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Introduction: The development of next-generation tissue-engineered medical
devices such as tissue-engineered vascular grafts (TEVGs) is a leading trend in
translational medicine. Microscopic examination is an indispensable part of
animal experimentation, and histopathological analysis of regenerated tissue is
crucial for assessing the outcomes of implanted medical devices. However, the
objective quantification of regenerated tissues can be challenging due to their
unusual and complex architecture. To address these challenges, research and
development of advanced ML-driven tools for performing adequate histological
analysis appears to be an extremely promising direction.

Methods:We compiled a dataset of 104 representative whole slide images (WSIs)
of TEVGs which were collected after a 6-month implantation into the sheep
carotid artery. The histological examination aimed to analyze the patterns of
vascular tissue regeneration in TEVGs in situ. Having performed an automated
slicing of these WSIs by the Entropy Masker algorithm, we filtered and then
manually annotated 1,401 patches to identify 9 histological features: arteriole
lumen, arteriole media, arteriole adventitia, venule lumen, venule wall, capillary
lumen, capillary wall, immune cells, and nerve trunks. To segment and quantify
these features, we rigorously tuned and evaluated the performance of six deep
learning models (U-Net, LinkNet, FPN, PSPNet, DeepLabV3, and MA-Net).

Results: After rigorous hyperparameter optimization, all six deep learning models
achieved mean Dice Similarity Coefficients (DSC) exceeding 0.823. Notably, FPN
and PSPNet exhibited the fastest convergence rates. MA-Net stood out with the
highest mean DSC of 0.875, demonstrating superior performance in arteriole
segmentation. DeepLabV3 performed well in segmenting venous and capillary
structures, while FPN exhibited proficiency in identifying immune cells and nerve
trunks. An ensemble of these three models attained an average DSC of 0.889,
surpassing their individual performances.

Conclusion: This study showcases the potential of ML-driven segmentation in
the analysis of histological images of tissue-engineered vascular grafts. Through
the creation of a unique dataset and the optimization of deep neural network
hyperparameters, we developed and validated an ensemble model, establishing
an effective tool for detecting key histological features essential for
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understanding vascular tissue regeneration. These advances herald a significant
improvement in ML-assisted workflows for tissue engineering research and
development.
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tissue-engineered vascular grafts

Introduction

The development of next-generation tissue-engineered medical
devices is among the leading trends in translational medicine, aimed
at minimizing the invasiveness of surgical interventions and
eliminating the long-term risk of device failure (McKinley et al.,
2023; Subbiah, 2023). Commercial off-the-shelf tissue-engineered
vascular grafts (TEVGs) and failure-protected bioprosthetic heart
valves are among the upcoming game-changers in cardiovascular
surgery (Fayon et al., 2021; Fioretta et al., 2021; Cho et al., 2022). The
former removes the need for harvesting autologous blood vessels to
construct a bypass, while the latter have an unlimited lifespan
(Fayon et al., 2021; Fioretta et al., 2021; Cho et al., 2022). TEVGs
have shown good implantation outcomes in sheep and have recently
passed a pre-clinical trial on non-human primates, awaiting
certification to commence a phase I clinical trial in Russia
(Antonova et al., 2022; Antonova et al., 2023). Failure-protected
bioprosthetic heart valves have demonstrated excellent resistance to
enzymatic degradation and calcification in vitro and are also
undergoing a pre-clinical trial in sheep (Kostyunin et al., 2020;
2023a; Kostyunin et al., 2023b; Kostyunin et al., 2023c; Kostyunin
et al., 2023d). Although the production and distribution of these
prototypes are currently limited, the high efficiency and
standardized technologies of their manufacturing bode well for
further development, pre-clinical testing on large animals, and
eventual implementation of these innovative medical devices into
routine cardiovascular surgery.

Microscopic examination is an indispensable part of animal
experimentation, and hematoxylin and eosin (H&E) staining
remains the most frequently used histological technique over the
century (de Haan et al., 2021; Li et al., 2024). Its widespread
distribution, exceptionally high clinical demand, commonly
established laboratory protocols, and well-defined staining
patterns have propelled the broad use of automatic slide stainers,
which reduce hands-on time, and stimulated the design of machine
learning (ML)-based virtual staining algorithms that curtail material
expenses (de Haan et al., 2021; Li et al., 2024). Although digital
pathology approaches (e.g., automated slide scanning and
computer-aided analysis) are also largely integrated into the
assessment of H&E-stained images (Baxi et al., 2022; Qaiser
et al., 2022; Bai et al., 2023), the examination of tissue-engineered
constructs is complicated by unusual and sometimes bizarre tissue
architecture patterns. For instance, de novo formed blood vessel
walls are notable for large, thin-walled capillaries resembling those
assembled by endothelial cells in a 3D artificial extracellular
environment, and for numerous small clusters of immune cells
responsible for polymer biodegradation (Antonova et al., 2022;
Antonova et al., 2023). An objective semi-quantitative analysis of
regenerated microvasculature and resident polymer-digesting

macrophages requires an ML-based approach to distinguish
between arterioles, venules, and capillaries, to differentiate
macrophage clusters from nerve trunks, and to perform adequate
quantification of defined histological features.

