improvement in

VAS, PPI, and SF-12

12 None

Pettine (Pettine et al.,
2015)

2015 case
series

Autologous
BMC

1.2 × 107 26 Significant
improvement in

ODI, VAS

12 None

Tuakli-Wosornu
(Tuakli-Wosornu
et al., 2016)

2016 RCT PRP NA 29 Significant
improvement in NRS

and function

12 None

Akeda (Akeda et al.,
2022)

2022 RCT PRP NA 9 Significant
improvement in

RDQ and JOABPEQ

60 One post-
injection pain

BM, bonemarrow-derived;MSC, mesenchymal stem cell; VAS, visual analog scale; ODI, oswestry disability index; SF, Short Form. RCT, randomized controlled trial; AD, adipose-derived; HSC,

hematopoietic precursor stem cell; UC, umbilical cord-derived; NP, nucleus pulposus. JOA, japanese orthopedic association; SAEs, serious adverse events; TEAEs, treatment-related adverse

events; SVF, stromal vascular fraction. PRP, platelet-rich plasma; PPI, present pain index; BMC, bone marrow concentrate; NRS, numeric rating scale; RDQ, roland morris disability

questionnaire. BPEQ, back pain evaluation questionnaire.
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TABLE 2 Clinical and preclinical results of the nucleus pulposus repair or replacement devices.

Trade name Classification Polymer Outcomes

NeuDisc™ (Bertagnoli et al., 2005) injectable Copolymer of polyvinyl alcohol and polyvinyl
pyrrolidine or modified PAN reinforced by a Dacron
mesh

Force to failure 3581N in compression

NucleoFix™
/GelStix™ (Bowles and Setton, 2017)
(Ceylan et al., 2019) (Koetsier et al., 2022)

injectable Hydrating PAN Mean VAS score and ODI score were improved
significantly
RCT is being conducted (NCT02763956)

DASCOR™ (Tsantrizos et al., 2008)
(Ahrens et al., 2009)

in situ forming in situ curing polymer using inflatable polyurethane
balloon

4.2–5.6 MPa compressive strength
Significant improvements in mean ODI and VAS
scores

DiscCell™ (Pelletier et al., 2016) in situ forming in situ curing polymerized water-in-oil emulsion
composite

Restoring segmental range of motion in vitro

BioDisc™ (Yuksel et al., 2002) in situ forming Glutaraldehyde cross-linked elastin and silk
polypeptide

Mechanical durability of the implant was
demonstrated through 10 million compressive
loading cycles

NuCore™ (Berlemann and
Schwarzenbach, 2009)

in situ forming Hydrogel of a chemically cross-linked elastin and silk
polypeptide

Significant improvement for leg and back pain, as
well as function scores

PAN, polyacrylonitrile; VAS, visual analog scale; ODI, oswestry disability index; RCT, randomized controlled trial.

TABLE 3 Overview of the composite materials with cells.

Author Year Materials Donor cells Recipients Outcomes

Mizuno (Mizuno
et al., 2006)

2006 PGA/alginate gel sheep AF cells/NP cells mice Proteoglycan, collagen content and compressive
mechanical properties were similar to native NP
cells

Sakai (Sakai et al.,
2006)

2006 atelocollagen rabbit bone marrow derived
MSCs

rabbit Regained disc height, proteoglycan
accumulation and T2-weighted signal intensity
in MRI

Nesti (Nesti et al.,
2008)

2008 PLLA/HA human bone marrow derived
MSCs

NA The composite IVD expressed type
1,2,9,10,11 collagen and aggrecan

Nerurkar
(Nerurkar et al.,
2020)

2010 electrospun PCL/agarose bovine AF cells/bone derived
MSCs

NA Appropriate ECM deposition was found in the
composite IVD

Zhuang (Zhuang
et al., 2011)

2011 DBM/collagen2/hyaluronate/
chondroitin-6-sulfate

rabbit AF cells/NP cells mice Collagen and proteoglycan deposition was
found in the composite IVD

Bowles (Bowles
et al., 2011)

2011 contracted collagen gel/alginate ovine AF cells/NP cells rat Disc height was maintained in half of the
implants

Park (Perk et al.,
2012)

2012 porous silk/fibrin/HA hydrogel porchine AF cells/chondrocytes NA Implanted AF cells and chondrocytes
demonstrated appropriate gene expression and
GAG especially in the lamellar silk scaffold

Martin (Martin
et al., 2014)

2014 electrospun PCL None rat Construct was stable in 47% of samples without
external fixation and cell infiltration into
implants was found

Choy (Choy and
Chan, 2015)

2015 photochemically crosslinked
collagen membranes/collagen-
GAGs
co-precipitate

None NA Composite IVD showed as good performance as
the native disc on mechanical testing

Chik (Chika et al.,
2015)

2015 contracted collagen gel, collagen-
GAGs co-precipitate

rabbit bone marrow derived
MSCs

NA Engineered IVD showed appropriate
histological features

Ukeba (Ukeba
et al., 2021)

2021 ultra-purified alginate gel bone marrow derived stem cell/
bone marrow aspirate
concentrate

rabbit Composite IVD demonstrated good mechanical
properties and enhanced repair of IVD defects
in rabbits

PGA, polyglycolic acid; AF, annulus fibrosus; NP, nucleus pulposus; MRI, magnetic resonance image; ECM, extracellular matrix; IVD, intervertebral disc; PLLA, poly L-lactic acid; HA,

hyaluronic acid; NA, not assessed; DBM, demineralized bone matrix. MSC, mesenchymal stem cell; GAG, glycosaminoglycan; PCL, poly ε-caprolactone.
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and mechanical functions of the native disc; however, it has
exhibited varying degrees of success in mimicking the mechanical
properties and achieving integration with the native tissue.

