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In recent years, deep convolutional neural network-based segmentation
methods have achieved state-of-the-art performance for many medical
analysis tasks. However, most of these approaches rely on optimizing the
U-Net structure or adding new functional modules, which overlooks the
complementation and fusion of coarse-grained and fine-grained semantic
information. To address these issues, we propose a 2D medical image
segmentation framework called Progressive Learning Network (PL-Net), which
comprises Internal Progressive Learning (IPL) and External Progressive Learning
(EPL). PL-Net offers the following advantages: 1) IPL divides feature extraction
into two steps, allowing for the mixing of different size receptive fields and
capturing semantic information from coarse to fine granularity without
introducing additional parameters; 2) EPL divides the training process into two
stages to optimize parameters and facilitate the fusion of coarse-grained
information in the first stage and fine-grained information in the second
stage. We conducted comprehensive evaluations of our proposed method on
five medical image segmentation datasets, and the experimental results
demonstrate that PL-Net achieves competitive segmentation performance. It
is worth noting that PL-Net does not introduce any additional learnable
parameters compared to other U-Net variants.
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1 Introduction

Medical image segmentation is a technique used to extract regions of interest for
quantitative and qualitative analysis. For example, it can be used for cell segmentation in
electron microscopy (EM) recordings (Ronneberger et al., 2015), melanoma segmentation
in dermoscopy images (Berseth, 2017; Cheng et al., 2020), thyroid nodule segmentation in
ultrasound images, and heart segmentation in MRI images (Bernard et al., 2018).
Traditionally, medical image segmentation methods relied on manually designed
features to generate segmentation results (Xu et al., 2007; Tong et al., 2015). However,
this approach requires distinct feature designs for various applications. Furthermore, the
large variety of medical image modalities makes it difficult or impossible to transfer a
specific type of feature design method to different image types. Therefore, the development
of a universal feature extraction technique is crucial in the field of medical image analysis.
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The emergence of deep learning technology has revolutionized
medical image segmentation by overcoming the limitations of
traditional manual feature extraction methods. Convolutional
neural networks (CNN) based automatic feature learning
algorithms, such as the fully convolutional network (FCN)
proposed by Shelhamer et al. (Long et al., 2015) and the U-Net
framework for biomedical image segmentation proposed by
Ronneberger et al., 2015, have shown promising results. The
FCN model structure is designed to be end-to-end, which
eliminates the need for manual feature extraction and image
post-processing steps. On the other hand, the U-Net framework’s
encoder-decoder-skip connection network structure has shown
good results on medical image segmentation datasets with small
amounts of data.

To further enhance the adaptability of U-Net for different
medical image segmentation tasks, researchers have continuously
explored and innovated, proposing numerous variant models of
U-Net. These variant models aim to achieve better performance in
medical image segmentation by adding new functional modules or
optimizing the network structure. For instance, Vanilla U-Net
introduces channel/spatial attention mechanisms or self-attention
mechanisms to capture crucial information in medical images,
significantly improving its performance in various segmentation
tasks. Additionally, researchers have optimized the encoder-decoder
structure of Vanilla U-Net or adjusted the skip connections to
generate more refined and abundant feature representations.

However, the introduction of these methods has also brought
new challenges. Although the addition of new parameters and
functional modules enhances model performance, it also
increases model complexity and the risk of overfitting. More
importantly, these methods often overlook the complementarity
and fusion of coarse-grained and fine-grained semantic information.
Most existing semantic segmentation methods assume that the
entire segmentation process can be completed through a single
feedforward process, resulting in homogeneous feature
representations that struggle to excel in extracting fine-grained
feature representations. Therefore, for medical environments with
limited computational resources, it is highly beneficial to ensure
model simplicity while fully integrating and utilizing semantic
information at different scales while maintaining a small number
of parameters. Such a design can not only enhance the generalization
and robustness of the model but also ensure its efficiency and
practicality in real-world applications.

In this paper, we propose a new medical image segmentation
method called progressive learning networks (PL-Net). PL-Net
divide the feature learning process within the U-Net architecture
into two distinct depth “steps” to achieve the combination of
different receptive field sizes, enabling the network to learn
semantic information at varying granularities. The entire
segmentation process is performed through two feedforward
processes (referred to as “stages”). At the end of each stage, the
features obtained from that stage are transferred to the next stage for
fusion. This transfer operation allows the model to leverage the
knowledge learned in the previous training stage to extract finer-
grained information, thereby refining the coarse segmentation
output. Unlike previous works, our proposed method does not
add any additional parameters or functional modules to the
U-Net. Instead, our method fully explores the complementary

relationships between features through a progressive learning
strategy. The main contributions can be summarized as follows:

1) We propose a progressive learning network (PL-Net) designed
specifically for medical image segmentation tasks. Through its
unique design, this network deeply explores the potential of
feature complementarity and fusion in medical image
segmentation. By adjusting the scale of output channels, we
designed both a standard PL-Net (15.03 M) and a smaller
version, PL-Net† (Ocs = 0.5, 3.77 M), to accommodate medical
scenarios with different computational resources.

2) We introduce internal progressive learning (IPL) and external
progressive learning (EPL) strategies. The IPL strategy
effectively captures different receptive field sizes, thereby
learning and integrating multi-granularity semantic
information. The EPL strategy allows the model to extract
finer information based on the knowledge from the previous
stage, thus optimizing the segmentation results.

3) We applied the proposed method to tasks such as skin lesion
segmentation and cell nucleus segmentation. Experimental
results indicate that PL-Net outperforms other state-of-the-
art methods such as U-NeXt and BiO-Net. Moreover, despite
its smaller parameter size, the smaller version of PL-Net† still
demonstrates superior segmentation performance.

2 Releat work

Currently, most semantic segmentation methods assume that
the entire segmentation process can be executed through a single
feedforward pass of the input image, which often overlooks global
information. To address this, researchers have added new functional
modules or optimized the U-Net structure to achieve performance
improvements. These methods can be classified into: 1) U-Net
variants focused on functional optimization; 2) U-Net variants
focused on structural optimization.

