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Stroke rehabilitation interventions require multiple training sessions and
repeated assessments to evaluate the improvements from training.
Biofeedback-based treadmill training often involves 10 or more sessions to
determine its effectiveness. The training and assessment process incurs time,
labor, and cost to determine whether the training produces positive outcomes.
Predicting the effectiveness of gait training based on baseline minimum foot
clearance (MFC) data would be highly beneficial, potentially saving resources,
costs, and patient time. This work proposes novel features using the Short-term
Fourier Transform (STFT)-based magnitude spectrum of MFC data to predict
the effectiveness of biofeedback training. This approach enables tracking non-
stationary dynamics and capturing stride-to-stride MFC value fluctuations,
providing a compact representation for efficient processing compared to
time-domain analysis alone. The proposed STFT-based features outperform
existing wavelet, histogram, and Poincaré-based features with a maximum
accuracy of 95%, F1 score of 96%, sensitivity of 93.33% and specificity of
100%. The proposed features are also statistically significant (p <0.001)
compared to the descriptive statistical features extracted from the MFC
series and the tone and entropy features extracted from the MFC
percentage index series. The study found that short-term spectral
components and the windowed mean value (DC value) possess predictive
capabilities regarding the success of biofeedback training. The higher
spectral amplitude and lower variance in the lower frequency zone indicate
lower chances of improvement, while the lower spectral amplitude and higher
variance indicate higher chances of improvement.
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1 Introduction

Stroke affects millions of people worldwide each year (Gerstl
et al., 2023) and approximately 60,000 in Australia, i.e., more than
100 documented incidents daily.1 Stroke is a prevalent and
significant health risk associated with ageing, with stroke patients
often exhibiting impaired gait dynamics of varying severity. Stroke
survivors with impaired gait dynamics commonly experience a
higher likelihood of falls (Roelofs et al., 2023). Minimum Foot
Clearance (MFC) is the foot’s minimum vertical displacement
from the walking surface during the mid-swing phase of the
walking cycle. Low MFC can increase the risk of tripping-related
falls (Nagano et al., 2020; Nagano et al., 2022). Assessing the
effectiveness of gait training requires multiple training sessions,
with follow-up clinical evaluations requiring major resources. Fall
prevention programs based on exercises have proven beneficial for
the general older adult population, but they lack effectiveness when
applied to stroke-injured individuals (Begg et al., 2019). In one falls
intervention study of stroke patients, a home-based balance and
strength program was trialled (Batchelor et al., 2012), and in
another, an exercise program with both group and home-based
balance and strength training was conducted (Dean et al., 2012), but
neither demonstrated a reduction in falls.

These traditional stroke rehabilitation methods are hindered by the
absence of real-time, objective feedback, limiting patient engagement
and impeding effective progress (Teodoro et al., 2024; Spencer et al.,
2021; Giggins et al., 2013). To overcome the limitations of traditional
stroke rehabilitation, our research group has pioneered treadmill-based
biofeedback training (Begg et al., 2014) by presenting a real-time display
of the forefoot marker’s trajectory on a video monitor positioned in
front of the treadmill (Begg et al., 2019; van der Straaten et al., 2020).
Figure 1 shows an example of real-time biofeedback treadmill training
and the associated MFC series. The principal biofeedback variable
derived from the forefoot marker is the MFC (see Figure 1)
(Nagano et al., 2022). MFC at mid-swing is the critical gait variable
in predicting tripping (Nagano et al., 2022; Begg et al., 2019) with low
MFC leading to unanticipated, destabilizing, foot-ground contacts
(Pathak et al., 2022; Best and Begg, 2008). Stroke participants who
have difficulty in stepping over relatively low surface irregularities of
approximately 4 cm are at increased risk of falling (Said et al., 2014), and
they often exhibit lower andmore variableMFC control across multiple
steps (Pathak et al., 2022).

Biofeedback gait training has been shown to be effective in
stroke rehabilitation to improve MFC data by controlling swing foot
movements (Begg et al., 2014; Nagano et al., 2022), where people can
receive real-time visual feedback to control MFC within the target
band, determined by individuals’ swing foot motions (Nagano et al.,
2022). A uniform rehabilitation program may not be suitable for all
individuals, and the capacity to predict the effectiveness of gait
training from pre-interventionMFC data would be highly beneficial,
potentially saving public health costs and reducing patient
inconvenience. The aim of this project was to predict the
effectiveness of biofeedback treadmill training for stroke patients

from their baseline walking data before training. Gait improvements
are identified from increased MFC within an individual-specific
threshold. We hypothesized that biofeedback training effects on
MFC could be predicted using novel features of the Short-Term
Fourier Transform (STFT) magnitude spectrum of MFC data. This
approach was expected to enable the tracking of non-stationary
dynamics and capturing stride-to-stride MFC fluctuations (Pachori,
2023), providing compact representations and more efficient
processing than time-domain analysis alone.

Our main contributions to this work are threefold:

• We propose new STFT-based magnitude spectrum features
derived from MFC data to predict the effectiveness of
biofeedback gait training. The mean short-term magnitude
spectrum reveals the tendency of stride-to-stride fluctuation in
MFC values, providing insights into gait stability. Analyzing
frequency-related information helps identify patterns and
irregularities in movement across strides. To the best of our
knowledge, this is the first study to propose short-term
spectral features to predict improvement in biofeedback
gait training from baseline data. Although histogram and
Poincaré features (Begg et al., 2007) and wavelet-based
features (Khandoker et al., 2007) were applied to recognise
gait patterns, these methods were used primarily in the context
of healthy adults, and their performance in the analysis of
MFC data in stroke patients remains unknown.

• MFC data has dynamic patterns and is non-stationary. To enable
tracking of non-stationary MFC dynamics and to capture the
patterns, we first decompose the baseline MFC series into their
underlying sinusoidal structures, revealing embedded stride-to-
stride fluctuations. Then, we make use of three frequency
components derived from STFT-based magnitude spectrum
features to predict biofeedback-based training from baseline
MFC data. The three derived frequency components
demonstrate high statistical significance (p< 0.001), making
our proposed framework superior to existing approaches.

• We provide a comprehensive analysis of spectral features and
evaluate these components in combination with machine-
learning classification models to develop predictions from
baseline data. In addition, we provide an analysis of
windowing the MFC series and the robustness of frequency
components under noisy conditions.