Challenges related to the management of the disc space,
integration with the native tissue, and the mechanical environment
of the spine have been reported by in vivo animal studies on composite
discs. These findings emphasize the requirement for conducting
further research to address these limitations that hinder successful
clinical translation (Mizuno et al., 2006; Sakai et al., 2006; Zhuang
et al., 2011; Bowles et al., 2011; Martin et al., 2014; Ukeba et al., 2021).
Techniques to engineer motion segments, including the disc and
adjacent bony structures, aim to overcome the challenges associated
with integration and improve patient outcomes.

Although promising, the field of IVD regeneration through NP
replacement is associated with several limitations associated with
material design, biological integration, and mechanical performance.
Thus, further studies must be conducted in the future to better
understand and overcome these obstacles for successful clinical
application.

6 Growth factors, PRP, and biologics

Growth factors, such as TGF-β (Sun et al., 2023; Risbud et al.,
2006); GDF-5,6 (Gantenbein-Ritter et al., 2011; Clarke et al., 2014);
FGF-2 (Tsai et al., 2007); IGF-1 (Osada et al., 1996); BMP-2, 4, and 7
(Tim et al., 2003; Du et al., 2022; Ellman et al., 2013); and CTGF
(Matta et al., 2018), have been evaluated in previous studies (Table 4)
These factors can stimulate matrix synthesis, cell proliferation, and
differentiation. However, concerns regarding spatiotemporal
delivery and uncontrolled differentiation remain.

Injecting GDF-6 into the IVD attenuated inflammatory gene
expression and improved disc degeneration in a rabbit puncture

model (Miyazaki et al., 2018). Phase 1/2 clinical trials on the
intradiscal injection of recombinant human growth and
differentiation factor-5 (rhGDF-5) have reported promising
results (NCT00813813 and NCT01124006).

PRP, which comprises concentrated autologous platelets and
growth factors (Akeda et al., 2019), has shown potential in
increasing cell proliferation, matrix production, and disc height
in preclinical models. PRP can be classified into four categories,
comprising four types of preparation, based on the number of
leukocytes and fibrin content (Akeda et al., 2019). Two
randomized controlled trials have investigated the effects of PRP.
Tuakli-Wosornu et al. reported that injecting PRP into the IVD
resulted in significant improvement in lower back pain and function
over 8 weeks; moreover, the improvement was maintained at the 1-
year follow-up visit (Tuakli-Wosornu et al., 2016). Akeda et al.
reported that injecting PRP into the IVD resulted in a significant
improvement in the disability score at 26 weeks and walking ability
scores at 4 and 8 weeks compared with those achieved with
corticosteroid injection (Akeda et al., 2022) (Table 1). Optimal
formulations and delivery methods continue to be explored.
Small molecules and drugs aim to inhibit inflammatory cytokines
and MMPs, while also regulating the expression of catabolic/
anabolic genes.

Nuclear factor-κB (NF-κB) decoy and TNF-α inhibitors are
biologics that exert anti-inflammatory effects. NF-κB, a transcription
factor, regulates the inflammatory cytokine levels. NF-κB decoy, an
oligodeoxynucleotide containing the NF-κB binding site that entraps
NF-κB subunits, can suppress NF-κB activity. Intradiscal injection of
NF-κB can suppress inflammatory gene expression in degenerated
discs and restore disc height loss (Kato et al., 2021). Notably,
intradiscal injection of a TNF-α inhibitor (etanercept) improved
discogenic pain in humans within a 2-month follow-up period in
a previous study (Sainoh et al., 2016).

TABLE 4 Growth factors associated with intervertebral disc regeneration.

Author Year Name of growth
factor

Dose Animals Outcomes

Sun (Sun et al., 2023) 2023 TGF-β1 Plasmid Human NP cells Modulating oxidative stress

Risbud (Risbud et al., 2006) 2006 TGF-β3 10 ng/mL Rat NP and AF cells Maintenance of phenotype

Gantenbein Ritter (Gantenbein-Ritter
et al., 2011)

2011 GDF-5 100 ng/mL Human BMSCs Upregulation of Col2, ACAN

Clarke (Clarke et al., 2014) 2014 GDF-6 100 ng/mL AD-MSCs, BM-
MSCs

Upregulation of Col2, ACAN and NP marker

Tsai (Tsai et al., 2007) 2007 FGF-2 10 ng/mL Bovine NP cells Maintenance of phenotype