U-Net variants focused on functional optimization. Due to the
large number of irrelevant features in medical images, it is crucial to
focus on target features and suppress irrelevant features during the
segmentation process. Recent works have extended U-Net by adding
different novel functional modules, demonstrating its potential in
various visual analysis tasks. Squeeze-and-Excitation (SE) (Hu et al.,
2018) has facilitated the development of U-Net by automatically
learning the importance of each feature channel through an
attention mechanism. Additionally, ScSE (Roy et al., 2018) and
FCANet (Cheng et al., 2020) integrate concurrent spatial and
channel attention modules into U-Net to improve segmentation
performance. Oktay et al., 2018 proposed an attention gate for
medical imaging to focus on target structures of different shapes and
sizes and suppress irrelevant areas of the input image. In addition to
plug-and-play attention modules, researchers have designed specific
functional modules for different medical image segmentation tasks.
For example, Zhou et al., 2019 proposed a contour-aware
information aggregation network with a multi-level information
aggregation module between two task-specific decoders. The
SAUNet (Sun et al., 2020) uses both a secondary shape stream
and a regular texture stream in parallel to capture rich shape-related
information, enabling multi-level interpretation of the external
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network and reducing the need for additional computations. The
CE-Net (Gu et al., 2019) uses a dense atrous convolution (DAC)
block to extract a rich feature representation and residual multi-
kernel pooling (RMP) operation to further encode the multi-scale
context features extracted from the DAC block without additional
learning weights.

The emergence of the Vision Transformer (ViT) (Dosovitskiy
et al., 2020) has had a significant impact on the progress of medical
image analysis. Compared to CNN methods, ViT has less inductive
bias. The U-Transformer (Petit et al., 2021) takes inspiration from
ViT and incorporates multi-head self-attention modules into U-Net,
which helps to obtain global contextual information. The UNeXt
(Valanarasu and Patel, 2022) is the first fast medical image
segmentation network that uses both convolution and MLP. It
reduces the number of parameters and computational complexity
by using tokenized MLP. In contrast to the aforementioned U-Net
variants, our work explores the effectiveness of progressive learning
techniques in capturing both coarse-grained and fine-grained
semantic information. The PL-Net enhances the performance of
different stage U-Nets by reusing learned features.

U-Net variants focused on structural optimization. Unlike
U-Net variants focused on functional optimization, optimizing its
structure allows it to extract feature information at different levels,
which is feasible and effective for many computer vision problems.
One of the simplest andmost effective ways to optimize the encoder-
decoder structure is to replace the basic building blocks with more
advanced ones, such as (Jégou et al., 2017; Diakogiannis et al., 2020;
Hasan et al., 2020), which benefit from residual or dense connections
in deeper network structures. In addition to replacing the building
blocks, performance can also be improved for different tasks by
increasing the number of U-shaped network structures, as
demonstrated in (Jégou et al., 2017; Isensee et al., 2021). One of
the most famous networks in this category is nnU-Net (Isensee et al.,
2021), which proposes three networks based on the original U-Net
structure: 2D U-Net, 3D U-Net, and U-Net cascade. The first stage
performs coarse segmentation of downsampled low-resolution
images, and the second stage combines the results of the first
stage for fine-tuning. ResGANet (Cheng et al., 2022) achieved
segmentation performance improvement by replacing the
encoder in U-Net with a lightweight and efficient backbone.
TransUNet (Chen J. et al., 2021) and FATNet (Wu et al., 2022)
replaced the encoder structure of U-Net with CNN and Transformer
branches in a parallel or serial manner.

Skip connections are considered a key component of U-Net’s
success. U-Net++ (Zhou et al., 2018) has redesigned skip
connections through a series of nested and dense connections,
reducing the semantic gap between the subnet feature map
encoders and decoders. R2U-Net (Alom et al., 2019) effectively
increases the network depth by utilizing residual networks and
RCNN and obtaining more expressive features through feature
summation with different time steps. Xiang et al. designed BiO-
Net (Xiang et al., 2020) with backward skip connections based on
R2UNet, which can reuse the features of each decoding level to
achieve more intermediate information aggregation. The emergence
of BiO-Net allows building blocks to be reused by U-Net in a circular
manner without introducing any additional parameters.

3 Progressive learning network

We now describe PL-Net, a progressive learning framework for
medical image segmentation. As is shown in Figure 1, PL-Net is a
multi-level U-Net network architecture that does not rely on
additional functional modules but has paired bidirectional
connections. The core of our framework is to enhance the feature
representation required for image segmentation through two
progressive learning approaches (internal and external) and to
fuse coarse-grained as well as fine-grained semantic information.

Two U-Nets with different depths form the “stages” of external
progressive learning. In each stage, as the “step” of internal
progressive learning increases, the shallow network is expanded
to a deeper network, learning stable multi-granularity information
from it. In brief, the number of parameters is not increased through
internal progressive learning, but it can learn feature maps with
different sizes of receptive fields. External progressive learning is
defined as the coarse segmentation stage (Stage 1) and the fine
segmentation stage (Stage 2). The input image will be examined at
multiple scales to achieve the fusion of coarse-grained and fine-
grained information.

3.1 Internal progressive learning

Bidirectional skip connections are used in internal progressive
learning to reuse building blocks. In order to enable the network at
each stage to learn distinctive feature representations, we use two
“steps” to gradually mine the features from shallow to deep.

Forward Skip Connections (FSC) are used to assist up-sampling
learning, restore the contour of the segmentation target, and retain
the low-level visual features of encoding. The feature fFSC

s after FSC
can be expressed as:

fFSC
s � Convs x( ), x̂[ ] (1)

Backward Skip Connections (BSC) are used for flexible
aggregation of low-level visual features and high-level semantic
features. In order to realize the complementation and fusion of
semantic information at different stages, multi-granularity
information of different “steps” and “stages” is combined in
feature f BSC:

fBSC �
x, x[ ] s � 1, stage1
Convs fFSC

s( ), x[ ] s � 1, stage2
Convs x̂( ), x[ ] s � 2, stage1, 2

⎧⎪⎨
⎪⎩ (2)

Among them, [·] is the concatenation layer, Convs means that
the convolution operation of the sth “steps” (s ∈ 1, 2{ }) is applied to
the input feature map, x and x̂ are feature maps of the same size in
the down-sampling and up-sampling path respectively.