Studies in different rat models showed that endothelial
denudation achieved through balloon angioplasty triggered
excessive neovascularization and promoted inflammation in the
tunica adventitia and perivascular adipose tissue, also denoting
an association of these processes with the development of intimal
hyperplasia (Shishkova et al., 2019; Shishkova et al., 2020; Shishkova
et al., 2021; Bogdanov L. et al., 2022). Intravenous administration of
calciprotein particles, a trigger of endothelial dysfunction, after
balloon-induced endothelial injury further exaggerated adventitial
and perivascular angiogenesis, enhanced immune cell infiltration,
and promoted intimal hyperplasia in rat aortas, highlighting
pathophysiological links between these phenomena (Shishkova
et al., 2019; Shishkova et al., 2020; Shishkova et al., 2021;
Bogdanov L. et al., 2022). The saphenous vein, which has
abundant vasa vasorum (i.e., microvessels in the tunica adventitia
and adjacent adipose tissue), has been characterized by a
significantly higher neointimal area in comparison with the
poorly vascularized internal mammary artery (Bogdanov L. et al.,
2022). Altogether, vasa vasorum density showed a moderate to
strong correlation with leukocyte density in the tunica adventitia,
and both of these parameters correlated well with the neointimal
area in balloon-injured rat aortas and saphenous veins of patients
undergoing coronary artery bypass graft surgery (Shishkova et al.,
2019; Shishkova et al., 2020; Shishkova et al., 2021; Bogdanov L.
et al., 2022).

Although the role and relative importance of neovascularization
strikingly differ between pathophysiological scenarios (e.g.,
angiogenesis is mostly beneficial in acute ischemic conditions but
is detrimental in the context of chronic inflammation), there is
currently a consensus that increased amounts of vasa vasorum are
associated with vascular inflammation and the severity of arterial
stenosis in experimental models and clinical settings (Mulligan-
Kehoe and Simons, 2014; Xu et al., 2015; Sedding et al., 2018;
Kostyunin A. et al., 2020). Therefore, computer-assisted annotation
of microvessels and immune cells in regenerated arteries may enable
the discrimination of physiological and pathological patterns of
vascular tissue regeneration (Weis et al., 2015; Bogdanov L. A. et al.,
2022; Adamo et al., 2022; Markova et al., 2023; Timakova et al.,
2023). Here, we designed a machine learning tool for the automated
demarcation and quantification of blood vessels, immune cell
clusters, and nerve trunks in regenerated vascular tissue that
replaced biodegradable TEVGs upon their implantation into the
ovine carotid artery for 6 months.

In this study, we made a significant contribution to the field of
digital pathology by developing a machine learning tool capable of
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automated slicing of WSIs followed by delineation and
quantification of blood vessels, immune cell clusters, and nerve
trunks in regenerated vascular tissue. Our unique dataset, collected
from a cohort of 20 sheep and comprising 104 WSIs, has been made
publicly available, fostering further research. We have extensively
tuned and tested various standard and state-of-the-art neural
networks, proposing an ensemble approach that significantly
enhances the accuracy and reliability of histological image
segmentation. This work not only advances the understanding of
tissue-engineered construct evaluation but also sets a new
benchmark for the application of machine learning in
digital pathology.

Materials and methods

Experimental strategy

Experimental strategy of the study is described in detail in
(Antonova et al., 2022; Antonova et al., 2023). The study was
conducted according to the guidelines of the Declaration of
Helsinki, and was approved by the Local Ethical Committee of
the Research Institute for Complex Issues of Cardiovascular
Diseases (Kemerovo, Russia, protocol code 2020/06, date of
approval: 19 February 2020). Animal experiments were
performed in accordance with the European Convention for the
Protection of Vertebrate Animals (Strasbourg, 1986) and Directive
2010/63/EU of the European Parliament on the protection of
animals used for scientific purposes. For the implantation, we
used female Edilbay sheep of 42–45 kg body weight which were
received from the Animal Core Facility of the Research Institute for
Complex Issues of Cardiovascular Diseases (Kemerovo, Russia) and
selected for the surgery by Doppler ultrasonography to identify
those having carotid artery diameter of 4.0 ± 0.2 mm.

Biodegradable TEVGs biofunctionalized with heparin and
iloprost to prevent thrombosis (n = 20, one graft per animal)
have been implanted for 6 months. Following the access to the
carotid artery, we clamped it, excised a 4 cm segment, performed
end-to-end implantation of a TEVG using the twisted seam (Prolene
6-0, Ethicon, Somerville, NJ, United States of America), closed the
wound (Vicryl 2-0, Ethicon, Somerville, NJ, United States of
America), and performed the extubation. Graft patency was
assessed by Doppler ultrasonography at the baseline (immediately
after the surgery), 1 day, 3 days, 1 month, 3 months, and 6 months
postoperation. At the latter time point, all sheep were sacrificed.
Excised TEVGs were used for the histological examination.

Data acquisition

A total of 104WSIs, each measuring an average size of 135,000 ×
123,000 pixels, were obtained using an automated slide scanner
(Vision Slide Assist, West Medica, Perm, Russia). The number of
selected WSIs was based on achieving a balance between a
sufficiently large dataset and the associated resources, thereby
ensuring practical feasibility for robust model training and
evaluation within the scope of our study. These WSIs were then
automatically divided into 99,831 patches, each measuring

3, 000 × 3, 000 pixels. Subsequently, these patches underwent
filtering using a method known as Entropy Masker, which
employs specific entropy-based criteria (Song et al., 2022) to
efficiently mask histology WSIs. This filtering procedure
selectively retained patches containing tissue (as depicted in
Figure 1), ensuring the preservation of relevant content for
subsequent processing and analysis.

The Entropy Masker method addresses the task of foreground
and background segmentation in WSIs, especially in scenarios
where tissue structure exhibits significant porosity and
heterogeneity. This approach leverages image entropy, which
quantifies the randomness or complexity of pixels within a
defined region or neighborhood. Initially, the method employs
color hysteresis thresholding to rectify background color
inconsistencies. Subsequently, the method computes the local
entropy of each pixel within the image. This local entropy serves
as a crucial discriminator between background noise and tissue in
the WSI. By setting a threshold, the method identifies the optimal
range of local entropy values to differentiate between background
and tissue regions. It then assigns a Boolean value to each pixel based
on a comparison of its entropy value with the threshold. These
binary values are utilized to generate a tissue segmentation mask
for each WSI.

