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Introduction: Polyetheretherketone (PEEK) lumbar fusion rods have been
successfully used in short-segment posterior instrumentation to prevent
adjacent segment degeneration. However, limited studies have reported
their application in lumbar long-segment instrumentation. This study aimed
to compare the biomechanical performances of PEEK rods and titanium rods
in lumbar long-segment instrumentation using finite element (FE) models,
with the expectation of providing clinical guidance.

Methods: A lumbar FE model (A) and four lumbar fixation FE models (BI, CI, BII,
CII) of the L1–S1 vertebral body were developed using CT image segmentation
(A: intact model; BI: intact model with L2–S1 PEEK rod internal fixation; CI:
intact model with L2–S1 titanium rod internal fixation; BII: intact model
with L3–S1 PEEK rod internal fixation; CII: intact model with L3–S1 titanium
rod internal fixation). A 150-N preload was applied to the top surface of L1,
similar to the intact model. The stresses on the lumbar intervertebral disc,
facet joint, pedicle screws, and rods were calculated to evaluate the
biomechanical effect of the different fixation procedures in lumbar long-
segment instrumented surgery.

Results: Under the four physiological motion states, the average stresses on
the adjacent segment intervertebral disc and facet joint in all fixation models
were greater than those in the intact model. Furthermore, the average stresses
on the adjacent segment intervertebral disc and facet joint were greater in
models CI and CII than in models BI and BII, respectively. The average stresses
on the pedicle screws and rods were decreased in models BI and BII compared
with models CI and CII under the four physiological motion states,
respectively.

Discussion: The PEEK rod internal fixation systemmay have better biomechanical
properties than the titanium rod internal fixation system in delaying adjacent
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segment degeneration, improving the lumbar function of postoperative patients,
and reducing the risk of screw loosening and breakage in lumbar long-segment
instrumentation.

KEYWORDS

lumbar degenerative disease, posterior lumbar instrumentation, PEEK, dynamic
stabilization, adjacent segment degeneration, finite element analysis

1 Introduction

Posterior lumbar fusion and internal fixation is a classic
surgical method for treatment of lumbar degenerative diseases
(Li et al., 2013; Du et al., 2020; Pei et al., 2023; Zhang et al.,
2023). Titanium alloy rods have been widely used in lumbar
fusion internal fixation systems because of their close
biomechanical properties to bone, excellent biocompatibility,
and provision of sufficient strength under physiological loads
(Kurtz and Devine, 2007; Wedemeyer et al., 2007; Ponnappan
et al., 2009). However, the titanium alloys used in screw-rod
fixation systems have a much higher elastic modulus than bone
tissue (110 GPa vs. 0.1–20 GPa), and this can lead to stress
concentration in posterior lumbar screw-rod fixation systems
and stress shielding of intervertebral bone grafts, thereby
increasing the risk of long-term complications such as
pseudarthrosis, adjacent segment degeneration (ASD), and
screw loosening or breakage (De Iure et al., 2012; Wu et al.,
2020; Fan et al., 2021).

In recent years, the latest advancements in posterior spinal
fixation have focused on the concept of dynamic stabilization
(Khoueir et al., 2007; Greiner-Perth et al., 2016). Dynamic
stabilization, which is often used as a non-fusion fixation
alternative, is theoretically superior to traditional stiff fixation
and can minimize ASD. When applied to fusion methods,
enhanced dynamic stabilization provides additional load
sharing to the anterior column and reduces stress at the bone-
screw interface. However, decreased stability of internal fixation
is an inherent risk factor for pseudarthrosis. The ideal fixation
system would maximize the fusion rate by providing sufficient
stability without excessive rigidity to minimize stress on the
adjacent segment.

Polyetheretherketone (PEEK) is a fully biocompatible
biomaterial that is increasingly being used for spinal implants.
Its elastic modulus (3.6 GPa) is much lower than that of titanium
alloys and closer to that of bone, and thus PEEK can better
balance the load distribution between the anterior and posterior
columns (Kurtz and Devine, 2007; Ponnappan et al., 2009; Ma
and Tang, 2014; Li et al., 2018; Laubach et al., 2022; Wu et al.,
2023). In previous studies, PEEK rods were successfully used for
short-segment lumbar internal fixation with good clinical
outcomes (Zhao et al., 2022; Li et al., 2023a). However,
limited studies have reported their application in long-
segment lumbar internal fixation. The present study aimed to
compare the biomechanical performances of PEEK rods and
titanium rods in lumbar long-segment instrumentation
surgery using finite element (FE) models, with the expectation
of providing clinical guidance.