It is worth noting that the reasoning path of internal progressive
learning can be extended to multiple recursions to obtain instant
performance gains. More importantly, a larger receptive field will be
got in each output of this learning strategy than the previous “steps.”
We use Ki to represent the ith complete encoding-decoding process,
and xi

out is used to represent the output. Therefore, xi
out can be

written as:
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xi
out �

xin i � 0
Ki xin( ) i � 1
Ki xi−1

out( ) i≥ 2

⎧⎪⎨
⎪⎩ (3)

In this study, we define i = 2, and through such a setting the
parameters equivalent to BiO-Net can be maintained. In future
research, the setting of i > 2 can be used to further improve the
segmentation accuracy, but the exploration of the optimal
hyperparameter setting is beyond the scope of this paper.

3.2 External progressive learning

The external progressive learning strategy first trains the low
stage (stage 1), and then gradually trains toward the high stage (stage
2). Since “stage1″ is relatively shallow in depth and limited by the
perceptual field and performance ability, it will focus on local
information extraction, while “stage 2″ incorporates the local
texture information learned from “stage 1.” Compared with
directly training the entire network in series, in the model, it is
allowed by this incremental nature to pay attention to global
information as the features gradually enter a higher stage.

For each stage of training, we calculate the loss based on the Dice
coefficient (LDice) (Eelbode et al., 2020) between the ground truth
(ytrue) and the predicted probability (yn

pred) distribution of
different stages:

LDice yn
pred, ytrue( ) � 1 − 2 ×|yn

pred ∩ ytrue|
|yn

pred| + |ytrue| (4)

Here |·| is an operator through which the number of pixels is
found in the qualified area. In each iteration, the input data will be
used in each learning stage (where n ∈ 1, 2{ }). What needs to be clear
is that when the latter stage is predicted, all the parameters of the
previous stage are optimized and updated, which helps each stage in
the model to work together.

Since the low stage is mainly to assist the feature expression and
knowledge reasoning of the high-stage network, we can delete the
low-stage prediction layer (Sigmoid layer) when predicting, thereby
reducing the reasoning time. In addition, the predictions at different
stages are unique, but they can form complementary information
among different granularities. When we combine all outputs with an
equal weight, it will result in a better performance. In other words,
the final output of the model is determined by all stages:

y � 1

1 + e−∑N−1
n�1 y

n
(5)

3.3 PL-Net architecture

Our framework has a trade-off between performance and
parameters. Like U-Net, the down-sampling and up-sampling

FIGURE 1
Overview of the progressive learning network (PL-Net). PL-Net consists of two parts: internal progressive learning (IPL) and external progressive
learning (EPL).
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stages of PL-Net only use standard convolutional layers, batch
normalization layers and ReLU layers without introducing any
additional functional modules. Table 1 is the detailed
configuration of U-Net, BiO-Net and our PL-Net.

As shown in Table 1, BiO-Net has a maximum coding depth of
4, using BSC from the deepest coding level, and inputting the
decoded features in each iteration as a whole into the last-stage
block. BSC is also used in PL-Net. Unlike the previous methods, the
convolutional layer is allowed to be used in the model to mine
features from coarse-grained to fine-grained ones in a progressive
manner. It should be noted that a smaller version of PL-Net† can be
obtained only by adjusting the Ocs, whose depth and connection
method will not change.

4 Experiments

4.1 Datasets

ISIC 2017 (Berseth, 2017) is a dataset consisting of 2000 training
images, 150 validation images, and 600 test images. The images in
the original dataset provided by ISIC have different resolutions. To
address this, we first use the gray world color consistency algorithm
to normalize the colors of the images and then adjust the size of all
images to 2242 pixels. All experimental results reported in this paper
for ISIC 2017 are from the official test set results.

PH2 (Mendonça et al., 2013) is a dataset containing
200 dermoscopic images, with a fixed size of 768 × 560 pixels. The
dataset contains 80% benign mole cases and 20% melanoma cases,
with ground truth annotated by dermatologists. Due to the small scale
of the dataset, we use the preprocessing method of the ISIC
2017 dataset and the trained model to directly predict all images
in the dataset to evaluate the performance of different models.

Kaggle 2018 Data Science Bowl (referred to as Nuclei) (Caicedo
et al., 2019) is a dataset provided by the Booz Allen Foundation,
containing 670 cell feature maps with ground truth for each image.
To prepare the dataset for training and testing, we adjust all images
and corresponding ground truth to 2242 pixels and use 80% of the
images for training and the remaining 20% for testing.

The TN-SCUI (Pedraza et al., 2015) dataset is a collection of
3644 nodular thyroid images, each annotated by experienced
physicians. The dataset was originally part of the TN-SCUI
2020 challenge and was processed to remove personal labels to
protect patient privacy. In this study, we randomly divided the
dataset into a training set (60%), validation set (20%), and test set
(20%). To ensure consistency, we uniformly adjusted the resolution
of all images to 2242 pixels.

ACDC (Bernard et al., 2018) is a dataset that includes cardiac
MRI images of 150 patients, from which we collected 1489 slices for
3D images. For training and testing purposes, we used 951 and
538 slices, respectively. Notably, in contrast to the four other datasets
mentioned earlier, ACDC comprises three different categories: left
ventricle, right ventricle, and myocardium. Hence, we employed this
dataset to investigate how various models perform on multi-class
segmentation. Figure 2 displays sample images from these datasets
and their corresponding ground truth.

4.2 Implementation details

We conducted all experiments on Tesla V100 GPUs using Keras
and expanded the training data for all datasets by applying random
rotations (±25°), random horizontal and vertical shifts (15%), and
random flips (horizontal and vertical). For all models, we trained for
more than 200 epochs with a batch size of 16, a fixed learning rate of
1e-4, and an Adam optimizer with a momentum of 0.9 to minimize

TABLE 1 Detailed configuration of U-Net, BiO-Net, and our PL-Net architecture. We use “ [kernel, kernel, channel]” to represent the convolution
configuration.