2 Related work

Previous studies have primarily focused on analyzing the linear
statistical properties of biomechanical variables to investigate safer
walking and lower-limb control characteristics (Khandoker et al.,
2016; Begg et al., 2005). Statistical features, including mean, standard
deviation (s.d.), skewness, kurtosis, median, 25th and 75th percentiles,
interquartile range, mode, minimum,maximum, and quartile coefficient
of dispersion were extracted (Begg et al., 2005). They also utilized
Poincaré plots to visually represent the relationship between
successive gait cycles and provide insights into the performance of
the locomotor system in controlling critical events. From the
Poincaré plot, they extracted features corresponding to both the
major and minor axes, capturing short- and long-term variability in

1 https://www.aihw.gov.au/reports/heart-stroke-vascular-disease/hsvd-

facts/contents/all-heart-stroke-and-vascular-disease/stroke
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the MFC data. The other research work (Khandoker et al., 2016) also
analyzed descriptive statistics to quantify the MFC series, including the
mean, median, standard deviation (SD), 25th percentile (Q1), 75th
percentile (Q3), and interquartile range (IQR). In addition, the
authors also introduced tone and entropy features based on the
percentage change in successive MFC observations relative to the
previous MFC, referred to as the Percentage Index (PI).

To consider the complexity and nonstationary properties of the
MFC series, a wavelet-based multiscale exponent to capture correlations
among the variances of wavelet coefficients across different scales was
employed (Khandoker et al., 2007). The MFC series underwent
decomposition using Dabaucheis wavelets of order 6, with eight levels
of decomposition, resulting in a sequential list of detailed coefficients that
represented the correlation evolution between the series and selected
frequencies within various frequency ranges. Although these methods
have shown success in healthy adults, their performance in analysing
MFC data in stroke patients remains unknown.

Short-term magnitude spectrum is valuable for observing
fluctuations in MFC values in consecutive strides within smaller
intervals. Its analysis of stride-to-stride fluctuations provides insights
into gait characteristics, specifically regarding the consistency and

stability of MFC fluctuations across strides. This information is
crucial for assessing mobility and functional recovery in stroke
patients, as it might reflect gait stability and muscle coordination.

3 Materials and method

The MFC series offers valuable insights into foot trajectory control.
The short-term average is suitable for characterizing MFC control in
stroke patients because it represents the overall intensity or strength of the
MFC signal within short intervals and accommodates nonstationary
characteristics of the MFC series (Khandoker et al., 2007). Reduced
MFC fluctuation suggests a more stable gait; in such cases, the short-
term average can effectively capture the overall intensity of the MFC
signal. This measure is particularly useful for quantifying the stability and
regularity of gait in stroke patients due to the focus on average signal
magnitude rather than time-frequency characteristics.While post-training
assessments are typically used to determine any improvements during
stroke rehabilitation, our objective here was to predict training effects. This
is a novel problem in stroke rehabilitation and this report is the first to
address this problem, Figure 2 illustrates our approach.

FIGURE 1
The diagram depicts a person engaged in treadmill training while receiving real-time biofeedback. The training aims to regulate minimum foot
clearance (MFC) data within a target band, indicated by a red dot. The target band is defined by the (mean + SD) ±(0.5*SD) (standard deviation) of MFC,
establishing the upper and lower boundaries (Nagano et al., 2022). Adapted from Nagano et al. (2022), licensed under CC-BY 4.0 and the authors have
made no changes to the original figure.

FIGURE 2
A high-level overview of the proposed approach. Baseline MFC data is processed to extract MFC features and then fed to a classifier to predict
whether there is an improvement in the MFC or not.
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3.1 Participants

This study included 19 patients over 18 years of age at least 6 months
after a single stroke (ischemic or hemorrhagic). They could walk
independently for 50 m and were able to provide informed consent
(Begg et al., 2019). Patients were excluded if they had an ankle orthosis,
any other medical condition that prevented them from walking on a
treadmill, visual deficits, or bodymass exceeding 158 kg (Begg et al., 2019),
participant characteristics have been presented in Table 1. Participants
were carefully briefed and their consent was secured to ensure informed
participation. The study was included in the Australian and New Zealand
Clinical Trials Registry - trial ACTRN12617000250336 and approved by
the Human Research Ethics Committees of Victoria University, Australia
and Austin Hospital, Melbourne, Australia.

3.2 Data collection

We employed a three-dimensional motion analysis system
(Optotrak®, NDI, Canada) to capture kinematic data at 100 Hz.
Following a standardized protocol (Begg et al., 2007), participants
were outfitted with a cluster of three active markers, including one
affixed to the big toe. The forefoot’s imaginary position was digitized
using an active digitizing probe. To ensure safety and adherence to the
protocol, all participants were secured by a safety harness and
instructed to walk on a motorized treadmill at their self-selected
walking speed for up to 10 min, with rest breaks as needed. During
subsequent biofeedback gait training sessions, the real-time sagittal
trajectory of the big toe marker was displayed on a screen positioned in
front of the treadmill (see Figure 1). This display featured toe clearance,
associated MFC events and the individual patient’s training-target
MFC from their baselineMFC data, depicted as a horizontal line on the
screen (Begg et al., 2019). Participants were then tasked with adjusting
their MFC height to match the monitored range. Patients underwent a
total of 10 biofeedback training sessions, with faded biofeedback
introduced after the initial six sessions. Detailed information about
the biofeedback training sessions is available in Begg et al. (2019).

3.3 Assessment

Gait assessment tests were scheduled at the baseline and
immediately after the final training session (with a minimum gap
of 20 min). The class labels were based on post-trainingMFC change
from baseline MFC data by which participants could be categorized
as either improved or unimproved following training.

3.4 Spectral analysis of baseline MFC data

The short-term average provides the overall intensity or strength
of the MFC signal within short intervals, which covers the
nonstationary characteristics of the MFC series.

The height of the MFC refers to the vertical displacement between
the lowest point of the foot (represented by the toe marker) and the
ground during the swing phase of walking (Begg et al., 2007). Then the
series of the MFC height can be represented as in Equation 1

MFC � MFC1,MFC2,MFC3, . . . ,MFCN{ }, (1)
where N is the number of MFC data points (Khandoker et al., 2016).
We normalize the MFC series to reduce the effects of lengthy series
and between-subject variability.

We can now define the STFT of the MFC series as in Equation 2

MFCf k,m[ ] � ∑N−1

n�0
MFC n[ ]w n −m[ ]e−j2πN kn, (2)

where w[n] is the window function,m is the shift parameter, k is the
frequency bin index, and N is the length of the signal.