2 Materials and methods

2.1 Development of an FEmodel of the intact
lumbar-sacral spine

To establish an FE model of the intact lumbar-sacral spine, 0.5-
mm thick CT images of the L1–S1 vertebral body in a healthy male
subject were obtained from Peking University First Hospital. Mimics
11 (Materialise, Belgium), a medical image processing software
program, was used to reconstruct the surface geometries of the
vertebrae and sacrum. The models were then exported to Geomagics
Studio 13.0 (Raindrop Geomagics, United States) and converted to
WRP files. The separate vertebrae and sacrum models were
integrated with origin alignment in SolidWorks 2020 (Dassault
Systems, France) and the intervertebral discs and posterior
elements were created based on the reconstructed vertebrae. The
thicknesses of the cortical bones and endplates were set at 2 mm and
0.5 mm, respectively. The material properties of the FE model were
derived from previous studies (Ambati et al., 2015; Zhang et al.,
2022; Li et al., 2023b) and are detailed in Table 1. The final FE model
of the lumbar-sacral spine was composed of L1–L5, sacrum, coccyx,
and five intervertebral discs (Figure 1).

2.2 Development of FE models of the
implanted lumbar-sacral spine

To simulate implantation and fixation, four FE models were
established by modifying the intact model based on posterior spinal
surgery. Briefly, we modeled implantation of internal fixation at
L2–S1 and L3–S1 using rod fixation systems over the length of five
segments and four segments, respectively. We then assigned the
materials in each section as whole PEEK or whole titanium,
generating the four implanted FE models. The titanium pedicle
screws had a diameter of 6.5 mm. The PEEK rods and titanium rods
had a diameter of 5.5 mm. All of the implants were meshed as three-
dimensional solid elements.

As shown in Figure 2, the FE models of the implanted lumbar-
sacral spine were established for the study. Model A was the intact
model, model BI was the intact model with L2–S1 PEEK rod internal
fixation, model CI was the intact model with L2–S1 titanium rod
internal fixation, model BII was the intact model with L3–S1 PEEK
rod internal fixation, and model CII intact model with
L3–S1 titanium rod internal fixation. The surgical operation was
simulated in the models with internal fixation, and comparative
analysis of the mechanical properties was performed. The models
provided a realistic reproduction of the surgical operation and
enabled analysis of the mechanical properties.
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2.3 FE analysis of the implanted lumbar-
sacral spine

The interactions between the pedicle screws and vertebrae and
between the pedicle screws and rods were defined as bonded. The facet
joints were assigned no separation with two adjacent vertebrae. All faces
of the sacrum and coccyx were fixed in all directions. A 150-N preload
and a 10-Nmmoment were applied to the top surface of L1 to validate
the loading conditions in the intact model, based on a previous in vitro
study (Yamamoto et al., 1989). For the implanted models, a

displacement-controlled FE analysis was used and the loads were
applied in two steps. First, a 150-N preload was applied to the top
surface of L1, similar to the intact model. Second, to determine the
equivalent moment, an iterative process of moment increasing from
10 Nmwas used and the approximated moment was applied to the top
surface of L1, reaching the same range of motion (ROM) as the intact
model. The accuracy of the ROM was 0.01 degrees. The two-step
load procedure was based on several works in accordance with a hybrid
testing protocol (Zhong et al., 2009; Zhang et al., 2022).

2.4 Data analyses

The stresses on the lumbar intervertebral disc and facet joint were
used to evaluate the biomechanical effects on these areas after the
different internal fixation procedures (titanium or PEEK rods) under
the conditions of flexion, extension, lateral bending, and axial rotation,
which are related to the risk of ASD. The stresses on the screws and rods
were calculated to evaluate the risk of instrument failure.

3 Results

In this study, an L1–S1 vertebral body model was reconstructed
and implanted with internal fixation systems for FE analysis. The
biomechanical properties under four physiological motion states
were evaluated.

3.1 Verification of model validity

To validate the L1–S1 intact lumbar spine FE model, the
ROM was calculated for model A and compared with the ROMs
in previous in vitro studies and FE studies under the same
loads (Yamamoto et al., 1989; Chen et al., 2001; Guo and Yin,

TABLE 1 Material properties of finite element models.