Input Encoder Output Decoder

U-Net BiO-Net PL-Net U-Net BiO-Net PL-Net

2242 [3, 3, 64]× 2 [3, 3, 32]× 2 [3, 3, 32], step1
[3, 3, 32], step2
stage1, stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

72 — [3, 3, 256]× 2 —

1122 [3, 3, 128]× 2 [3, 3, 32]× 2 [3, 3, 64], step1
[3, 3, 64], step2
stage1, stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

282 [3, 3, 512]× 2 [3, 3, 128]× 2 [3, 3, 256], step1
[3, 3, 256], step2

stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

562 [3, 3, 256]× 2 [3, 3, 64]× 2 [3, 3, 128], step1
[3, 3, 128], step2
stage1, stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

562 [3, 3, 256]× 2 [3, 3, 64]× 2 [3, 3, 128], step1
[3, 3, 128], step2
stage1, stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

282 [3, 3, 512]× 2 [3, 3, 128]× 2 [3, 3, 256], step1
[3, 3, 256], step2
stage1, stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

1122 [3, 3, 128]× 2 [3, 3, 32]× 2 [3, 3, 64], step1
[3, 3, 64], step2
stage1, stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

142 [3, 3, 1024]× 2 [3, 3, 256]× 2 [3, 3, 512], step1
[3, 3, 512], step2

stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

2242 [3, 3, 64]× 2 [3, 3, 32]× 2 [3, 3, 32], step1
[3, 3, 32], step2
stage1, stage2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

72 — [3, 3, 512]× 2 — 2242 [1, 1, 1], Sigmoid

Parameters 25.59 M 14.30 M 15.03 M

Model size 118 MB 57.7 MB 60.7 MB
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Dice loss. We used an early stop mechanism and stopped training
when the validation loss reached a stable level with no significant
change for 20 epochs. Unless explicitly specified, PL-Net had two
“steps” and “stages,” and BSC was established at each stage of the
network. When testing, all prediction layers are deleted before the
last “stage,” and other configurations remain unchanged.

4.3 Ablation study

To understand the effectiveness of IPL and EPL strategies, we
conducted ablation studies. When there is no IPL strategy, features
are extracted by naturally stacking benchmark blocks, and we
conducted experiments on stacking 1-layer and 2-layer
benchmark blocks, respectively. Adopting an IPL strategy means
that the encoder-decoder must be iterated for n times in different
stages, and we set n = 2 and n = 3. When external progressive
learning is not performed, different “stages” are connected in series

through PL-Net to transfer the feature information learned in each
stage. Only the parameters in the last stage are optimized, and the
segmentation results are output through the model. That is to say,
the feature information obtained in the current “stage” of training is
transferred to the next training “stage” and fused through the EPL
method, allowing fine-grained information to be mined through the
model based on learning in the previous training “stage”.

Table 2 presents our IoU (Dice) scores without/with a
progressive learning strategy on five different medical image
segmentation datasets. We provide the parameters and model
sizes for different scenarios to comprehensively analyze
segmentation performance. In most cases, the best segmentation
performance is achieved through PL-Net when both internal (n = 2)
and external progressive learning strategies are used simultaneously.
Compared to the model with the same parameter settings without
IPL, the segmentation performance is significantly improved. These
results demonstrate the effectiveness of EPL and IPL. Moreover, we
observed that the progressive learning strategy has a significant

FIGURE 2
(A–D) represent samples from the five datasets.

TABLE 2 Ablative results. IoU (Dice), number of parameters, and model size are reported.

Dataset EPL Without IPL With IPL

n = 1 n = 2 n = 2 n = 3

ISIC 2017 × 76.05 (84.43) 77.09 (85.23) 77.15 (85.37) 77.07 (85.44)

✓ 76.69 (84.94) 77.04 (85.27) 77.92 (85.94) 77.49 (85.56)

Nuclei × 85.54 (91.89) 85.13 (91.53) 85.93 (92.14) 84.78 (91.28)

✓ 85.60 (91.84) 85.80 (92.00) 86.14 (92.13) 85.37 (91.70)

PH2 × 83.90 (90.74) 85.88 (91.61) 86.69 (92.47) 86.48 (92.45)

✓ 84.97 (91.00) 86.63 (92.44) 87.27 (92.86) 87.03 (92.77)

TN-SCUI × 72.32 (81.38) 73.72 (82.61) 75.95 (85.36) 76.67 (84.60)

✓ 74.20 (83.33) 75.63 (84.33) 76.66 (85.10) 77.05 (85.55)

ACDC × 74.44 (81.56) 74.66 (82.03) 77.78 (83.84) 77.49 (83.60)

✓ 75.30 (82.19) 76.80 (83.42) 78.06 (84.36) 77.96 (83.91)

Parameters — 10.33M 15.03 M 15.03 M 19.73 M

Model size — 41.60 MB 60.70 MB 60.70 MB 79.70 MB

The bold values indicates the best performance.
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impact on datasets with complex boundaries or multi-category
datasets. On the TN-SCUI dataset, for instance, the IoU
improvement is as high as 2.94% with the same parameter
setting (n = 2). To balance factors such as performance and
parameters, we used the setting of n = 2 in the following
experiments. However, we believe that the setting of n = 3 may
be more effective as the size of the dataset increases.

In addition to the above ablation studies, we also investigated the
impact of the output channel scale (Ocs) on the segmentation
performance of different datasets. Figure 3 shows the
experimental results on three datasets, where we set Ocs ∈ [0.5,
2.0] and take values at an interval of 0.25. Note that Ocs =
0.5 represents a smaller version of PL-Net†.We found that when
Ocs = 1.0, the best segmentation result can be obtained, and the
parameter amount (15.03 MB) is well-balanced. When Ocs > 1.0,
the segmentation performance improves as the number of channels
increases, but it does not exceed that of the standard PL-Net. We
attribute this to the limitation of the data size and the complexity of
the segmentation content. While PL-Net† has slightly lower
segmentation performance than other networks, it has very few
parameters. Thus, it is recommended for use on small datasets.
Additionally, it can be configured to run on servers or mobile devices
with lower hardware requirements.

4.4 Comparison with state-of-the-arts

4.4.1 Quantitative comparison
For the ISIC 2017 and PH2 datasets, we compared our PL-Net to

the baseline U-Net and other state-of-the-art methods (Ronneberger
et al., 2015; Badrinarayanan et al., 2017; Al-Masni et al., 2018; Oktay
et al., 2018; Zhou et al., 2018; Alom et al., 2019; Kaul et al., 2019;
Cheng et al., 2020; Hasan et al., 2020; Jha et al., 2020; Lei et al., 2020;
Xiang et al., 2020; Cao et al., 2021; Isensee et al., 2021; Cheng et al.,
2022; Valanarasu and Patel, 2022; Wu et al., 2022). The functional
optimization-oriented variants of U-Net include (Badrinarayanan
et al., 2017; Al-Masni et al., 2018; Oktay et al., 2018; Alom et al.,

2019; Kaul et al., 2019; Cheng et al., 2020; Valanarasu and Patel,
2022) while the structural optimization-oriented variants of U-Net
include (Zhou et al., 2018; Alom et al., 2019; Hasan et al., 2020; Jha
et al., 2020; Lei et al., 2020; Xiang et al., 2020; Cao et al., 2021; Isensee
et al., 2021; Cheng et al., 2022; Wu et al., 2022). To ensure fairness,
we either used the experimental results provided by the authors on
the same test set or ran their models published in the same
environment.