The average magnitude across frames can be calculated as in
Equation 3

MFCf k( ) � ∑L−1
m�0

MFCf k,m( )∣∣∣∣ ∣∣∣∣
L

, (3)

where L is the number of frames.
Figure 3 file shows the MFC series for improved and unimproved

patients with their frequency domain amplitude spectrum below. From
Figure 3, it is evident that the lower frequency range appears to exhibit
notable discriminant characteristics, but we can employ F-tests to more
reliably confirm the separability of data (Nicholson et al., 1997;
Sengupta et al., 2016). The F statistic is the ratio of the between-
class and within-class variance of magnitude spectrum coefficients for a
particular frequency component. Figure 4 shows the F-ratio plot, with a
higher F-ratio indicating more separation between the classes. For a
given frequency component k, the F-ratio is defined as in Equation 4

F k( ) � ∑C
i�1 �Si k( ) − �S k( )[ ]2

∑C
i�1

1
Ci
∑Ci

j�1 Sji k( ) − �Si k( )[ ]2( ) (4)

where Sji(k) is the magnitude spectrum coefficient of the j-th sample
(j � 1, 2, . . . , Ci) of the i-th class (i � 1, 2, . . . , C) at frequency k.
�Si(k) and �S(k) are the mean of the k-th frequency component of the
i-th class and all the classes, respectively. We calculated F-ratios for
different frequency components to analyze the separability of classes
in detail. This F-ratio analysis involved using all the MFC series
belonging to the two classes. The variation of the F-ratio concerning
frequency is depicted in Figure 4. The short-term magnitude
spectrum of each MFC series was obtained by dividing it into
eight segments with 50% overlap using a Hamming window.

The primary finding from Figure 4 is that the short-term
magnitude spectrum in the lowest-frequency region (i.e., 0 to ≈
0.2 cycles/stride) carries more discriminative information compared
to higher-frequency regions. While there are non-zero data of
F-ratio in the higher frequency range as well, they are lower than
those in the lower frequency zone. Therefore, it is quite evident that
the lower frequency zone is more discriminative than the higher

TABLE 1 The table summarizes the participants’ details, including the
number of subjects, age, affected lower limb, and walking speed among
19 subjects.

Class Improved Unimproved

No. of subjects 14 5

Age (years) 68.71 ± 12.31 69.40 ± 11.76

Female 6 1

Left affected 5 5

Walking speed (km/h) 1.96 ± 1.04 2.08 ± 0.48
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frequency zone. The MFC data represents a discrete series since it is
generated at specific time points within the strides. Considering that
each patient maintained a self-preferred consistent speed on the
treadmill, the occurrence of MFC values at equal time intervals
enables us to define the frequency as cycles per stride. Our primary
focus is on observing the changes in MFC values within each stride,
rather than the time gap between consecutive values. To facilitate
this analysis, we employed a default normalized sampling frequency,
where the term ‘frequency’ refers to a normalized measure.

3.4.1 Spectral feature extraction
The feature calculation involved dividing eachMFC series into eight

segments with 50% overlap and applying the Hamming window. A 256-
point Fast Fourier Transform (FFT)was performed, and by averaging the
magnitude over stride frames, we obtained 129 frequency components
(including the 0th frequency bin) representing magnitude values at

different frequencies. Figure 5 represents a basic diagram of the
feature extraction technique comprised of an STFT of the MFC series
and then averaging across the stride axis to obtain the feature vector.

We chose the short-termmagnitude corresponding to the lowest
frequencies as our feature since it demonstrated the maximum
differentiation between the two groups as observed in Figures 3,
4 and can be computed as MFCf(k). In the following section, we
consider the lower frequency zone as our main focus for feature
selection because of its superior discrimination power and
prominent amplitude values.

3.5 Feature significance and selection

To determine the statistical significance of the spectral
characteristics, we conducted a Mann-Whitney U-Test (Gibbons

FIGURE 3
Typical baseline normalized MFC height series for an arbitrarily chosen stroke patient (upper panel) who improved after training and another patient
who did not improve after training (middle panel). The magnitude (absolute amplitude) spectrum was computed from the normalized baseline MFC data
above (lower panel).

FIGURE 4
The F-ratio of magnitude-spectrum coefficients demonstrates the separability between improved and unimproved.
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and Chakraborti, 2020) on each characteristic of the two groups. For
our sample (n = 19) nonparametric estimation was preferred with p
< 0.05 a suitable threshold for significance. In addition, we
computed the AUC values for each feature to investigate their
importance further. ROC curves aid in developing an automatic
classification model by assessing the effectiveness of each feature at
various thresholds (Fawcett, 2004). They highlight the feature’s
ability to maximize detection probability while minimizing false
alarms. AUC was calculated from the ROC curve for individual
spectral characteristics, and a support vector machine (SVM) was
used for this binary classification as it showed consistent and reliable
performance in the prior studies (Begg et al., 2005; Khandoker et al.,
2007). Given our smaller sample size, we adopted a precaution
against overfitting by selecting only the three most significant
features for classification, balancing the model’s complexity and
generalizability (Murphy, 2012).

3.6 Predicting the improvement of MFC

To predict the improvement in MFC data from baseline
treadmill training, we use five classifiers based on previous
literature specifically used in binary classification (Caruana and
Niculescu-Mizil, 2006) and our work in this area (Begg et al.,
2005; Khandoker et al., 2007). These classifiers include Support
Vector Machine (SVM), Random Forest (RF), AdaBoost, Ensemble
Decision Tree (EDT) and Artificial Neural Network (ANN).

Support Vector Machine (SVM) is a supervised machine
learning technique that is based on guaranteed risk bounds of
statistical learning theory known as structural risk minimization
(SRM) principle (Burges, 1998) and it is used for both classification
and regression. The main function of SVM is to find an optimal
hyperplane that effectively separates data points into different
classes and maximizes the margin between them. The decision
function is given by Equation 5

f x( ) � sgn w.x + b( ) � sgn ∑M
i�1

αiyiK xi, x( ) + b( )⎛⎝ ⎞⎠ (5)

where, f(x) represents the decision function, w is the weight vector
perpendicular to the separating hyperplane, b serves as a bias
determining the position of the hyperplane, xi represents the i-th
feature vector of dimension d, yi ∈ {+1,−1} is the label (target

output) of xi, αi is the Lagrange multiplier of the i-th data point,
K(xi, x) is the kernel function, and M represents the number of
support vectors—data points in the margin. The sgn(·) function
returns the sign of the argument.

Kernel techniques facilitate class separation by projecting data
points into a high-dimensional space when they are not separable in
the lower-dimensional space. Nonlinear kernels, including
polynomial kernels, radial basis functions employed in addition
to linear kernels (Burges, 1998).