Material Young’s
modulus (MPa)

Poisson’s
ratio

Bony Structure

Cancellous bone 100 0.2

Cortical bone 12,000 0.3

Posterior elements 3,500 0.25

Endplates 3,000 0.25

Sacrum and coccyx 3,500 0.25

Intervertebral Disc

Nuclei pulposi 1 0.49

Annuli fibrosi 4.2 0.45

Implants

Pedicle screw
(Titanium)

110,000 0.28

Rod (PEEK) 3,600 0.25

Rod (Titanium) 110,000 0.28

FIGURE 1
Development of an FE model. (A) The vertebral body after dividing the grid. (B,C) The Annulus fibrosus and its combination relationship in the whole
model. (D)Model of pedicle screw. (E) Assembly relationship of pedicle screw, rods, facet joints and vertebrae. (F) Assembly relationship of pedicle screws
in the overall model.
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2019; Demir et al., 2020). As shown in Figure 3,
excellent agreement was noted between the experimental
results and the calculated results. The ROM in model A was
concluded to be in good agreement with the results of the other
studies, thus confirming the validity of the experimental
FE model.

3.2 Stresses on the intervertebral discs

The average stresses on the L1–L2 and L2–L3 intervertebral
discs in the five models are shown in Figure 4. Compared with

model A, the average stresses on the L1–L2 intervertebral disc in
model BI and model CI and the average stresses on the
L2–L3 intervertebral disc in model BII and model CII were
increased under the four physiological motion states. In
addition, the average stress on the L1–L2 intervertebral disc in
model CI was greater than that in model BI under the four
physiological motion states; similarly, the average stress on the
L2–L3 intervertebral disc in model CII was greater than that in
model BII under the four physiological motion states. The
average stress on the L1–L2 intervertebral disc was increased
by an average of 167.0% for model BI and 283.8% for model CI
compared with model A under the four physiological motion
states. The average stress on the L2–L3 intervertebral disc was
increased by an average of 95.1% for model BII and 135.6% for
model CII compared with model A under the four physiological
motion states. These findings may be used to solve the problem of
disc degeneration on the adjacent segment in patients after
lumbar long-segment instrumented surgery.

3.3 Stresses on the facet joints

The average stresses on the L1–L2 and L2–L3 facet joints in the
five models are shown in Figure 5. Compared with model A, the
average stresses on the L1–L2 facet joint in model BI and model CI
and the L2–L3 facet joint in model BII and model CII were increased
under the four physiological motion states. In addition, the average
stress on the L1–L2 facet joint in model CI was greater than that in
model BI under the four physiological motion states; similarly, the
average stress on the L2–L3 facet joint in model CII was greater than
that in model BII under the four physiological motion states. The
average stress on the L1–L2 facet joint was increased by an average of
162.8% for model BI and 269.5% for model CI compared with model
A under the four physiological motion states. The average stress on
the L2–L3 facet joint was increased by an average of 86.7% for model
BII and 121.9% for model CII compared with model A under the
four physiological motion states. These findings may be used to solve

FIGURE 2
The FEmodels of the implanted lumbar-sacral spine constructed
for the present study. Model I: intact model with L2–S1 internal
fixation; Model II: intact model with L3–S1 internal fixation.

FIGURE 3
Comparison of the ROM in intact model A with other ROMs in previous studies.
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the problem of facet joint degeneration on the adjacent segment in
patients after lumbar long-segment instrumented surgery.

3.4 Stresses on the screws and rods

The average stresses on the screws and rods in the four
implanted models with the internal fixation systems are shown in
Figures 6, 7, respectively. The average stresses on the screws and rods
in models CI and CII were greater than those in models BI and BII
under the four physiological motion states, respectively. Compared
with model BI, the average stresses on the screws and rods in model
CI were increased by an average of 150.0% and 940.8% under the
four physiological motion states, respectively. Compared with model
BII, the average stresses on the screws and rods in model CII were
increased by an average of 129.3% and 903.6% under the four
physiological motion states, respectively. These findings may be
used to solve the problem of internal fixation system failure and

screw-rod fracture in patients after lumbar long-segment
instrumented surgery. Additionally, the comparison of the
nephogram of von Mises stress on the intervertebral discs, facet
joints, pedicle screws, and rods in flexion and extension condition on
different models are shown in Figures 8–11, respectively.