Table 3 presents the accuracy (Acc), intersection over union
(IoU), Dice coefficient (Dice), sensitivity (Sens), and specificity
(Spec) scores of different segmentation methods on the
ISIC2017 and PH2 datasets. Our PL-Net outperforms other
methods in terms of both IoU and Dice metrics on the
ISIC2017 dataset. Specifically, the IoU and Dice scores of PL-Net
are 0.6% and 0.3% higher than those of BiO-Net (t = 3, INT),
respectively. The smaller sized PL-Net† (3.77 M) achieves the same
Dice score as BiO-Net (t = 3) (14.30 M). Although nnU-Net (Petit
et al., 2021) achieves the best sensitivity on the ISIC2017 test set, its
model size is 3.76 times larger than that of the standard PL-Net. The
PH2 dataset also involves the dermoscopic image segmentation task.
While the number of parameters in UNeXt-L (Dosovitskiy et al.,
2020) is similar to that of our smaller version of PL-Net†, UNeXt-L
completes the entire segmentation process through a single feed-
forward pass of the input image, resulting in low parameter
utilization and insufficient learning. When compared with other
state-of-the-art methods, PL-Net demonstrates superior
performance on the PH2 dataset. Furthermore, PL-Net† hasmuch
fewer parameters than other methods, yet it still achieves
competitive segmentation performance.

Nuclei dataset. The datasets used for nucleus segmentation have
non-uniform feature distributions, and the shapes of positive and
negative samples vary greatly. Table 4 presents the quantitative
comparison results of our method against 14 other methods.
Compared to the state-of-the-art TransAttUnet-R (Chen B. et al.,
2021), our PL-Net achieves better overall segmentation
performance, with improvements ranging from 0.27% to 1.16%
for different evaluation metrics. The segmentation performance

FIGURE 3
Study the impact of Ocs on three public datasets. Results are calculated over 5 runs and are shown with standard errors. We label the parameters of
the model at the top of the bar chart.
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of U-Net++ falls between our PL-Net† and PL-Net, with an IoU of
85.56% and a Dice of 91.59%. Across five cross-validation
experiments, standard PL-Net showed higher stability than PL-
Net†, with a 14% reduction in standard deviation. Although the
Dice score of Att R2U-Net is higher than that of PL-Net, its overall
performance and stability are slightly inferior. Notably, both PL-Net
and BiO-Net use BSC, but our method shows better overall
performance. With a smaller PL-Net† size, almost the same IoU
and Dice scores as BiO-Net (t = 3, INT) can be achieved.

TN-SCUI and ACDC datasets. The boundary of the TN-SCUI
dataset is blurred compared to other datasets, and we found that
methods including CNN may obtain better experimental results in
this case. As shown in Table 5, even lightweight approaches like
PL-Net† can achieve performance similar to Swin-UNet. UNeXt-
L, a hybrid network based on CNN and MLP, has the smallest
model size, but its segmentation performance is inferior to baseline
methods. Our analysis shows that this is because the method has
fewer learnable parameters and cannot make good use of the
learned features. In the ACDC dataset (Table 6), we
demonstrate the segmentation performance of different
methods on different classes. The target area of the
myocardium (Myo) is ringed between the left atrium (LV) and
right atrium (RV) and is relatively small overall. The segmentation

accuracy of different methods on this category tends to be lower
than that of the other two categories. Our PL-Net achieves the
highest IoU and Dice scores. Although TransUNet and EANet can
achieve better average segmentation performance, their model size
is increased by 6 times, making them more complex and requiring
more computing resources than our proposed method.
Additionally, the experimental results of PL-Net on the ACDC
dataset show that our method is also suitable for multi-category
segmentation tasks.

The above quantitative comparison demonstrates that our
proposed network can be applied to different segmentation tasks,
which can include different modalities and categories. Even for
images with blurred boundaries, PL-Net can produce good
segmentation results. Although the overall segmentation
performance of PL-Net† is not as good as that of standard PL-
Net, its smaller parameters and model size will promote its
application in memory-constrained environments. Additionally,
other U-Net variants, which are oriented towards functional
optimization or structural optimization, can improve the
segmentation performance of the original U-Net to some extent,
but the increased computational cost is a difficult problem to avoid.
As PL-Net is a progressive learning framework, it achieves a good
trade-off between segmentation performance and parameters.

TABLE 3 Performance comparison with SOTA methods on ISIC 2017 and PH2 datasets. Red, Green, and Blue indicate the best, second best and third best
performance.

Network ISIC 2017 dataset PH2 dataset #Params Model
size

Acc IoU Dice Sens Spec Acc IoU Dice Sens Spec

FrCN Al-Masni et al. (2018) 0.940 0.771 0.871 0.854 0.967 0.951 0.848 0.918 0.937 0.957 — —

FocusNet Tong et al. (2015) 0.921 0.756 0.832 0.767 0.990 — — — — — — —

SegNet Kaul et al. (2019) 0.918 0.696 0.821 0.801 0.954 0.934 0.808 0.894 0.865 0.966 28.09M 112 MB

DSNet Gu et al. (2019) — 0.775 — 0.875 0.967 — 0.870 — 0.929 0.969 10.00M —

DAGAN Valanarasu and Patel (2022) 0.935 0.771 0.859 0.835 0.976 — — — — — — —

FATNet Wu et al. (2022) 0.933 0.765 0.850 0.839 0.973 — — — — — 27.43 M 109 MB

ResGANet Cheng et al. (2022) 0.936 0.764 0.862 0.842 0.950 — — — — — 39.21M —

U-Net Ronneberger et al. (2015) 0.926 0.736 0.825 0.828 0.964 0.943 0.851 0.915 0.946 0.957 29.59 M 118 MB