After the filtering step, two pathologists performed an
independent selection of 1,401 patches, aiming to balance
selected histological features within the dataset, and then
performed a meticulous annotation of these patches, ultimately
identifying 9 histological features associated with distinct patterns
of vascular tissue regeneration. These features included arteriole
lumen, arteriole media, arteriole adventitia, venule lumen, venule
wall, capillary lumen, capillary wall, immune cells, and nerve
trunks. Each identified feature was annotated with the aid of
binary masks (see Figure 2). Histology annotations were
conducted using the web-based computer vision platform,
Supervisely (Supervisely, 2023).

Following the initial annotation, the labeled patches were
reviewed and double-verified by a senior pathologist and
technical specialist responsible for dataset preparation in order to
ensure the accuracy and reliability of the annotations. Verification
process implied adjustments or corrections to the annotations,
further enhancing their precision and consistency.

The classes described during the annotation of histological
images represent different histological features of vasa vasorum,
immune cell clusters, and nerve trunks, which are collectively
responsible for the vascular tissue remodeling and adequate
blood vessel response to vasoactive stimuli. A brief description of
each feature is provided below:

1. Arteriole Lumen (AL): A hollow passageway through which
blood flows through the arterioles, which are small vessels
branching from arteries to carry oxygenated blood from the
heart to the capillaries.

2. Arteriole Media (AM): A middle layer of the arterioles
consisting of smooth muscle tissue and responsible for
regulating blood pressure.

3. Arteriole Adventitia (AA): An outermost layer of connective
tissue surrounding arterioles, providing mechanical support
and protection.
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4. Venule Lumen (VL): A central space within venules, which are
small blood vessels that collect deoxygenated blood from the
capillaries and return it to veins.

5. Venule Wall (VW): A tissue layer surrounding venules,
including smooth muscle and connective tissue to regulate
blood flow and maintain vessel integrity.

6. Capillary Lumen (CL): A hollow space within the capillaries,
which are tiny blood vessels where oxygen and nutrients are
exchanged between the blood and tissues.

7. Capillary Wall (CW): A thin layer of endothelial cells forming
the capillaries and accountable for the exchange of gases,
nutrients, and waste products.

8. Immune Cells (IC): Various types of cells involved in the
body’s immune response, such as macrophages,
lymphocytes, and neutrophils, which defend against
pathogens and remove cellular debris.

9. Nerve Trunks (NT): Bundles of nerve fibers surrounded by
connective tissue, responsible for transmitting nerve impulses
to and from different parts of the body.

All identified features have equal importance to ensure proper
regeneration. Various types of blood microvessels supply the
regenerating vascular wall with oxygen and nutrients while
removing metabolic waste. Nerve trunks are responsible for
innervation, mediating sympathetic regulation, which adapts
blood pressure through vasoconstriction and vasorelaxation.
Immune cell clusters maintain local immunity and facilitate the

digestion of the biodegradable polymer composing the
vascular graft.

Among the microvessels, arterioles function as resistance
vessels, reducing blood pressure as it flows from arteries to
capillaries. Capillaries are the sites of gas and nutrient exchange,
while venules collect blood from capillary beds and serve as areas for
leukocyte exit from the vasculature, enabling their migration into
tissues. Therefore, the term “histological feature” as used here is
generally interchangeable with “histological object”. To avoid
potential confusion—since the regenerating ovine carotid artery
or its components might also be termed “histological
objects”—we used the term “histological features” specifically for
the nine defined categories. These histological feature annotations
provide detailed insights into the microanatomy and cellular
composition of the tissue samples, aiding in the understanding of
the underlying pathological mechanisms being studied.

Model selection

In this study, we evaluated six convolutional neural networks
(CNN)—U-Net (Ronneberger et al., 2015), LinkNet (Chaurasia and
Culurciello, 2017), FPN (Kirillov et al., 2017), PSPNet (Zhao et al.,
2016), DeepLabV3 (Chen et al., 2017), and MA-Net (Fan et al.,
2020)—for the segmentation of histological images. These models
were chosen based on their established efficacy in analyzing complex
biomedical images (Danilov et al., 2022).

FIGURE 1
A whole slide image converted into a subset of patches obtained using Entropy Masker.
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U-Net, originally devised for medical image segmentation,
enhances the basic CNN architecture by integrating a symmetric
encoder-decoder structure crucial for capturing fine-grained details.
Its validation in numerous studies, especially in the semantic
segmentation of histological images, underscores its utility
(Glänzer et al., 2023).

In addition to U-Net, we incorporated LinkNet and FPN.
LinkNet is a lighter CNN that employs skip connections to
reintegrate fine-grained details from the encoder to the decoder.
FPN, known for its top-down architecture with lateral connections,
constructs a feature pyramid. Their selection was motivated by their
proven capability to delineate histologic patterns on WSIs (He
et al., 2021).

PSPNet and DeepLabV3 were chosen for their adeptness in
handling multi-scale feature extraction and enhancing contextual
awareness. These attributes are crucial for accurately segmenting
complex intravascular images, where feature sizes vary significantly
and distinguishing between background and foreground can be
challenging, such as in histology segmentation (Ma et al., 2018;
Pan et al., 2019; Arlova et al., 2022).

Lastly, we included MA-Net, the most contemporary among the
selected CNNs. By incorporating attention mechanisms into a
CNN-based architecture, MA-Net directs the model’s capacity
toward relevant features within an image, thereby enhancing
segmentation accuracy. This model leverages the strengths of
CNNs while improving feature extraction and representation.

Hyperparameter tuning strategy

For the segmentation of the mentioned nine histological
features, we meticulously selected and hypertuned six distinct
segmentation networks: U-Net, LinkNet, FPN, PSPNet,
DeepLabV3, and MA-Net. It is crucial to emphasize that
achieving the final configurations and training settings for these
networks required a rigorous process of hyperparameter tuning.
Each model underwent 200 configuration trials of hyperparameter
tuning to ensure optimal performance.