Decision Tree is a non-parametric supervised learning method
utilized for both classification and regression tasks (Mitchell, 1997).
It uses tree-like structure to make decisions or predictions based on
input features. It recursively partitions the data based on feature
values, creating a hierarchical structure of decision nodes and leaf
nodes. Each internal node represents a decision based on a specific
feature, while each leaf node represents a class label.

1. Random Forest (RF) combines multiple Decision Trees
through the use of bagging, i.e., training each tree on a
random subset of the data and considering only a random
subset of features at each split (Breiman, 2001). The outcome is
determined by averaging or majority voting on the predictions
generated by these trees.

2. AdaBoost, short for Adaptive Boosting, is a boosting algorithm
that sequentially combines multiple weak learners, often
Decision Trees with only one level of depth or “stumps”
(Freund and Schapire, 1997). Each weak learner is trained
on a weighted version of the training data, with higher weights
assigned to misclassified samples. The subsequent weak
learners focus more on the previously misclassified samples,
improving the overall performance. AdaBoost iteratively
updates the sample weights and combines the weak learners’
predictions through weighted voting (Freund and
Schapire, 1997).

3. Ensemble Decision Tree (EDT) with bagging, combines
multiple Decision Trees trained on different bootstrap
samples of the training data. Bagging aims to reduce
variance and enhance stability by introducing randomness
in the training process. Each tree in the ensemble is
constructed independently on a randomly drawn subset of
the training data with replacement. The final prediction is
obtained by aggregating the predictions of all the individual

FIGURE 5
The figure showcases the computation of spectral features from the MFC series through the Short-Term Fourier Transform (STFT). This yields a
three-dimensional matrix that captures stride-frames, frequency, and magnitude. Averaging across stride frames provides the dominant frequency
component across strides.
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trees, typically through majority voting or averaging
(Dietterich, 2000).

Artificial Neural Networks (ANNs), are computational models
inspired by the structure and function of the human brain. They
consist of artificial neurons that mimic biological neurons and are
connected through synapse-like links. ANNs are organized in layers
with connections between them. The input layer receives the data to be
modelled, and the output layer produces the predicted output. The
response produced in the output node is defined as Equation 6:

ok � fo ∑m
j�0

wk,jhj⎛⎝ ⎞⎠, (6)

where ok is the produced response of the k-th node of the output
layer, fo is the non-linear function at the output layer node,m is the
number of nodes in the hidden layer, wk,j is the weight connecting
the j-th hidden node and the k-th output node, and h0 � 1 is the bias
term. ANN is a supervised classifier, and the weights are determined
during the training phase. The backpropagation algorithm and
mathematical optimization techniques are used to learn the
weights of the connections between neurons, minimizing the
difference between the expected and predicted outputs. Learning
the proper weights is crucial, and optimization algorithms adjust
these weights through mathematical procedures. ANNs can be used
for both classification and regression problems (Haykin, 2009).

3.7 Model training and evaluation

We used the proposed STFT-based features to develop an
automated classification model to identify individuals who would
experience improvement based on their baseline MFC series as a
result of biofeedback training. Due to limited samples, with five
samples in the unimproved class (see Table 1), we approached the
cross-validation in three ways:

1. Leave-one-sample-out cross-validation. Each of the 19 samples
was taken individually as a test sample, while the remaining
samples were used for training. This process was repeated for
all 19 samples and the average performance metric was
calculated across all samples.

2. Leave-one-fold-out cross-validation. By randomly selecting
four samples from each class, we trained the model with
these samples while using the remaining samples for testing.
This random selection process was repeated 50 times to ensure
reliable results. We calculated the average performance metrics
for these iterations.

3. 5-fold stratified cross-validation. The data set was divided into
five folds and the model was trained in four folds, while one-
fold was reserved for testing. This process was repeated five
times, ensuring that each fold maintained the original dataset’s
class distribution. This approach allowed for a proper
proportion of samples from each class in both training and
testing sets. Following a 5-fold cross-validation procedure, we
calculated the average performance metrics. This involved
evaluating the model’s performance in multiple iterations to
ensure robustness and reliability.

To ensure generalization accuracy (ACC), this study used three
metrics. These metrics, including sensitivity (SENS), specificity
(SPEC), and the F1 score (F1), were calculated for each class in all
subjects (Murphy, 2012). This validation method allowed evaluation
of the model’s performance while accounting for variation between
subjects and ensuring the ability to generalize to unseen data.

4 Results

We present our results and analyses in five subsections
highlighting the significance of spectral features, including
statistical significance of the spectral features, comparison with
other MFC features, comparison of features with alternative
classifiers, MFC window effects and performance under noisy
conditions.

4.1 Statistical significance of the
spectral features

The MFC frequency spectrum in Figure 3 indicates that the
lower frequency range exhibited greater discrimination between
improved and non-improved classes, with differentiation
declining as frequency increments. The same trend is seen in
Figure 6, in which the first 11 spectral components are presented
with Mann Whitney p-values and AUC statistics from the SVM
classifier (refer to Section 3.5). The consistent findings are shown in
Figures 3, 6 provide strong evidence that the lower frequency range
contains the most valuable discriminant features.

The leave-one-fold-out cross-validation (refer to Section 3.7
second approach) showed that the p-values of the first three

FIGURE 6
The figure depicts the two parameters (p-value and AUC) for
selecting the spectral features. The upper panel represents the
significance of 11 features across lower frequencies using p-values.
The first 11 features consist of the DC value and the absolute
amplitudes (magnitudes) corresponding to the first 10 frequencies
(frequency range of 0–0.2545 cycles/stride). The lower panel shows
the efficacy of modelling individual characteristics regarding
AUC values.
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features [MFCf(0), MFCf(1) and MFCf(2)] were 0.03(< 0.05),
indicating strong statistical significance, i.e., below the
0.05 threshold, but p-values exceeded 0.05 after the fourth
feature. The initial three values contributed to approximately
0.98 AUC but subsequently decreased.

We used statistical analysis to compare the results, similar to
Khandoker et al. (2016). We calculated the following descriptive
statistics to quantify the MFC series: mean, median, standard
deviation (SD), Q1 (25th percentile), Q3 (75th percentile), IQR
(Q1-Q3, interquartile range); additionally, we used tone and entropy
estimates from the MFC Percentage Index (PI) series (Khandoker
et al., 2016). The Mann-Whitney U test (Gibbons and Chakraborti,
2020) was used to determine statistically reliable differences in these
statistics between the two groups of stroke patients, that is, improved
and unimproved.