U-Net++ Berseth (2017) 0.929 0.753 0.840 0.848 0.965 0.948 0.853 0.917 0.973 0.937 34.48 M 138 MB

Double U-Net Isensee et al. (2021) 0.936 0.765 0.847 0.830 0.970 0.942 0.860 0.915 0.934 0.953 27.94 M 112 MB

FCANet Hu et al. (2018) 0.935 0.776 0.856 0.869 0.962 0.952 0.868 0.926 0.968 0.926 59.97 M 241 MB

Att U-Net Cheng et al. (2020) 0.939 0.757 0.840 0.859 0.957 0.951 0.868 0.926 0.953 0.955 30.42 M 121 MB

R2U-Net Cheng et al. (2022) 0.938 0.776 0.858 0.859 0.969 0.952 0.871 0.927 0.954 0.960 91.61 M 366 MB

Att R2U-Net Cheng et al. (2022) 0.939 0.775 0.857 0.857 0.961 0.954 0.873 0.928 0.949 0.962 92.11 M 368 MB

BiO-Net (t = 3) Zhou et al. (2018) 0.937 0.772 0.852 0.845 0.973 0.944 0.851 0.915 0.963 0.931 14.30M 57.7MB

BiO-Net (t = 3, INT) Zhou et al.
(2018)

0.934 0.754 0.840 0.821 0.976 0.945 0.851 0.909 0.968 0.944 3.99M 15.2MB

UNeXt-L Valanarasu and Patel (2022) 0.935 0.773 0.856 0.864 0.966 0.949 0.859 0.919 0.941 0.955 14.30M 57.7MB

PL-Net† (Our) 0.932 0.769 0.852 0.871 0.953 0.945 0.852 0.915 0.955 0.957 3.77M 15.6MB

PL-Net (Our) 0.940 0.779 0.859 0.848 0.975 0.957 0.873 0.929 0.965 0.966 15.03 M 60.7MB

The bold values indicates the best performance.
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4.4.2 Qualitative comparison
To better understand the excellent performance of our method,

we present example results of PL-Net and several other methods in

Figure 4 and Figure 5. As shown, our PL-Net and PL-Net† can
handle different types of targets and produce accurate
segmentation results.

TABLE 4 Performance comparison with SOTAmethods on Nuclei dataset. Red, Green, and Blue indicate the best, second-best, and third-best performance.
For the original implementation methods, we report mean ± standard deviation.

Network Nuclei dataset #Params Model size

Acc IoU Dice Sens

PraNet Fan et al. (2020) 95.59 71.08 81.03 80.62 — —

Channel-UNet Chen et al. (2019) 96.27 79.75 87.55 90.70 — —

ResUNet Diakogiannis et al. (2020) 97.05 82.44 89.91 90.00 — —

Double U-Net Jha et al. (2020) — 84.07 91.33 64.07 27.94 M 112 MB

TransAttUnet D Chen et al. (2021a) 97.37 84.62 91.34 91.86 — —

TransAttUnet R Chen et al. (2021a) 97.46 84.98 91.62 91.85 — —

TransUNet Chen et al. (2021b) 97.84 85.21 91.69 91.62 100.4 M 401 MB

FATNet Wu et al. (2022) 98.11 85.24 91.69 91.73 27.43 M 109 MB

U-Net Ronneberger et al. (2015) 97.84 ± 0.24 85.68 ± 1.40 91.90 ± 1.00 92.61 ± 0.52 29.59 M 118 MB

U-Net++ Zhou et al. (2018) 97.87 ± 0.22 85.91 ± 1.35 92.06 ± 1.00 92.48 ± 1.08 34.48 M 138 MB

FCANet Cheng et al. (2020) 97.68 ± 0.31 84.87 ± 1.39 91.33 ± 1.09 91.70 ± 1.50 59.97 M 241 MB

Att U-Net Oktay et al. (2018) 97.84 ± 0.18 85.46 ± 1.20 91.77 ± 0.88 91.93 ± 0.66 30.42 M 121 MB

R2U-Net Alom et al. (2019) 97.93 ± 0.18 85.68 ± 1.26 91.89 ± 0.92 92.28 ± 1.20 91.61 M 366 MB

Att R2U-Net Alom et al. (2019) 97.76 ± 0.34 85.86 ± 1.04 92.15 ± 0.92 92.51 ± 1.46 92.11 M 368 MB

BiO-Net (t = 3) Xiang et al. (2020) 97.81 ± 0.22 85.09 ± 1.42 91.53 ± 1.04 91.99 ± 0.72 14.30M 57.7MB

BiO-Net (t = 3, INT) Xiang et al. (2020) 97.84 ± 0.20 85.31 ± 1.27 91.68 ± 0.93 91.94 ± 0.76 14.30M 57.7MB

UNeXt-L Valanarasu and Patel (2022) 97.43 ± 0.15 81.26 ± 1.46 88.75 ± 1.31 88.71 ± 1.65 3.99M 15.2MB

PL-Net† (Our) 97.79 ± 0.22 85.23 ± 1.39 91.60 ± 1.03 91.79 ± 0.59 3.77M 15.6MB

PL-Net (Our) 97.96 ± 0.16 86.14 ± 1.20 92.13 ± 0.88 92.12 ± 1.11 15.03 M 60.7 MB

The bold values indicates the best performance.

TABLE 5 Performance comparison with SOTA methods on TN-SCUI datasets. Red, Green, and Blue indicate the best, second-best, and third-best
performance.