Our tuning process aims to maximize the segmentation score,
specifically focusing on the Dice Similarity Coefficient (DSC). To
achieve this goal, we utilize a DSC loss, which is calculated as follows:

Loss � 1 − 2∑ ytrue × ypred( ) + ε

∑ytrue +∑ypred + ε
(1)

where ytrue and ypred represent the true and predicted label values,
respectively, and ε is a small constant (set to 10–7 in our case) for
numerical stability to avoid zero division errors.

As hyperparameter priorities vary during tuning, and certain
hyperparameters have a more significant impact on network
performance than others (Tobin, 2021), we focused our
hyperparameter tuning efforts on specific aspects rather than
trying to optimize every parameter. In particular, we did not
tune hyperparameters such as batch size, nonlinearity type,
optimizer options, or kernel sizes. Instead, we focused on

FIGURE 2
Annotation methodology for histology patches (top row) depicting features associated with a blood vessel regeneration (replacement of a
biodegradable polymer by de novo formed vascular tissue). Histological annotations delineated with segmentation masks (bottom row) include arteriole
lumen (red), arteriole media (pink), arteriole adventitia (light pink), venule lumen (blue), venule wall (light blue), capillary lumen (brown), capillary wall (tan),
immune cells (lime), and nerve trunks (yellow).

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Danilov et al. 10.3389/fbioe.2024.1411680

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1411680


hyperparameters that had demonstrated importance in our previous
study (Danilov et al., 2022), namely, encoder architecture, input
image size, optimizer selection, and learning rate. In Table 1, we
provide a comprehensive summary of the hyperparameters explored
during the tuning process, along with the corresponding values used.

Regarding the hyperparameter search strategy, we employed
Bayesian search, which, unlike Random or Grid Search, makes
informed decisions. Bayesian optimization utilizes a probabilistic
model to determine which values to use through an iterative process
of testing values on a surrogate function before evaluating the
objective function. Additionally, we utilized a specific early
termination strategy, HyperBand (Li L. et al., 2016), to halt
poorly performing configurations. In case of early termination,
HyperBand stops the current configuration before proceeding
with a new set of hyperparameter values. The combination of
Bayesian optimization and HyperBand early termination forms a
so-called “BOHB” (Falkner et al., 2018), an approach that offers
higher computational efficiency and robustness compared to Grid
Search, Random Search, or standard implementations of Bayesian
optimization or HyperBand.

Model training strategy

After conducting hyperparameter tuning and identifying
optimal hyperparameters, we proceeded to train and test
our models on the entire dataset we collected. To mitigate the

non-uniform distribution of histological features on WSIs and
address the challenge of stratified splitting, we opted for a
subject-centric approach in our dataset partitioning. By adopting
this approach, we aimed to enhance the reliability of our model
evaluations and mitigate potential biases introduced by uneven
feature distributions across WSIs.

Given the limited number of subjects studied, comprising
20 sheep, we employed a 5-fold cross-validation technique. In
this approach, each fold involved 16 sheep for training and the
remaining 4 for testing (Table 2; Supplementary Figure S1 of
Supplementary Information). This partitioning scheme was
consistently applied to maintain the integrity of subject groups
within each subset. Importantly, during this process, there was
no overlap between subjects in the training and testing subsets,
thus preventing any form of data leakage.

During both the tuning and training steps, we employed a set of
augmentation transformations using the “Albumentations” library
(Buslaev et al., 2020). These augmentations not only allowed us to
expand the dataset size but also served as a regularization technique,
helping to mitigate overfitting during model training. The proposed
augmentation workflow encompasses the following
transformations:

• Horizontal flip with a probability of 50%.
• Shift, scale, and rotate with a probability of 20%: Allows for
random shifts, scaling, and rotations within specified limits
(shift limit = 0.0625, scale limit = 0.1, and rotate limit = 15).

TABLE 1 Hyperparameters used during the networks’ optimization.

Hyperparameter Value Count

Architecture U-Net, LinkNet, FPN, PSPNet, DeepLabV3, MA-Net 6

Encoder ResNet-18, ResNet-50, ResNet-101, MobileNet V3, EfficientNet B0, EfficientNet B3, EfficientNet B5, EfficientNet B7, RegNetX-
200MF, RegNetX-6.4GF, RegNetY-12GF, SE-ResNet-50

12

Input size 512 × 512 to 896 × 896 with the step of 128 × 128 px 4

Optimizer Adam, RAdam, SAdam, RMSprop 4

Learning rate 10−4, 10−5, 10−6 3

TABLE 2 Patch and feature distributions across folds and subsets.

Fold Subset Patches AL AM AA VL VW CL CW IC NT Total

1 Train 1,168 510 512 220 675 648 770 765 409 448 4,957

Test 233 81 84 36 186 169 178 182 91 25 1,032

2 Train 1,053 406 411 179 678 638 743 746 423 315 4,539

Test 348 185 185 77 183 179 205 201 77 158 1,450

3 Train 1,127 507 511 222 743 702 759 760 299 423 4,926

Test 274 84 85 34 118 115 189 187 201 50 1,063

4 Train 1,064 466 472 199 611 566 759 758 423 291 4,545

Test 337 125 124 57 250 251 189 189 77 182 1,444

5 Train 1,192 475 478 204 737 714 761 759 446 415 4,989

Test 209 116 118 52 124 103 187 188 54 58 1,000
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• Random crop with a probability of 20%: A random-sized
crop is applied with dimensions determined by a percentage
of the input size, ranging from 0.8 to 0.9 times
the input size.

• Conditional Padding. All images are padded to ensure a
consistent size for processing.

• Gaussian noise with a probability of 20%: Adds random noise
to the images with a variable intensity range, where the
variance ranges from 3 to 10.

• Perspective distortion with a probability of 20%: Applies
random perspective transformations to the images with a
scale of 0.05–0.1.