Table 2 displays the mean and standard deviation (std) values
for all the features mentioned in Khandoker et al. (2016), as well as
our proposed feature for two groups: improved and unimproved.
On examination, it is evident that all features, except the entropy
feature, demonstrated statistical significance when considering a
threshold of p< 0.05. However, the proposed spectral feature stood
out as it remained significant even when considering a more
stringent threshold of p< 0.001 (Singh, 2013). This highlights
the notable significance and efficacy of our proposed feature (all
three spectral features) in effectively distinguishing between the
two groups.

4.2 Comparison of MFC-based features

Tables 3–5 present the results of the features previously used in
Begg et al. (2005), Khandoker et al. (2007) and our proposed spectral
feature evaluated using an SVM classifier. In Begg et al. (2005), the
authors used a total of 24 features, including statistical features
extracted from the histogram representation of MFC data and
features derived from the Poincaré plot of MFC data (Begg et al.,
2005). In Khandoker et al. (2007), six features were derived from the
MFC values from wavelet decomposition. We chose to use the SVM

classifier due to its performance in using the features presented in
Begg et al. (2005), Khandoker et al. (2007).

We evaluated the performance of the features using a linear
kernel, a radial basis function (RBF), and a polynomial kernel
(degree 3) kernel with SVM. Upon examining the overall
performance across all metrics, it is evident that the wavelet-
based features (Khandoker et al., 2007) consistently
underperformed in the three classification approaches, regardless
of the SVM kernel used. On the contrary, the proposed spectral
features outperformed the features based on histograms and
Poincaré plots (Begg et al., 2005) and wavelets (Khandoker
et al., 2007).

In addition, the AUCs for wavelet-based features were poor,
indicating that the classifier struggled to establish appropriate
boundaries for these features. In contrast, both the spectral and
histogram-Poincaré features yielded comparable AUC values. On
multiple occasions, we observed a specificity of 100% for all three
types of features (histogram features, Poincaré features, and the
proposed spectral features).

4.3 Performance of proposed feature with
different classifiers

Table 6 provides an overview of the performance achieved by
five machine learning models after fine-tuning their
hyperparameters.

We experimented with two key hyperparameters for RF and
EDT: minimum leaf size (1, 5, and 10) and the number of trees
(randomly chosen between 5 and 100). In the case of the AdaBoost
classifier, we focused on the learning rate (0.001, 0.01, and 0.1) and
the number of weak learners (15, 20, 25, and 30). Regarding the
artificial neural network (ANN), we varied the learning rate (0.1,
0.01, and 0.001) and the number of hidden nodes (10, 20, and 50)
within a single hidden layer. We also performed hyperparameter
optimization for the ANN, including optimization functions
(Gradient Descent Backpropagation, Fletcher-Reeves Conjugate
Gradient Descent, Polak-Ribiére Conjugate Gradient Descent),
transfer functions (tan-sigmoid and log-sigmoid), a fixed number
of epochs (1,000), and a ridge regularization value of 0.01.

Due to the limited sample size mentioned earlier in the
classification section, we employed three cross-validation
approaches to assess the effectiveness of these features.

4.3.1 Leave-one-sample-out approach
We observed that SVM, EDT, and AdaBoost classifiers achieved

the best performance, each with an F1-score of over 96%, and an
accuracy of 94.73%. Notably, AdaBoost achieved 100% sensitivity,
while SVM achieved 100% specificity. RF also performed well with
an F1-score of 92.85%. However, ANN exhibited poor performance
with a specificity of 0%.

4.3.2 Leave-one-fold-out method
The SVM classifier demonstrated the best performance,

achieving an F1-score of 92.95%, an accuracy of 88.18%, a
specificity of 94.00%, and a sensitivity of 87.60%. RF also
performed well with an F1-score of 92.39%. Conversely, ANN,
EDT, and AdaBoost classifiers performed poorly in this scenario.

TABLE 2 Mean ± SD Values of each of three proposed spectral features,
tone-entropy parameters, and MFC descriptive statistics (Khandoker et al.,
2016) for the improved and unimproved groups of stroke patients.

Feature Unimproved Improved p-value

Mean 0.7148 ± 0.0537 0.5164 ± 0.1282 0.005

Median 0.7083 ± 0.0556 0.5068 ± 0.1316 0.007

STD 0.0933 ± 0.0186 0.1351 ± 0.0319 0.014

Q1 0.6492 ± 0.0620 0.4163 ± 0.1373 0.003

Q3 0.7751 ± 0.0472 0.5990 ± 0.1305 0.014

IQR 0.1258 ± 0.0224 0.1827 ± 0.0566 0.055

Tone −0.9642 ± 0.2923 −5.715 ± 4.1928 0.007

Entropy 2.6811 ± 0.3523 2.6181 ± 0.3399 0.516

Proposed 16.6300 ± 1.2512 11.4983 ± 2.2320 0.0003

All statistical comparisons were accepted as significant when p < 0.001.

Bold value represents the best performance.
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TABLE 3 The classification performance of the SVM classifier uses the leave-one-sample-out cross-validation method with different kernels (linear, Gaussian RBF, and polynomial) for different regularization
parameters (C).

Parameters Spectral feature Histogram-Poincaré based feature Wavelet-based feature

Kernel C ACC SENS SPEC F1 AUC ACC SENS SPEC F1 AUC ACC SENS SPEC F1 AUC

Linear 0.01 89.47 92.85 80.00 92.85 92.85 73.68 100.00 0.00 84.85 78.57 73.68 100.00 0.00 84.85 35.71

0.1 84.21 85.72 80.00 88.89 94.28 73.68 100.00 0.00 84.85 77.14 73.68 100.00 0.00 84.85 35.71

1 94.73 92.85 100 96.29 94.28 63.15 85.71 0.00 77.42 82.85 68.42 85.71 20.00 80.00 41.43

10 89.47 92.85 80.00 92.85 92.85 84.21 85.71 80.00 88.89 92.85 63.15 78.57 20.00 75.86 27.14

100 89.47 92.85 80.00 92.85 77.14 84.21 85.71 80.00 88.89 92.85 52.63 64.28 20.00 66.67 20.00

RBF 0.01 73.68 100.00 0.00 84.84 82.85 73.68 100.00 0.00 84.85 78.57 73.68 100.00 0.00 84.85 41.43

0.1 73.68 100.00 0.00 84.84 82.85 73.68 100.00 0.00 84.85 80.00 73.68 100.00 0.00 84.85 42.85

1 84.21 92.85 60.00 89.65 84.28 73.68 100.00 0.00 84.85 80.00 73.68 100.00 0.00 84.85 42.85

10 84.21 92.85 60.00 89.65 72.85 63.15 85.71 0.00 77.42 87.14 63.15 78.57 20.00 75.86 48.57