Network TN-SCUI datasets #Params (M) Model size (MB)

IoU Dice

U-Net Ronneberger et al. (2015) 0.718 0.806 29.59 118

SegNet Badrinarayanan et al. (2017) 0.726 0.819 17.94 71.8

FATNet Wu et al. (2022) 0.751 0.842 27.43 109

Swin-UNet Cao et al. (2021) 0.744 0.835 25.86 105

TransUNet Chen et al. (2021b) 0.746 0.837 88.87 401

EANet Wang et al. (2022) 0.751 0.839 47.07 118

UNeXt-L Valanarasu and Patel (2022) 0.693 0.794 3.99 15.2

PL-Net† (Our) 0.742 0.830 3.77 15.6

PL-Net (Our) 0.767 0.851 15.03 60.7

The bold values indicates the best performance.
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The first and second rows of Figure 4 respectively show the
segmentation results of an ambiguous target area and a small
amount of occlusion (hair). As observed, although the results
produced by PL-Net are not as accurate, our method is still effective
for areas with ambiguous targets compared to other methods. When
segmenting occluded images, other models either tend to divide
boundaries incorrectly or mistake masked areas as target areas. The
segmentation target of the image in the third row is clear, and relatively
accurate segmentation results can be produced through other methods.
However, for the content marked in the red box, most methodsmistake
interfering pixels for target pixels for segmentation, and better results
are produced through our method compared to other methods. The
fourth row shows the performance of different models for targets

consisting of tiny targets and dispersed structures. As observed,
U-Net and Att U-Net either recognize the saliency area as the target
area or lose the target area, resulting in poor segmentation results. The
fifth and sixth rows show the segmentation results of different methods
for smaller and larger targets. As seen, ourmodel makes a good decision
on the boundary of the small target, while the area marked in the red
box cannot be segmented well by other models. Compared to the fifth
row, the lesion area shown in the sixth row covers almost the entire
image. Although more accurate segmentation results can be produced
through othermethods, our PL-Net producesmore perfect results as far
as the area marked in the red box is concerned.

Figure 5 presents qualitative comparison results of different
methods on the TN-SCUI and ACDC datasets. From the

TABLE 6 Performance comparisonwith SOTAmethods on ACDCdatasets. Red, Green, and Blue indicate the best, second-best, and third-best performance.

Network ACDC datasets #Params (M) Model size (MB)

RV Myo LV Average

U-Net Ronneberger et al. (2015) 0.743 (0.792) 0.717 (0.812) 0.861 (0.897) 0.774 (0.834) 29.59 118

SegNet Badrinarayanan et al. (2017) 0.738 (0.790) 0.720 (0.817) 0.864 (0.902) 0.774 (0.836) 17.94 71.8

FATNet Wu et al. (2022) 0.743 (0.799) 0.702 (0.805) 0.859 (0.899) 0.768 (0.834) 27.43 109

Swin-UNet Cao et al. (2021) 0.754 (0.805) 0.722 (0.820) 0.865 (0.903) 0.780 (0.843) 25.86 105

TransUNet Chen et al. (2021b) 0.750 (0.800) 0.715 (0.812) 0.872 (0.905) 0.779 (0.839) 88.87 401

EANet Wang et al. (2022) 0.742 (0.791) 0.732 (0.825) 0.864 (0.902) 0.779 (0.839) 47.07 118

UNeXt-L Valanarasu and Patel, (2022) 0.719 (0.779) 0.675 (0.810) 0.840 (0.882) 0.745 (0.824) 3.99 15.2

PL-Net† (Our) 0.723 (0.778) 0.692 (0.796) 0.845 (0.887) 0.753 (0.820) 3.77 15.6

PL-Net (Our) 0.761 (0.807) 0.738 (0.828) 0.872 (0.907) 0.790 (0.847) 15.03 60.7

The bold values indicates the best performance.

FIGURE 4
Qualitative segmentation results of ISIC 2017, Nuclei, and PH2 datasets using different methods.
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experimental results in the first two rows of the TN-SCUI dataset,
PL-Net has a larger true positive area compared to other methods
and is more accurate in lesion boundary segmentation. The third
row shows an example where different methods perform poorly.
Although there is a certain difference between our segmentation
results and the ground truth, the false positive area is significantly
lower than that of other methods, which is particularly important in
medical image analysis. We highlighted different targets in the
ACDC dataset using different colors, and the experimental
results in the fourth-row show that SegNet, TransUNet, and
EANet have poor segmentation results and incomplete
segmentation of the RV area. In the example image in the fifth
row, the Myocardium area accounts for a relatively small
proportion, and FATNet, EANet, and UNeXt do not correctly
segment the ring area, while PL-Net clearly segments the
Myocardium area. The experimental results in the last row
demonstrate the advantage of PL-Net in segmenting small
targets. Although U-Net, EANet, and UNeXt segment the target
area, their category definitions are inaccurate. These experimental
results cover different situations in medical images, including large,
medium, and small lesions, as well as targets of different categories.
These results indicate that PL-Net has good generalization ability
and can handle different types of medical image semantic
segmentation problems.

In addition to the visualization results mentioned above, we
present the features learned by different “stages” and “steps” of PL-
Net in the form of a heat map, as shown in Figure 6. During internal
progressive learning (i.e., “Step1″ and “Step2″), the shallower

“Step1″ tends to focus on coarse-grained semantic information
first, such as the outline of hair or lesions. As the network depth
increases, “Step2″ gives less weight to texture features and focuses
more on fine-grained semantics. PL-Net captures semantic
information from coarse to fine granularity at different “stages”
using internal progressive learning and does not introduce
additional parameters compared to other approaches that replace
deeper encoders. Through the visualization results of different
“stages,” we observe that the heat value of “Stage2″ is higher
than that of “Stage1″ at the same position (i.e., the
corresponding weight value is larger), which benefits from the
fusion of coarse-grained and fine-grained information of the two
stages. In addition, “Fusion” represents the feature map of the last
convolutional layer after the two-stage fusion, with a distribution of
thermal values similar to that of the ground truth and masked from
irrelevant background regions.

4.4.3 Expanding to 3D medical image
segmentation

In this section, we will detail how to effectively apply the proposed
progressive strategy to 3D medical image segmentation tasks. To
validate the effectiveness of this strategy, we chose 3D U-Net as the
baseline network and conducted preliminary experimental validation
on the standard prostate MRI segmentation dataset, PROMISE
2012 Litjens et al. (2014). This dataset contains 50 MRI volumes,
which we split into a training set and a test set in a 3:2 ratio.

In the 3D U-Net Çiçek et al. (2016) structure, we employed basic
blocks consisting of two 3 × 3 × 3 convolutions (excluding batch

FIGURE 5
Qualitative segmentation results of TN-SCUI and ACDC datasets using different methods.
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normalization and activation functions here). The encoder part
includes four such basic blocks, each followed by a
downsampling operation to progressively reduce the spatial
dimensions of the feature maps. The decoder part restores the
feature space through four upsampling operations, each also
followed by a basic block.