• Random brightness and contrast adjustment with a
probability of 20%: Adjusts the brightness and contrast of
the images within specified limits (brightness limit = 0.2,
contrast limit = 0.2).

• Hue, saturation, and value adjustment with a probability of
20%: Shifts the hue, saturation, and value of the images within
specified limits (hue shift limit = 20, saturation shift limit = 30,
value shift limit = 20).

In contrast to the tuning step, where a fixed batch size of 4 was
utilized, the training step did not employ a fixed batch size. Since the
studied models vary in complexity, they require different amounts of
memory for training with a fixed batch size. Therefore, to ensure
equitable training conditions, we adjusted the batch size based on
the GPU memory utilization. Specifically, each model was trained
with a batch size that allocated approximately 90%–100% of
GPU memory.

The network training, tuning, and testing were performed on a
desktop computer featuring a 16-core Intel Xeon Gold 6326 CPU @
2.90 GHz, 128 GB of RAM, and an Nvidia A100 GPU with 40 GB of
video memory. PyTorch v2.1 and Python v3.11 were utilized as the
primary machine learning framework and language for network
development, respectively.

Results

Hyperparameter tuning

Each model underwent a rigorous hyperparameter tuning
process, as detailed in the Hyperparameter Tuning Strategy

section, involving the examination of a total of
200 configurations. Below and in Table 3, we present the findings
obtained during the tuning stage:

• Duration: The tuning time varied significantly, with FPN
requiring the longest duration at 335 h and PSPNet the
shortest at 187 h. The incidence of configurations crashing
during the tuning process was relatively low, with MA-Net
demonstrating stability by experiencing zero crashes. These
crashes were typically associated with configurations
demanding significant GPU memory, exceeding the
available capacity.

• Encoder: The choice of encoder varied among models, with
SE-ResNet-50 being the most common. However, EfficientNet
B7 and RegNet variants were utilized for FPN and
DeepLabV3/MA-Net, respectively.

• Input size: Input sizes were tailored to each model, ranging
from 512 × 512 to 896 × 896 pixels. This variation likely
reflects the trade-off between computational efficiency and the
level of detail required for accurate segmentation.

• Optimizer: The optimizer of choice was
predominantly RMSprop, except for U-Net,
which utilized Adam, and PSPNet, which
employed RAdam.

• Learning Rate: A consistent learning rate of 0.0001 was used
across all models, indicating that a lower learning rate favored
the convergence of these segmentation tasks.

• Accuracy: Model performance was evaluated using the DSC
on a validation subset, a statistical measure of overlap between
the model’s prediction and the ground truth segmentation.
DSC scores ranged from 0.879 (PSPNet) to 0.906 (U-Net and
FPN), indicating that U-Net and FPN achieved the highest
segmentation accuracy among the tested models during the
tuning stage.

• Complexity: The number of parameters and Floating-Point
Operations per Second (FLOPs) offer insights into the
complexity and computational demands of each model.
U-Net and LinkNet were relatively similar in terms of
parameters and FLOPs. However, MA-Net exhibited the
highest number of parameters at 194.8 million, indicative
of its complexity. DeepLabV3 recorded the highest FLOPs
at 352.3 billion, suggesting it is the most computationally
intensive model.

TABLE 3 Optimal hyperparameters for the studied networks.

Model Encoder Input
size

Optimizer Learning
rate

Parameters,
M

FLOPs,
G

Configurations
checked

Configurations
crashed

Tuning
time, h

U-Net SE-ResNet-50 896 × 896 Adam 0.0001 35.1 128.5 190 10 231

LinkNet SE-ResNet-50 896 × 896 RMSprop 0.0001 33.7 128.8 192 2 206

FPN EfficientNet
B7

640 × 640 RMSprop 0.0001 65.7 13.6 190 10 335

PSPNet SE-ResNet-50 640 × 640 RAdam 0.0001 26.9 18.2 192 2 187

DeepLabV3 RegNetX-
6.4 GF

768 × 768 RMSprop 0.0001 37.6 352.3 194 6 248

MA-Net RegNetY-
12GF

512 × 512 RMSprop 0.0001 194.8 119.4 200 0 248
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The hyperparameter tuning stage revealed that U-Net and FPN
attained the highest DSC scores, suggesting they are the most
suitable models for histology segmentation on the tuning

validation subset. Additionally, the stability of MA-Net with no
configuration crashes and the high computational demand of
DeepLabV3 are noteworthy findings.

FIGURE 3
Comparative analysis of loss and DSC evolution during training and testing phases over 5-fold cross-validation with 95% confidence interval. The
models compared include: (A) U-Net, (B) LinkNet, (C) FPN, (D) PSPNet, (E) DeepLabV3, and (F) MA-Net.
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Model training

We conducted an extensive evaluation of the performance and
convergence characteristics of six deep learning models: U-Net,
LinkNet, FPN, PSPNet, DeepLabV3, and MA-Net. This
comprehensive analysis spanned 125 epochs, enabling us to
discern the trends in loss and Dice coefficient over time for each
model (refer to Figure 3). Overall, our findings revealed a consistent
pattern across all models, showcasing a gradual decrease in loss and
a corresponding increase in Dice coefficient throughout the training
process. These trends signify the models’ capacity to learn and
enhance their segmentation capabilities as training progresses.
However, it is essential to note the variations in the rate and
stability of convergence observed among the different models.

To estimate convergence, we closely monitored the point at
which the loss reached a stable value and when the Dice coefficient
ceased to exhibit significant increases (refer to (Table 4).
Convergence is typically achieved when both metrics stabilize,
indicating that the model has effectively learned the segmentation
task. Notably, FPN and PSPNet emerged as frontrunners in terms of
convergence speed, demonstrating relatively rapid stabilization of
loss and attainment of high Dice coefficients within fewer epochs.
Conversely, LinkNet and MA-Net exhibited slower convergence
compared to the other models, requiring a more prolonged training
duration to stabilize loss and achieve comparable Dice coefficients.
The observed variability in convergence speed among the models
may be attributed to several factors, including architectural
differences, parameter initialization techniques, and optimization
algorithms. Furthermore, the utilization of diverse backbones and
feature aggregation methods by the networks introduces additional
complexity, potentially influencing the dynamics of convergence.