100 68.42 78.57 40.00 78.57 74.28 84.21 85.71 80.00 88.89 92.85 63.15 78.57 20.00 75.86 48.57

Polynomial 0.01 89.47 92.85 80.00 92.85 77.14 73.68 100.00 0.00 84.85 84.28 73.68 100.00 0.00 84.85 40.00

0.1 89.47 92.85 80.00 92.85 74.28 73.68 100.00 0.00 84.85 74.28 68.42 92.85 0.00 81.25 41.42

1 89.47 92.85 80.00 92.85 71.43 73.68 100.00 0.00 84.85 77.14 63.15 78.57 20.00 75.86 42.85

10 84.21 85.71 80.00 88.89 87.14 68.42 92.85 0.00 81.25 75.71 52.63 57.14 40.00 64.00 27.14

100 84.21 85.71 80.00 88.89 88.57 78.94 85.71 60.00 85.71 92.85 42.10 42.85 40.00 52.17 25.71

The results reported are for the three spectral features. Best performance is obtained with the spectral feature using the linear kernel (C� 1): 94.73%Accuracy, 92.85% Sensitivity, 100% Specificity, 96.29% F1-score. (ACC, accuracy; SENS, sensitivity; SPEC, specificity; F1,

F1-score; AUC, AREA UNDER the ROC CURVE).

Bold values represent the best performance.
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TABLE 4 The classification performance of the SVM classifier uses the leave-one-fold-out cross-validation method with different kernels (linear, Gaussian RBF, and polynomial) for different regularization
parameters (C).

Parameters Spectral feature Histogram-Poincaré based feature Wavelet-based feature

Kernel C ACC SENS SPEC F1 AUC ACC SENS SPEC F1 AUC ACC SENS SPEC F1 AUC

Linear 0.01 82.91 81.20 100.00 89.40 98.20 33.09 26.40 100.00 37.23 69.60 53.81 57.00 22.00 64.09 33.60

0.1 83.45 81.80 100.00 89.73 98.20 33.81 27.20 100.00 38.56 74.60 54.55 56.80 32.00 66.62 43.40

1 85.64 84.20 100.00 91.11 98.20 62.18 58.40 100.00 71.31 84.20 52.00 52.60 46.00 63.93 51.00

10 85.64 84.80 94.00 91.14 98.20 72.73 70.80 92.00 81.78 83.60 48.90 49.80 40.00 61.43 44.00

100 85.64 84.80 94.00 91.14 98.20 70.00 68.00 90.00 79.51 82.60 48.90 49.60 42.00 61.73 45.20

RBF 0.01 78.36 77.60 86.00 85.80 93.40 34.72 28.20 100.00 38.92 81.60 54.72 56.00 42.00 67.17 55.20

0.1 78.36 77.60 86.00 85.80 93.40 34.72 28.20 100.00 38.92 81.60 54.72 56.00 42.00 67.17 55.20

1 78.55 77.80 86.00 85.72 92.20 34.90 28.40 100.00 39.28 81.40 54.00 55.20 42.00 66.37 53.80

10 78.91 78.80 80.00 85.95 88.20 56.91 52.80 98.00 66.48 85.00 48.90 49.40 44.00 61.71 47.40

100 75.45 75.60 74.00 83.50 81.80 71.45 69.00 96.00 80.36 81.60 48.90 49.40 44.00 61.71 47.40

Polynomial 0.01 88.18 87.60 94.00 92.95 98.20 27.45 20.60 96.00 30.26 58.20 68.36 72.80 24.00 71.72 37.40

0.1 87.82 87.20 94.00 92.73 98.00 27.45 20.60 96.00 30.26 62.20 62.00 65.80 24.00 67.89 43.40

1 86.91 86.20 94.00 92.13 97.80 29.64 23.00 96.00 34.14 67.20 48.36 49.80 34.00 59.32 38.20

10 86.18 85.40 94.00 91.65 98.20 36.55 30.60 96.00 44.69 77.00 42.90 43.20 40.00 54.72 36.60

100 86.00 85.20 94.00 91.48 98.20 67.09 65.20 86.00 76.34 80.80 42.91 43.20 40.00 54.72 36.60

The results reported are for the three spectral features. Best performance is obtained with spectral feature in Polynomial kernel (C� 0.01): 88.18% Accuracy, 87.60% Sensitivity, 94% Specificity, 92.95% F1-score.

Bold value represents the best performance.
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TABLE 5 The classification performance of the SVM classifier uses the stratified five-fold cross-validation method with different kernels (linear, Gaussian RBF, and polynomial) for different regularization
parameters (C).

Parameters Spectral feature Histogram-Poincaré based feature Wavelet-based feature

Kernel C ACC SENS SPEC F1 AUC ACC SENS SPEC F1 AUC ACC SENS SPEC F1 AUC

Linear 0.01 90.00 93.33 80.00 93.14 80.00 73.33 100.00 0.00 84.57 83.33 73.33 100.00 0.00 84.57 33.33

0.1 83.33 83.33 80.00 86.47 80.00 73.33 100.00 0.00 84.57 83.33 73.33 100.00 0.00 84.57 33.33

1 95.00 93.33 100.00 96.00 80.00 73.33 83.33 40.00 80.76 83.33 75.00 93.33 20.00 84.76 33.33

10 90.00 93.33 80.00 93.14 80.00 78.33 70.00 100.00 79.33 83.33 65.00 80.00 20.00 75.62 26.67

100 90.00 93.33 80.00 93.14 80.00 83.33 76.67 100.00 85.33 83.33 60.00 73.33 20.00 70.28 26.67

RBF 0.01 73.33 100.00 0.00 84.57 80.00 73.33 100.00 0.00 84.57 90.00 73.33 100.00 0.00 84.57 46.67

0.1 73.33 100.00 0.00 84.57 80.00 73.33 100.00 0.00 84.57 90.00 73.33 100.00 0.00 84.57 53.33

1 85.00 93.33 60.00 90.28 80.00 73.33 100.00 0.00 84.57 90.00 68.33 93.33 0.00 80.76 53.33

10 85.00 93.33 60.00 90.28 53.33 78.33 90.00 40.00 84.76 90.00 56.67 70.00 20.00 67.62 50.00

100 71.67 73.33 60.00 70.28 53.33 88.33 83.33 100.00 89.33 73.33 56.67 70.00 20.00 67.62 50.00

Polynomial 0.01 90.00 93.33 80.00 93.14 80.00 73.33 100.00 0.00 84.57 76.67 73.33 100.00 0.00 84.57 33.33

0.1 90.00 93.33 80.00 93.14 80.00 73.33 100.00 0.00 84.57 83.33 68.33 93.33 0.00 80.76 40.00

1 90.00 93.33 80.00 93.14 80.00 73.33 100.00 0.00 84.57 90.00 70.00 86.67 20.00 80.95 33.33

10 90.00 93.33 80.00 93.14 80.00 73.33 100.00 0.00 84.57 90.00 60.00 66.67 40.00 68.47 13.33

100 90.00 93.33 80.00 93.14 80.00 78.33 83.33 60.00 83.62 83.33 53.33 66.67 20.00 64.47 13.33

The results reported are for the three spectral features. Best performance is obtained with spectral feature in linear kernel (C� 1): 95% Accuracy, 93.33% Sensitivity, 100% Specificity, 96% F1-score.