To integrate the progressive learning strategy into the 3D U-Net,
we converted the two 3 × 3 × 3 convolutions in the basic block into
an internal progressive learning process, where each convolution
layer is considered a “step.” In the second “step,” we introduced
backward skip connections to fuse features of different levels at the
same scale. This design allows us to effectively incorporate the
internal progressive learning strategy without altering the original
3D U-Net’s basic structure.

Next, we regarded the above network as the first “stage” of
external progressive learning. To construct the second “stage,” we
added a downsampling layer and a basic block at the end of the
encoder, and an upsampling layer and a basic block at the beginning
of the decoder. Similar to the design concept of PL-Net, we built the
second “stage” by reusing the network structure from the first stage
along with the newly added basic blocks. In the second stage, we
used skip connections to effectively fuse the coarse-grained
information from the first stage with the fine-grained features of
the second stage. Through these steps, we extended the original 3D
U-Net into a progressive learning network with two “steps” and
two “stages.”

As shown in Table 7, we compared the experimental results of
the original 3D U-Net with those after introducing the progressive
learning strategy. The data indicates that introducing only the
internal progressive learning strategy improved the Dice score by
0.6% compared to the baseline 3D U-Net. When both progressive
learning strategies were applied, the Dice score improvement was
even more significant, reaching 1.36%. These preliminary
experimental results fully demonstrate the effectiveness and
practicality of our proposed method. Encouraged by these
positive findings, we plan to further explore the potential

performance of progressive learning strategies in a broader range
of 3D medical image segmentation tasks in the future.

5 Discussion

U-Net has been widely used as a benchmark model for medical
image segmentation due to its simple and easily modifiable structure.
Most of its variant approaches enhance segmentation performance by
adding functional modules (e.g., attention module) or modifying its
original structure (e.g., residual, and densely connected structures) in
the feed-forward process. In this paper, we adopt an alternative approach
by recognizing that coarse-grained and fine-grained discriminative
information naturally exists at different stages of the network, which
can be learned incrementally, similar to how humans learn through
shallow and deep network structures. Based on this intuition, we design a
framework with internal and external progressive learning strategies,
called PL-Net. Internal progressive learning strategies are used to mine
semantic information at different granularities, while external progressive
learning strategies further refine segmentation details based on the
features learned in the previous training phase.

Researchers have proposed numerous network architectures based
on U-Net to address various medical image semantic segmentation
problems. However, some approaches that add functional modules
(such as FCANet and Att U-Net) do not consistently improve

FIGURE 6
PL-Net’s heat map of different “stages” and “steps” on the ISIC2017 dataset.

TABLE 7 Extended experiments on the application of progressive learning
strategies to 3D U-Net.

Method PROMISE 2012 dataset

IoU (%) Dice (%)

3D U-Net Çiçek et al. (2016) 56.84 72.48

3D U-Net + IPL 57.58 73.08

3D U-Net + IPL + EPL 58.53 73.84

The bold values indicates the best performance.
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performance across different datasets. Our experimental results
demonstrate that while FCANet improves IoU by 4% over vanilla
U-Net on the ISIC2017 dataset, it degrades performance by 0.81% on
theNuclei dataset, indicating that performance variation is related to the
type, size, and complexity of the dataset. Our proposed PL-Net achieves
consistent performance improvements over vanilla U-Net on five
datasets without adding new functional modules or structural
modifications and remains competitive with state-of-the-art network
frameworks (EANet and ResGANet). Moreover, PL-Net has lower
computational overhead and fewer parameters, resulting in amodel size
reduction of 3.8 times and 6.6 times compared to widely used nnUNet
and TransUNet, respectively. We also provide PL-Net† with a smaller
number of parameters, which can offer options for different medical
imaging scenarios, although the decrease in the number of parameters
results in reduced segmentation accuracy. Our method can run on a
GPU with limited memory, reducing the complex configuration and
tedious preprocessing steps of nnUNet. In otherwords, designing such a
network is crucial to translate medical imaging from the laboratory to
clinical practice.

On the other hand, similar to most existing state-of-the-art
methods, our proposed segmentation network still has limitations in
handling cases with complex boundaries and small targets. As
shown in the first row of Figure 4, when the boundary between
the skin lesion and the background region is difficult to distinguish,
our method and other approaches fail to accurately delineate the
boundary. As shown in the third row of Figure 5, PL-Net’s
segmentation performance is lower when the target region is very
small. However, in these cases, our method is closest to the ground
truth, and the segmentation results are still better than those of other
competitors. From the experimental results in Table 1, we found that
the best results were obtained by performing three internal
progressive learning experiments on the large-scale TN-SCUI
dataset, indicating the necessity of setting different internal
progressive learning strategies. Finally, we believe that
introducing robust functional modules may further improve the
segmentation performance of PL-Net, and we will explore this in
future work. The ideas proposed in this paper mainly provide
inspiration for researchers who are committed to designing
feature representations to improve convolutional neural networks.

6 Conclusion

In this study, we propose a new variant of U-Net called PL-Net
for 2D medical image segmentation, which mainly consists of
internal and external progressive learning strategies. Compared to
U-Net methods that optimize functional or structural aspects, our
PL-Net achieves consistent performance improvements without
additional trainable parameters. We provide both a standard PL-
Net (15.03 M) and a smaller version, PL-Net† (3.77 M), to address
different medical image segmentation scenarios in real-world
situations. We conduct comprehensive experiments on five public
medical image datasets, and the results show that PL-Net can
improve the segmentation IoU of the baseline network by
0.46%–4.9%, demonstrating high competitiveness with other
state-of-the-art methods.

Although our proposed method has shown promising results, it
still has some limitations that need to be further addressed in future

research: 1) Impact of data size: Exploring the parameter settings of
internal and external progressive learning under different data sizes
will help researchers understand the potential of the model under
different scales of data. In the future, we will further explore the
performance of PL-Net on larger datasets. 2) Due to the limitations
of computing power and data, our method mainly focuses on 2D
medical image segmentation. This article has initially demonstrated
the feasibility of the progressive learning strategy in 3D medical
image segmentation. In the future, we will extend PL-Net to more
advanced 3D medical image segmentation frameworks to further
enhance its capabilities in 3D medical image segmentation. 3)
Design of functional modules: How to design functional modules
suitable for PL-Net to improve segmentation performance while
maintaining a concise framework is also a topic for further research
in the future.
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