The outcomes of this evaluation provide valuable insights into
the capabilities and limitations of the models under study (refer to
Table 5 and Figure 4; Section 2 of Supplementary Information). For
instance, the DeepLabV3 model exhibits robust performance across
most anatomical structures, demonstrating notably high scores in
venule lumen and wall as well as capillary lumen and wall
segmentation. This underscores its efficacy in delineating venous
and capillary structures accurately. Conversely, the FPN model
showcases exceptional proficiency in segmenting immune cells
and nerve trunks, indicating its aptitude for capturing intricate
details within the images. On the other hand, both the LinkNet
and PSPNet models exhibit variability in their performance metrics.
Particularly, the PSPNet model demonstrates the lowest mean DSC
of 0.823, with notably diminished scores in venule lumen, venule

wall, capillary lumen, and capillary wall segmentation. These results
point to inherent challenges in accurately delineating these regions.
In contrast, the MA-Net architecture emerges as a frontrunner,
highlighting the highest mean DSC of 0.875. It demonstrates
remarkable proficiency in arteriole lumen and arteriole adventitia
segmentation, suggesting its potential utility in vascular imaging
applications. Lastly, the U-Net model showcases its versatility across
a spectrum of anatomical structures, delivering exceptional
performance in arteriole media segmentation.

To illustrate the network predictions, we provide three patches
showcasing the segmentation of the studied histologic features in
Figure 5. This figure presents predictions derived from an optimal
solution: an ensemble of three models (MA-Net, DeepLabV3, and
FPN). Further discussion on this ensemble is provided in the
subsequent Discussion section. In addition, a comprehensive
visualization of all models used in our study can be found in
Supplementary Figures S3, S4 of Supplementary Information.

Discussion

Optimizing model selection for
segmentation

The variability in model performance (refer to Figure 6) across
different biological structures highlights the critical need for tailored
model selection, based on the specific requirements of the
segmentation task at hand. This is particularly pertinent in the
field of medical imaging, where precise segmentation of various
anatomical structures is essential for accurate diagnosis and
treatment planning. If processing time is not a critical factor for
a given task, we recommend employing an ensemble of three
models: MA-Net for the segmentation of arteriole structures,
DeepLabV3 for venous and capillary structures, and FPN for the
segmentation of immune cells and nerve trunks. This ensemble
achieves an average DSC of 0.889, surpassing the DSCs of MA-Net
(0.875), DeepLabV3 (0.864), and FPN (0.859) when used
individually. While ensembling leads to improved segmentation
performance, it also results in a threefold increase in processing
time—from an average model processing speed of 278 ms/image to
911 ms/image with the ensemble. It is important to note that this
time pertains to the segmentation of a patch rather than an entire
WSI. Consequently, the overall processing time for a WSI increases
significantly. For example, processing a WSI comprising
159 patches, as shown in Figure 1, with this ensemble could be a

TABLE 4 Convergence dynamics for the models under study.

Model Convergence, epoch Loss convergence DSC convergence

U-Net 110–120 0.15 0.81

LinkNet 110–120 0.15 0.80

FPN 80–90 0.04 0.82

PSPNet 90–100 0.15 0.78

DeepLabV3 90–100 0.05 0.82

MA-Net 110–120 0.15 0.82
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time-consuming operation, taking approximately 145 s, compared
to roughly 38 s when only MA-Net is utilized.

Recommendations for performance
enhancement

While each model has its strengths and weaknesses, focusing on
computational efficiency, parameter optimization, and the balance
between latency and accuracy can significantly enhance
performance. Tailoring these strategies to the specific
requirements and constraints of the medical imaging task will be
crucial in optimizing the model’s efficacy. Below we outline several
methodological steps that should help improve performance:

• Computational Efficiency: For models like DeepLabV3 with
high FLOPs, adopting techniques such as pruning,
quantization, or knowledge distillation could reduce the
computational load without significantly compromising
accuracy (Li H. et al., 2016; Krishnamoorthi, 2018; Gou
et al., 2021; Kim et al., 2021).

• Parameter Optimization: Models with a high number of
parameters, such as MA-Net, could benefit from
regularization techniques or architecture adjustments to
reduce the risk of overfitting and improve generalization.

• Balancing Latency and Accuracy: Implementing multi-scale
architectures or attention mechanisms could help models like
PSPNet improve accuracy without a substantial increase in
latency or computational cost (Huang et al., 2019).

• Model Simplification: For applications where real-time
performance is critical, simplifying the model
architecture or employing lightweight versions of
existing models (e.g., MobileNetV3 as a backbone) could
offer a good trade-off between speed and accuracy (Howard
et al., 2019).

• Advanced Training Techniques: Utilizing more
sophisticated training strategies like learning
augmentation policies (refer to AutoAugment), self-
supervised or semi-supervised learning could enhance the
model’s ability to generalize and improve its segmentation
accuracy (Kingma et al., 2014; Cubuk et al., 2018; Zhou et al.,
2018; Krishnan et al., 2022; Rani et al., 2023).