Bold value represents the best performance.
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The limited number of training samples in the leave-one-fold-out
approach (only four samples from each class) may have hindered the
ability of ANN, AdaBoost, and EDT to differentiate between the
classes effectively.

4.3.3 Five-fold stratified cross-validation
All classifiers performed reasonably well except for ANN. Both

SVM and RF achieved the best performance with an F1-score of
96%. The poor performance of ANN across all these approaches can
be attributed to its inability to train effectively with the limited
number of samples available.

In summary, SVM demonstrated the best performance for most
classification decision scenarios, while RF performance exceeded the
other classifiers. Limited samples contributed to ANN’s poorer
performance, and reduced training samples can also account for
suboptimal discrimination using AdaBoost and EDT in the leave-
one-fold-out method.

4.4 Influence of windowing

The presentation in Figure 6 and the statistical analysis Table 2
indicate that the three selected spectral features are equally powerful
in distinguishing the two classes (p< 0.001, considering the entire
database). In particular, the first component among these features
corresponds to the DC value (magnitude at 0-th frequency bin) of
the windowed MFC series. The DC value represents the average of a
windowed segment, written as ∑j−1

n�0w(n) · x(n), where x(n)
represents a frame of the MFC series, w(n) represents the
window function, and j is the frame length.

The window function w(n) is multiplied element-wise with the
corresponding samples of the frame x(n) and the resulting products
are summed together to obtain the DC value for that window
segment. Surprisingly, the average DC of all frames plays an
equally important role in differentiating the two groups. Previous
studies in the literature discussed using descriptive statistical
features, including the average of the MFC series, as one of the
features (Begg et al., 2005). However, windowing followed by
calculating the mean allows for localized averages within each
window, capturing more granular MFC fluctuations and proving
more significant than the global mean of the entire MFC series.

4.5 Performance under noisy conditions

In real-world scenarios, foot clearance measurements obtained
from stroke patients undergoing treadmill therapy can be subject to
noise due to various factors. These factors include biological
differences, such as variations in fitness levels and coping
abilities, which can introduce stochasticity even among patients
with similar lesions. Additionally, small and unpredictable
fluctuations in the internal state, such as temporary increases in
fatigue or shifts in effort and motivation, contribute to noise (Jin
et al., 2022). On the external front, minor and unpredictable
environmental disturbances introduce randomness into the
measurements, including distractions, temperature variations, or
gait perturbations caused by the moving treadmill belt. To this end,
we evaluated the performance of the proposed spectral features and
baseline features (Begg et al., 2005) in the presence of white Gaussian
noise. We introduced noise to the test data while training the model
on clean data. This evaluation helps us understand the robustness of
the model and its features, considering that real-life test data can
become noisy for various reasons. We added white Gaussian noise at
different levels, ranging from 0% (representing clean data) to 10%,
20%, and 30% (representing increasing noise levels).

Figure 7 presents the comparative results of cross-validating the
leave-one-sample-out method using an SVM classifier. Spectral
features exhibited greater robustness than histogram and
Poincaré-based features (represented as baseline features) (Begg
et al., 2005). The AUC values of the baseline features decreased
as more noise was added to the test data, whereas the spectral
features remained relatively robust across different percentages of
noise. Interestingly, the spectral features declined abruptly, seen
clearly in specificity, when 10% noise was introduced, possibly due
to the regularization effect of noise contamination (Bishop, 1995).
Considering the overall performance, we can conclude that the
proposed spectral features outperformed the baseline features
under noisy conditions.

5 Discussion

Accurately predicting the improvement in MFC after
biofeedback training sessions based solely on their baseline data

TABLE 6 Classification performance metrics of spectral feature with three different cross-validation approaches using five classifiers.

Classifier Approach

Leave-one-sample-out Leave-one-fold-out Five-fold-stratified-cross-
validation

ACC SENS SPEC F1 ACC SENS SPEC F1 ACC SENS SPEC F1

SVM 94.73 92.86 100.00 96.29 88.18 87.60 94.00 92.95 95.00 93.33 100.00 96.00

ANN 73.68 100.00 0.00 84.85 90.91 100.00 0.00 95.24 73.33 100.00 0.00 84.57

RF 89.47 92.85 80.00 92.85 87.27 87.00 90.00 92.39 95.00 93.33 100.00 96.00

EDT 94.73 92.85 100.00 96.29 61.45 64.00 36.00 60.95 90.00 93.33 80.00 93.14

AdaBoost 94.73 100.00 80.00 96.55 9.00 0.00 100.00 0.00 90.00 100.00 60.00 94.28

Using ACC and F1 as comparable metrics across three cross-validation approaches, SVM and RF classifiers using the proposed spectral features consistently perform well.

Metrics: Accuracy (ACC), Sensitivity (SENS), Specificity (SPEC), and F1-score (F1).
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is of paramount importance in stroke rehabilitation. This predictive
ability empowers healthcare professionals to create personalized
treatment plans that are tailored to each individual’s needs. By
identifying patients who are likely to benefit from such
interventions, resources can be allocated more efficiently,
optimizing patient outcomes while minimizing unnecessary
expenditures. In this context, the MFC value serves as a widely
recognized marker to determine the appropriate range of foot
clearance during walking (Begg et al., 2019) to prevent falls and
improve gait quality.

Considering the potential discomfort or limitations experienced
by stroke patients when walking on a treadmill for extended periods,
this study aimed to analyze MFC series data, encompassing
approximately 200 strides. We aimed to predict the improvement
in stroke patient’s condition, allowing targeted real-time
biofeedback training for those who would benefit the most. The
results indicate that using the MFC series and its frequency domain
characteristics is crucial in achieving the desired objective.
Furthermore, using features extracted from the frequency domain
can contribute to developing a subject-independent model capable
of automatically predicting patients who will experience
improvement following the sessions.