Osada (Osada et al., 1996) 1996 IGF-1 100 ng/mL Bovine NP cells Proteoglycan synthesis

Yoon (Tim et al., 2003) 2003 BMP-2 1000 ng/
mL

Rat AF cells Upregulation of Col2, ACAN and Sox9

Du (Du et al., 2022) 2022 BMP-4 68 ng/mL Sheep NP and AF
cells

Upregulation of Sox9 and increased ECM
production

Ellman (Ellman et al., 2013) 2013 BMP-7 100 ng/mL Bovine NP cells PG synthesis and upregulation of ACAN

Matta (Matta et al., 2018) 2018 CTGF 100 ng/mL Human NP cells,
rat, dog

Suppression of inflammation and upregulation of
Col2, ACAN

TGF, transforming growth factor; NP, nucleus pulposus; AF, annulus fibrosus; GDF, growth differentiation factor. BMSC, bone marrow-derived stem cell; Col2, type II collagen; ACAN,

aggrecan; AD, adipose-derived. MSC, mesenchymal stem cell; BM, bone marrow-derived; FGF, fibroblast growth factor; IGF, insulin-like growth factor. BMP, bone morphogenetic protein;

Sox9, SRY-Box Transcription Factor 9; ECM, extracellular matrix; PG, proteoglycan. CTGF, connective tissue growth factor.
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7 Multi-strategy synergistic therapy

In recent years, studies on the multi-strategy synergistic
therapies that incorporate cells, biomaterials, and growth factors
for intervertebral disc degeneration have also been conducted. Wei
et al. reported that TGF-1 was embedded with MSCs in
decellularized annulus fibrosus matrix (DAFM) hydrogels
reinforced with polyethylene glycol diacrylate (PEGDA) to
facilitate the controlled release of TGF-1 while preserving the
hydrogel’s porous structure. Following infusion into a rat model
with AF injury, there was a notable increase in the migration of AF
cells to the injury site, which promoted anabolic upregulation (Wei
et al., 2022). Sun et al. (2020) utilized 3D printing and
electrospinning technology to load TGF-β3, CTGF and bone
marrow-derived MSCs onto polydopamine nanoparticles and
polycaprolactone scaffolds, respectively, mimicking the structure
of AF and achieving mechanical properties similar to those of
natural AF in the rodents. Although these studies have
demonstrated that multi-strategy combination has great potential
for IVD repair, further studies in large animal models are necessary.

8 Animal models

In vitro and in vivo studies have been conducted using small and
large animal models of rodents (such as mice and rats), rabbits; dogs;
sheep; goats; pigs; and monkeys; to evaluate regenerative techniques
(Poletto et al., 2023). The use of small animal models is a cost-effective
approach for screening. Rodents, such as mice and rats, are the most
commonly used animal species (54%) in IVD studies (Poletto et al.,
2023). However, the physiological characteristics of rodents vary from
those of humans. In contrast, the disc size and disc degeneration
observed in large animals, such as dogs, sheep, and pigs, is similar to
that in humans; nevertheless, replicating the slow, progressive human
disc pathology in these animals is difficult. IVD degeneration can be
induced via bacterial, chemical, genetic, noninvasive, spontaneous,
and surgical methods (Poletto et al., 2023; Oichi et al., 2020). The
experimental time points vary depending on the species. The
commonly used time points for different species are as follows:
rodents, 2 or 4 weeks; rabbits, 4 weeks; sheep, 24 weeks; goats,
12 weeks; pigs, 12 weeks; and monkeys, >104 weeks (Poletto et al.,
2023). A single animal model that can recapitulate the entirety of
human IVD degeneration remains to be established. However, the
results can be interpreted reliably if the limitations of a selected animal
species are recognized.

9 Clinical translation

Preclinical studies have demonstrated the promising results of
regenerative disc therapies. Nevertheless, these therapies are associated
with significant limitations that hinder their translation into clinical
practice. These limitations include insufficient graft retention and
integration into the disc space, limited survival and proliferation of
the cells within the harsh disc microenvironment, uncontrolled
differentiation of stem cells, mechanical instability of the implanted
scaffolds, and concerns regarding long-term safety. Furthermore, the
regulatory requirements for devices and biologics set forth by the U.S.

Food and Drug Administration also pose hurdles. Clinical
implementation of regenerative disc therapies requires optimization
of cell sources, biomaterials, growth factors, PRP, gene therapy,
mechanical stimulation, and delivery methods. Evaluation of
clinically relevant models and personalized regenerative therapies
tailored to individual patients can be achieved using biomarkers,
advanced imaging modalities, and bioreactors.

10 Discussion

Preclinical studies on regenerative medicine therapies that
utilize cells, biomaterials, growth factors, PRP, and biological
agents have demonstrated their promise in repairing degenerated
lumbar discs. However, these therapies are associated with
significant limitations and challenges that hinder their clinical
translation. Thus, further studies must be conducted in the future
to address these challenges. Advances in the fields of tissue
engineering, biomaterials, stem cells, and biological factors will
facilitate regenerative therapies to halt or reverse progressive disc
degeneration and improve the clinical outcomes and quality of life of
patients with LDDD.
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