Limitations and perspectives

The comparative study of deep learning models for
histological image segmentation reveals varying degrees of
effectiveness across different architectures. Models like MA-
Net, DeepLabV3, and FPN have demonstrated superior
performance in segmenting intricate details within
histological images, underscoring the potential of deep
learning in refining diagnostic processes and treatment
outcomes. These findings suggest a promising future for the
integration of deep learning models into various pre-clinical
and clinical settings, potentially accelerating histological
analysis of digital images, improving the precision of digital
pathology diagnostics and enabling tailored treatment
strategies. However, challenges such as the need for extensive
labeled datasets and significant computational resources
remain. Besides that, the scope can be broadened to include
additional histological features characterizing regeneration of
vascular tissue or other tissues and organs, to extend the list of
tissue-engineered constructs which are currently under
development, and to analyze other pre-clinical animal

TABLE 5 Feature-specific and mean Dice Similarity Coefficients of the studied models.

Model AL AM AA VL VW CL CW IC NT Mean

U-Net 0.931 0.907 0.820 0.797 0.766 0.801 0.783 0.920 0.966 0.855

LinkNet 0.898 0.881 0.825 0.799 0.773 0.778 0.774 0.935 0.925 0.843

FPN 0.919 0.904 0.805 0.852 0.800 0.756 0.755 0.955 0.981 0.859

PSPNet 0.872 0.838 0.830 0.784 0.734 0.728 0.722 0.937 0.959 0.823

DeepLabV3 0.872 0.861 0.803 0.900 0.861 0.815 0.793 0.895 0.975 0.864

MA-Net 0.939 0.893 0.860 0.848 0.830 0.806 0.787 0.937 0.978 0.875

Bold values highlight the model that performed best for each specific feature.

FIGURE 4
Average feature-wise performance across various models.
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models such as swine or non-human primates. Furthermore,
our networks were trained to discriminate between distinct
layers of the vascular wall, e.g., tunica media and tunica
adventitia. This suggests their potential applicability for the
analysis of pathologies characterized by microvasculature
remodeling such as pulmonary arterial hypertension, where
lung arterioles suffer from intimal, medial, and adventitial
thickening (Tuder, 2017; Tobal et al., 2021; Jia et al., 2023).
Therefore, the results of our study are not limited to the fields of
tissue engineering and regenerative medicine, and can be used
in pathophysiology to analyze the results of disease modeling, as

well as in medical pathology to improve diagnosis after clinical
validation.

Compatibility with 3D imaging modalities

The development, testing, and validation of three-dimensional
imaging modalities, which may include optical clearing of entire
tissue segments, are among the current trends in modern histology.
For instance, the light-sheet imaging technique, which employs a non-
destructive and sectioning-free approach, enables both planar and

FIGURE 5
Comparison between ground truth segmentation and ensemble predictions.

FIGURE 6
Comparison of models for microvascular segmentation in tissue-engineered vascular grafts.
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volumetric microscopy. This technique is a promising diagnostic tool
that is also compatible with AI-assisted blood vessel annotation (Glaser
et al., 2017; Glaser et al., 2019; Glaser et al., 2022). An important
advantage of open-top light-sheet microscopy is its ability to conduct
wide-area microscopy on uneven surgical specimens, perform
volumetric dual-channel imaging of core-needle biopsies, and
facilitate rapid intra-operative microscopy of the interface between
the tumor and intact tissue.

In terms ofmachine learning applications, light-sheetmicroscopyhas
been coupled with algorithms for intensity leveling and digital staining,
also known as virtual staining or false-coloring (Serafin et al., 2020).
Additionally, it has been integrated with prognostication software based
on weakly supervised learning, capable of predicting clinical outcomes in
patients with prostate cancer (Song et al., 2024). Recently, light-sheet
imaging has been combinedwith an algorithm for automated vasculature
analysis, enabling the quantification of blood vessel trees in various organs
after staining with fluorescein isothiocyanate-labeled albumin and optical
clearing (Spangenberg et al., 2023).

Several other studies have utilized ML for the automated
quantification of blood vessel trees in intact tissue segments
following optical clearing (Kostrikov et al., 2021; Takahashi et al.,
2022; Yang et al., 2024), as summarized in a critical review (Zhu
et al., 2021). However, these studies focused on the automated
recognition of blood vessel trees rather than individual blood
vessels, which contrasts with the approach used in our study.
While the delineation of blood vessel trees in 3D imaging after
optical clearing offers more accurate vasculature quantification due
to its volumetric capabilities, it does not distinguish between
different types of microvessels (i.e., arterioles, venules, and
capillaries), discern vessel lumen from the vessel wall, or
differentiate between the layers of the vessel wall. This limitation
significantly restricts its application in histology and vascular
pathophysiology. Ideally, both approaches should be used in
conjunction for a comprehensive analysis of vascularization.

Integration with virtual staining and stain
transformation techniques

A promising trend in contemporary histology is the
development and implementation of virtual staining technology,
which involves digitally staining label-free histological images or
transforming images between various histochemical stains (de Haan
et al., 2021; Zhang et al., 2022; Latonen et al., 2024). An ideal
histology workflow would include virtual staining of deparaffinized
or frozen sections, with the ability to switch between common stains
such as H&E, Masson’s trichrome (including modification with
Verhoeff’s stain), van Gieson’s (including modification with
Weigert’s elastic stain), periodic acid-Schiff, Picrosirius Red, and
Movat’s pentachrome. This would be followed by ML-driven
annotation of histological features of interest, such as blood vessels.

Training these neural networks should involve the same tissue
section after staining, adjacent sections at various distances (e.g., 50,
100, 200, 500, and 1,000 μm), and sections from different tissues to
perform multi-step cross-validation of the ML tools. Both
supervised and unsupervised training strategies can be employed
for this task (Abraham and Levenson, 2024; Alajaji et al., 2024; Pillar
et al., 2024).

Current generative staining models, especially CycleGAN, have
shown results nearly equivalent to actual staining, though supervised
learning models (such as pix2pix or conditional GAN) generally
demonstrate better metric values than unsupervised approaches (Bai
et al., 2023; Salido et al., 2023; Latonen et al., 2024). However, due to
the wide range of organisms, tissues, and staining varieties, ML
strategies show varying and sometimes contradictory results when
applied to virtual staining or stain-to-stain transformation tasks.
Nevertheless, the definition of blood vessels might be more robust
due to their common geometrical patterns and similar histological
structures (e.g., an endothelial cell layer) across species.