4 Discussion

Currently, titanium pedicle screw rods (rigid fixation) and
PEEK cages have been widely used in posterior lumbar fusion
surgery to stabilize the surgical segment and restore the spinal
column sequence (Li et al., 2020; Laubach et al., 2022). However,
the complications caused by rigid fixation, such as ASD,
pseudarthrosis, screw loosening, loss of motion, and back
pain, significantly reduce the quality of life of patients, and
thus the concept of semi-rigid fixation has been applied in
recent years (Khoueir et al., 2007; Greiner-Perth et al., 2016;

FIGURE 4
Average von Mises stresses on the intervertebral discs in the five models under the four physiological motion states. (A) Average von Mises stresses
on the L1–L2 intervertebral disc in models A, BI, and CI under the four physiological motion states. (B) Average von Mises stresses on the
L2–L3 intervertebral disc in models A, BII, and CII under the four physiological motion states.
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Nikkhoo et al., 2021). The core point for semi-rigid fixation is
that the low-strength material still limits the ROM of the fixed
segment, but tends to also reduce the overall structural stiffness of
the system, leading to more even distribution of the spinal load
between the anterior and posterior columns and preventing
various complications caused by the unbalanced load
distribution associated with rigid fixation. A less rigid
stabilization system can also theoretically preserve part of the
rotational motion at the instrumented level and unload any extra
stress exposure on adjacent levels (Maragkos et al., 2020; Nikkhoo
et al., 2021).

As a representative component for semi-rigid fixation systems,
PEEK rods have been highly anticipated by scholars and gradually
introduced into posterior spinal fusion since 2007 (Huang et al.,
2016). Although previous studies showed that PEEK rods had better
load distribution performance than titanium rods and were
successfully used for short-segment lumbar internal fixation with
good clinical outcomes, doctors remain very cautious about their

clinical application in long-segment lumbar internal fixation. One
important reason for this is that the biomechanical performance of
PEEK rods has not been comprehensively evaluated in long-segment
lumbar internal fixation. Moreover, it is difficult to evaluate the
biomechanical effects of lumbar fixation in clinical studies.
Therefore, the present study was conducted to compare the
biomechanical performances of PEEK rods and titanium rods in
lumbar long-segment instrumentation surgery using FE models,
with the expectation of providing clinical guidance. As the spinal
fixation construct is the most essential component of lumbar fusion
surgery, this study aimed to investigate the fixation itself. Thus,
posterolateral fixation was utilized when simulating the
postoperative models with titanium rods and PEEK rods, and
bone graft fusion between the transverse processes was neglected,
as a common simplification in the literature (Jahng et al., 2013; Jin
et al., 2013).

ASD is a common complication after lumbar fusion surgery,
because the decrease in ROM of the fixed segment requires

FIGURE 5
Average von Mises stresses on the facet joints in the five models under the four physiological motion states. (A) Average von Mises stresses on the
L1–L2 facet joint in models A, BI, and CI under the four physiological motion states. (B) Average von Mises stresses on the L2–L3 facet joint in models A,
BII, and CII under the four physiological motion states.
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compensation by the adjacent segment, and the internal fixation
changes the normal mechanical transmission process in the spine. In
a previous FE study, Jin et al. (Jin et al., 2013) demonstrated that
PEEK rods significantly decreased the stresses on the intervertebral
disc and facet joint in the upper adjacent segment compared with
titanium rod internal fixation in short-segment lumbar internal
fixation surgery. In the present study, the average stresses on the
intervertebral disc and facet joint in the upper adjacent segment in
all internal fixation models were greater than those in the intact
model under all four physiological motion states. Meanwhile, the
average stresses on the intervertebral disc and facet joint on the
upper adjacent segment in the titanium rod models (CI and CII)
were greater than those in the PEEK rod models (BI and BII) under
the four physiological motion states, respectively, showing that the
use of PEEK rods in lumbar long-segment instrumentation surgery
confers the advantage of reduced ASD. However, it is not sufficient
to solely evaluate ASD based on the stresses on the intervertebral
disc and facet joint in lumbar long-segment instrumentation

surgery, and other factors such as intervertebral disc height and
sagittal balance should also be taken into account.

The stability of pedicle screw rod internal fixation systems has
always been a concern of spine surgeons. In the present study, use
of PEEK rods led to lower screw stress than use of titanium rods,
leading to a lower risk of screw breakage with PEEK rods in
lumbar long-segment instrumentation surgery. This effect may
also be attributed to the reduced stress shielding with PEEK rods,
which would reduce the load through the posterior hardware. A
related study found that PEEK rods have the potential
biomechanical advantages of better anterior column load
sharing and reduced stress at the bone-to-screw interface
(Ponnappan et al., 2009), consistent with the findings in the
present study.