The average spectrogram of the MFC values measured over
multiple strides provides a characterization of the average frequency
properties of MFC fluctuations. Averaging reduces variability and
noise in the spectral estimates, highlighting the dominant
frequencies across stride sequences, with mean spectrum peaks
revealing rhythmic patterns linked to MFC fluctuations. The
statistical analysis of the spectral features shown in Figure 6 and

Table 2 reveals that the lower frequency values, including the DC
component, were more influential in differentiating the improved
and unimproved classes.

MFC values fluctuate rather than being strictly regular across
strides. When we looked at its frequency spectrum in Figure 3, it
showed a dominant cluster of lower frequencies. These lower
frequencies reflected the underlying rhythmic dynamics that
helped shape the fluctuations in the MFC series data. It is worth
noting that a higher DC value in the spectrum indicated that the
signal amplitudes exhibited minimal fluctuations over the strides. In
the case of the unimproved class, the higher amplitude spectrum
showed that the fluctuations across the strides were potentially more
stable/sustained over the window (across strides) for the high-
amplitude signal. On the contrary, in the case of the improving
class, the MFC values were less stable.

Figure 8 shows the mean magnitude spectrum of the MFC series
across windows in all stroke patients, as well as the standard
deviation for the improved and unimproved classes. The
improved class shows more variance (or differences) in their
frequency spectrum across windows compared to the
unimproved class. This meant that the dominant frequencies
representing the oscillation in the MFC values across the strides
changed more and were less consistent. The unimproved class had
less variance, and their dominant frequencies stayed more similar to
the MFC values across strides. A more dominant mean frequency
component and lower variation in MFC values between strides
indicate a tendency to maintain a consistent stable pattern,
potentially suggesting a lesser likelihood of improvement in
the future.

FIGURE 7
The figure presents performance metrics (decimal value: 0–1) with varying percentages of noise contamination in the test data, comparing the (A)
baseline (Begg et al., 2005) with the (B) proposed spectral features.
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The target band of biofeedback training was designed to
increase and maintain the MFC within a specific range, aiming
for an elevated MFC value and reduced variation in MFC across
strides compared to the baseline. For patients exhibiting
comparatively lower MFC values and higher fluctuations across
strides (see, Mean, STD Feature of Table 2 and Figure 8),
biofeedback training is found to be more effective in stabilizing
their MFC values by increasing the mean value and reducing
fluctuations. Conversely, when patients already have a relatively
higher meanMFC and lower fluctuations, there is limited scope for
enhancing the mean and decreasing fluctuations. This indicates
that individuals who are more susceptible to tripping,
characterized by lower MFC and greater variability in MFC
(Sadeghi et al., 2000; Said et al., 2014), are likely to achieve
superior outcomes with biofeedback training within this
targeted range compared to less at risk of tripping, i.e., who
possess higher MFC values and less variability. Regarding the
second category of stroke patients, these individuals might
benefit from additional training sessions or alternative target
strategies to achieve successful outcomes. Another factor to
consider could be the potential presence of spasticity in stroke
patients (Park et al., 2021) whose MFC did not improve after
completing 10 sessions of biofeedback training, indicating a
promising area for exploration in future studies.

Table 2 demonstrates the superiority of window-based spectral
features. In previous work, we used linear descriptive statistical
features (Khandoker et al., 2016) in older adults’MFC data, which
were calculated from the entire MFC series without considering
the non-stationarity of the MFC series. Tone and entropy features
were computed from the time series of the percentage index,
considering deviations between consecutive MFC data points. In
the present dataset, to address non-stationarity, we have used
windowing technique comprising more than two samples.
Findings presented Tables 3–5 demonstrate the improved
performance in stroke patients’ MFC data using short-term

spectral features compared to features based on the histogram,
Poincaré, and wavelet.

Although the wavelet transform is generally suitable for
analyzing biological signals with various frequency components,
it should be noted that in this study, the wavelet-based features
(Khandoker et al., 2007) did not perform well. It is quite prominent
that the variation of MFC values might be much higher in the case of
older people than in the case of younger people (Khandoker et al.,
2007). The multiscale exponent of the MFC signals, which captures
correlations among variances of wavelet coefficients at different
scales (multiresolution), proved more effective for that purpose
(young vs. old) (Khandoker et al., 2007). However, in the context
of stroke patients, the variation among different scales may not be as
pronounced as that observed between younger and older
individuals.

The proposed features showed consistent performance across
most classifiers, except for the leave-one-fold-out ensemble decision
tree and AdaBoost (refer to Table 6). This could be attributed to the
limited number of samples for training (four per class) of these
classifiers. Limited diversity and representation in low sample sizes
might lead to overfitting, causing poor performance in ensemble
decision tree and AdaBoost, whereas Random Forests’ additional
randomization might mitigate these issues, resulting in better
results. SVMs might perform well in lower sample sizes with
linear, RBF, and polynomial kernels due to their margin-based
optimization and regularization. In addition, the lower
performance observed in the ANN across each of the cross-
validation approaches is likely to be attributed to the smaller
sample size creating overfitting. The results indicate that the
proposed spectral feature demonstrated good performance with
most classifiers. In some cases, the features based on the
histogram and Poincaré performed equivalent to the proposed
spectral feature. However, regardless of the classifier used, the
wavelet-based feature consistently exhibited lower performance
compared to the other two features.

FIGURE 8
Figure represents the mean and standard deviation of magnitude spectrum across frames from the normalized baseline MFC data of all the
stroke patients.
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6 Conclusion

In this article, novel features using the Short-term Fourier
Transform (STFT)-based magnitude spectrum of MFC data are
used to predict the effectiveness of biofeedback training. With
our proposed approach, we can predict the effectiveness of real-
time biofeedback training for a group of stroke patients solely
based on their baseline data. The study revealed that short-term
spectral components and the windowed mean value (DC value)
carry significant information to predict the success of
biofeedback training. The findings indicate that patients
with high spectral amplitude and low variance in the lower
frequency zone are less likely to show improvement,
whereas patients with comparatively low spectral amplitude
and high variance are more likely to show improvement
after training.

Future research will focus on measuring changes after each
training session for individual patients and identifying patterns
of change specifically for those who show improvement after ten
sessions, compared to those who do not. Applying long short-
term memory (LSTM) neural networks (Zaroug et al., 2020) to
predict kinematics of lower limb trajectories during biofeedback
training would be useful to forecast MFC changes following
biofeedback training session. Additionally, we plan to create a
large database of patients to further evaluate our
proposed features.
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