Transforming H&E images into specific vascular stains (e.g., a
combination of Masson’s trichrome with Verhoeff’s, van Gieson’s
with Weigert’s, or Movat’s pentachrome) could improve the
accuracy of ML-mediated blood vessel annotation and increase
the Dice similarity coefficient, a key metric for this task.
Additionally, virtually transforming H&E or vascular-specific
stains into immunohistochemical stains in initially unstained
images holds promise, particularly for recapitulating canonical
protein markers (e.g., CD31 for endothelial cells, type IV collagen
for basement membrane, SM-MHC or α-SMA for vascular smooth
muscle cells, and CD45 for leukocytes).

As blood vessels have well-defined markers (CD31, SM-MHC,
α-SMA) and intravascular structures (type IV collagen and elastin),
virtual immunohistochemistry could be especially useful in vascular
research. This is supported by a superior Dice similarity coefficient
documented in arterioles, which are discernible from venules and
capillaries even with H&E staining because of dense internal elastic
lamina, as demonstrated in our study.

In conclusion, there is a consensus that optimizing neural
network architecture is an effective strategy for improving the
accuracy of virtual staining. This will enhance the credibility of
this approach and maximize its potential for implementation in
tissue engineering, pre-clinical trials, and clinical practice (Bera
et al., 2019; Khan et al., 2023).

Cross-species versatility

The applicability of ML-based models to a wide range of animal
species is fundamental to their integration into pathophysiological
studies and the development of tissue-engineering medical devices.
Previously, ML algorithms have demonstrated their efficiency in
high-throughput measurements of vascular density in phase
contrast and fluorescent images of 3D tissue-engineered
constructs derived from human and rat adipose tissue (Strobel
et al., 2021). In this study, ML-based software was able to
annotate blood vessels in a 3D scaffold, further calculating blood
vessel length and density within a given area to evaluate
angiogenesis. The authors highlighted that the rapidity and
accuracy of such vascular growth monitoring software are key
advantages for its integration into the manufacturing of 3D
tissue-engineered constructs. Furthermore, it has been suggested
that this software can be improved to identify other histological
parameters, such as cellular density.

In another study, an ML-based algorithm was employed to
analyze three immunofluorescence image datasets: rat abdominal
wall (artificial defect closed with a VEGF-loaded elastomeric
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patch), rat infarcted heart treated with an electrospun extracellular
matrix-enriched polymer patch, and mouse metanephric kidneys
transplanted into the omentum of recipient mice (Adamo et al.,
2022). The algorithm was capable of quantifying the number and
size of blood vessels with comparable performance across all
datasets. Although these results demonstrated the versatility of
the blood vessel-annotating algorithm for different tissue sources
and tissue-engineered constructs, the authors noted its
incompatibility with H&E or Masson’s trichrome staining images.

Recently, an ML-based tool was developed to quantify
vascularization in thick sections of mouse hearts using a 3D
histology approach (Lapierre-Landry et al., 2023). This tool
annotated blood vessels through 4′,6-diamidino-2-phenylindole
nuclei staining and autofluorescence patterns. In addition to vessel
length density, the tool also calculated the median distance from the
nearest vessel, which is informative for studying hypoxia in cancer
tissues. The authors suggested that their algorithm could be adapted to
segment any structure in any organ of interest using the 3D
histology approach.

ML-driven algorithms for the segmentation of hematoxylin-
and chromogen-stained blood vessels have also been employed in
the pathophysiological modeling of Alzheimer’s disease
(Bukenya et al., 2020) and pre-clinical trials, as presented in
our study.

Thus, there is a consensus that ML approaches are versatile and
can be applied to different species and organs (Komura and
Ishikawa, 2018; Timakova et al., 2023). In clinical practice, deep
learning models for blood vessel segmentation have been utilized to
define vascularization through specific protein markers (CD31,
CD34, and type IV collagen), delineating vessel geometry (Kather
et al., 2015; Karageorgos et al., 2024). However, the latter study
exploited a relatively expensive, time-consuming, and technically
challenging immunofluorescence staining technique, which is rarely
used compared to H&E staining, and the Dice similarity coefficient
did not exceed 0.71 (Karageorgos et al., 2024). Automated ML-
assisted annotation of H&E-stained images has been successfully
implemented for the detection of microvessels in patients with lung
cancer (Yi et al., 2018), breast cancer (Chen et al., 2023), and glioma
(Li et al., 2019), with ML-defined microvessel density being
associated with patient survival rates (Yi et al., 2018; Li et al., 2019).

Conclusion

The study demonstrates the efficacy of machine learning in the
segmentation of histological images as well as in the annotation of
distinct types of microvessels, immune cell clusters, and nerve trunks,
thus providing a ready-to-use solution to evaluate tissue-engineered
medical devices for cardiovascular surgery. It is crucial to highlight the
importance of selecting and tuning machine learning models for
specific segmentation tasks, as this can significantly enhance the
accuracy of histological analysis. In addition, the ensemble model
combining MA-Net, DeepLabV3, and FPN was shown to
outperform individual segmentation networks, resulting in a mean
DSC of 0.889. This provides a robust tool for precise analysis of the
abovementioned histological features which define the development of
physiological and pathophysiological scenarios during vascular tissue
regeneration. This advancement holds significant implications for

translational medicine, offering a pathway to rapid improvement
and implementation of next-generation tissue-engineered constructs
into regenerative medicine. It is worth noting that, the public release of
our dataset further contributes to the field, enabling ongoing research
and development. Future efforts will focus on enhancing computational
efficiency and exploring the clinical applicability of our findings, with
the ultimate goal of integrating these technologies into routine practice
in digital pathology and translational medicine.
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