A recent study tested the biomechanical properties of PEEK rods
and titanium rods in vitro using human lumbar spine specimens,
and the results indicated that there were no significant differences in
the stability provided by PEEK rods and titanium rods under any of

FIGURE 6
Average von Mises Stress on the pedicle screws in models BI, BII, CI, and CII under the four physiological motion states. (A) Average von Mises
stresses on the pedicle screws in models BI and CI under the four physiological motion states. (B) Average von Mises stresses on the pedicle screws in
models BII and CII under the four physiological motion states.
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the loading modes examined (Yeager et al., 2015). In addition to
limiting abnormal segmental motion, maintenance of good
anterior and posterior column load distribution in the spine
is essential to alleviate various complications. While titanium
rods are uniquely suited to provide postoperative stability, they
also dramatically alter the physiological loading characteristics
of the spine (Ponnappan et al., 2009; Yeager et al., 2015). A
titanium pedicle screw rod system was shown to transmit
approximately 67% of the axial compressive load during posterior
lumbar internal fixation surgery, whereas the posterior column in the
natural upright position carries only approximately 20% of the load
(Cunningham and Polly, 2002; Ahn et al., 2008). An FE study revealed
that PEEK rods carry at least 6% less load than titanium rods (Gornet
et al., 2011). In the present study, the results demonstrated the average
stresses on the rods were increased in the titanium rodmodels (CI and

CII) under the four physiological motion states compared with the
PEEK rod models (BI and BII), respectively. It is speculated that the
advantage of the load distribution performance of PEEK rods is
mainly due to the reduction in stress concentration in the
posterior pedicle screw rod system. However, the stress data
indicated that although the stresses on PEEK rods were lower than
those on titanium rods, the yield stress was significantly lower on
PEEK rods (100 MPa) than on titanium rods (750 MPa), resulting a
higher ratio of stress on the rod to yield stress on the rod material for
the PEEK rods. Consequently, the PEEK rod systemmay face a higher
risk of rod breakage. In summary, just as there are two sides to a coin,
PEEK rods have both advantages and disadvantages. Therefore,
further studies are warranted to validate the clinical outcomes for
use of PEEK rods in lumbar long-segment instrumentation surgery in
clinical practice.

FIGURE 7
Average vonMises stresses on the rods inmodels BI, BII, CI, and CII under the four physiological motion states. (A) Average vonMises stresses on the
rods in models BI and CI under the four physiological motion states. (B) Average von Mises stresses on the rods in models BII and CII under the four
physiological motion states.
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The present experimental study inevitably has some limitations.
First, the geometry of the human lumbar spine varies from
individual to individual, but the FE model built in this study
was based on a single patient. Therefore, additional samples are
needed for future validation. Second, the theoretical numerical

model based on the FE method simplifies the highly complex
spinal system to a large extent, and factors such as the fibbers in
the discs, muscle, and cyclic load are not considered. Third, due
to the limitations of the available experimental data, only the
intact model was validated, and the surgical models were

FIGURE 8
Nephogram of vonMises stress (MPa) on the L1/2 intervertebral discs, L1/2 facet joints, pedicle screws, and rods in flexion condition onModels A, BI,
and CI.

FIGURE 9
Nephogram of vonMises stress (MPa) on the L1/2 intervertebral discs, L1/2 facet joints, pedicle screws, and rods in extension condition onModels A,
BI, and CI.
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developed using the intact model. In general, the biomechanical
data obtained in the present study should be viewed as
comparative data between different surgical cases due to the
limitations of the model itself.

5 Conclusion

The PEEK rod internal fixation system may have better
biomechanical properties than the titanium rod internal
fixation system in delaying ASD, improving lumbar function
in postoperative patients, and reducing the risk of screw

loosening and breakage in lumbar long-segment
instrumentation. Further studies are warranted to
comprehensively validate the clinical outcomes for use of
PEEK rods in lumbar long-segment instrumentation surgery
in clinical practice.
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FIGURE 10
Nephogramof vonMises stress (MPa) on the L2/3 intervertebral discs, L2/3 facet joints, pedicle screws, and rods in flexion condition onModels A, BII,
and CII.

FIGURE 11
Nephogram of vonMises stress (MPa) on the L2/3 intervertebral discs, L2/3 facet joints, pedicle screws, and rods in extension condition onModels A,
BII, and CII.
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