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Natural biomaterials, particularly fibrous proteins, are extensively utilized in skin
tissue engineering. However, their application is impeded by batch-to-batch
variance, limited chemical or physical versatility, and environmental concerns.
Recent advancements in gene editing and fermentation technology have
catalyzed the emergence of recombinant fibrous protein biomaterials, which
are gaining traction in skin tissue engineering. The modular and highly
customizable nature of recombinant synthesis enables precise control over
biomaterial design, facilitating the incorporation of multiple functional motifs.
Additionally, recombinant synthesis allows for a transition from animal-derived
sources to microbial sources, thereby reducing endotoxin content and rendering
recombinant fibrous protein biomaterials more amenable to scalable production
and clinical use. In this review, we provide an overview of prevalent recombinant
fibrous protein biomaterials (collagens, elastin, silk proteins and their chimeric
derivatives) used in skin tissue engineering (STE) and compare them with their
animal-derived counterparts. Furthermore, we discuss their applications in STE,
along with the associated challenges and future prospects.
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1 Introduction

Skin plays a crucial role in protecting the human body against environmental factors,
dehydration, and infections. However, significant skin loss resulting from burns, wounds, or
tumor resection can severely impact people’s quality of life. While skin transplantation has
been a longstanding treatment for skin defects, the shortage of transplantable skin and the
risk of immune rejection have spurred the development of new technologies (Zhou et al.,
2013; Arabi et al., 2023). Tissue engineering has emerged as a solution to address these
challenges. Broadly speaking, tissue engineering involves the use of biomaterial scaffolds,
with or without cells and growth factors, to facilitate tissue regeneration (Arif et al., 2022; Li
et al., 2022; Norahan et al., 2023). These scaffolds should provide mechanical support, cell
adhesion sites, and ideally degrade at a rate conducive to skin regeneration (Qin et al., 2022;
Balavigneswaran et al., 2023). Therefore, natural biomaterials with excellent
biocompatibility and biodegradability have found extensive applications in skin tissue
engineering (STE).

For decades, natural fibrous protein biomaterials, such as collagens, elastin, and silk
proteins, have been widely utilized in STE, primarily sourced from animal tissues or
products (Li Z.-H. et al., 2013; Bakhshandeh et al., 2021; Akdag et al., 2023; De Giorgio et al.,
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2024; Gardeazabal and Izeta, 2024; Karahisar Turan et al., 2024; La
Monica et al., 2024; Santos et al., 2024). However, concerns
regarding the complex extraction process, batch-to-batch
variation, cost, and biosafety have prompted the exploration of
alternative approaches (Bakhshandeh et al., 2021; Cao et al., 2024a).
With advances in genetics, particularly in cross-species gene editing
and expression methods, scientists have pursued new methods for
producing these natural fibrous protein biomaterials to overcome
these challenges (Foo and Kaplan, 2002; Annabi et al., 2013; Yigit
et al., 2016; Incir and Kaplan, 2024; Wang et al., 2024). The
increasing demand for scalable production, easy quality control,
and cost-effectiveness has ushered in a new era—the era of
recombinant biomaterials (Cao et al., 2024a; Bitar et al., 2024;

Guo et al., 2024). Notably, fibrin and keratin are another two
fibrous proteins that have been used in biomedical research
regarding skin. However, recombinant fibrin and keratin have
not been widely studied in STE. Thus, this review will not
discuss about them; more details could be found in the relevant
references (Kljenak et al., 2016; Park and Woo, 2018; Parker et al.,
2020; Ledford et al., 2022).

Recombinant biomaterials, produced using synthetic biology
techniques, involve the rational genetic engineering of
microorganisms, such as Escherichia coli (Escherichia coli), yeast,
and mammalian cells, to produce desired materials (Wang et al.,
2024). Actually, animals, plants and insects can also be genetically
modified to become expressing systems (John et al., 1999; Toman

GRAPHICAL ABSTRACT
In this review, the frequently used recombinant fibrous proteins are summarized and their applications in skin tissue engineering are discussed.
Besides, the future challenges and opportunities in this area are also discussed.
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et al., 1999; Moire et al., 2003; Xu, 2014; Sharma et al., 2017;
Mortimer, 2019; Burnett and Burnett, 2020; Shanmugaraj et al.,
2020; Schillberg and Finnern, 2021); here, we only focus on non-
animal and non-plant expression systems due to their fast growing,
easy delivering and safety features. Utilizing recombinant DNA
technology, scientists can create new materials by combining
genetic information from different sources, often incorporating
biological components (Hayashi et al., 2001; Shaoping et al.,
2005; Carvalho et al., 2008; Cabanne et al., 2009; Plowright et al.,
2016). Compared to naturally extracted biomaterials, recombinant
biomaterials offer advantages in batch-to-batch stability and
physical and chemical versatility (Li L. et al., 2013; Qian et al.,
2020; Chang et al., 2021). Additionally, recombinant biomaterials
possess strengths over synthetic biomaterials, including
biodegradability and bio-activity.

Many recombinant fibrous protein biomaterials, such as
recombinant collagens, elastin, and silk proteins, have already
been widely employed in STE (Yang et al., 2004; Wise et al.,
2009; Annabi et al., 2013; Low et al., 2015; Zhang et al., 2015;
Chouhan et al., 2018; Davison-Kotler et al., 2019; Chouhan and
Mandal, 2020; Salehi et al., 2020; Chen et al., 2021; Sarangthem et al.,
2021). Besides, the highly customizable and modular design of these
biomaterials makes them promising candidates for STE (DiMarco
and Heilshorn, 2012). These proteins can be combined via gene
constructs encoding at least two types of natural proteins, such as
elastin and silk fibroin, resulting in the recombinant chimeric
proteins (Machado et al., 2013). Thus, unlike extracted natural
protein biomaterials, recombinant protein biomaterials empower
researchers to fine-tune properties such as biofunctions,
biocompatibility, mechanical strength, and degradation rates. The
precision offered by genetic engineering enables the creation of
biomaterials that closely mimic natural skin tissues or possess
entirely novel characteristics. As we explore the landscape of
recombinant fibrous protein biomaterials used in STE, this
review aims to provide a comprehensive overview of the current
state of the field, highlighting key developments, challenges, and
future prospects.

2 Current recombinant fibrous proteins
used in STE

Recombinant fibrous protein biomaterials could be obtained
with different kinds of expression systems, such as mammalian cells,
Escherichia coli (E. coli), yeasts and cultured insect cells (Kaur et al.,
2018a; Tripathi and Shrivastava, 2019; Karbalaei et al., 2020a). For
this review, we only focus on recombinant fibrous proteins from
these single-cell unit expression systems. These expression systems
can be categorized into prokaryotic and eukaryotic expression
systems. The commonly used prokaryotic expression system (e.g.,
Escherichia coli) has the advantages of fast proliferation, simple
nutritional requirements, high expression level, and easy for scalable
production, etc (Kaur et al., 2018b; Karbalaei et al., 2020b). However,
prokaryotic expression system has its own limitations, such as
intracellular misfolding of heterologous proteins, production of
lipopolysaccharide (Rosano and Ceccarelli, 2014a). In addition,
the lack of post-translational modification mechanisms is another
disadvantage of prokaryotic expression systems (Sahdev et al., 2008).

On the contrary, eukaryotic expression systems, such as mammalian
cell and insect cell systems that allow for proper protein folding,
post-translational modifications, and glycosylation of recombinant
proteins at the correct sites (Yang et al., 2023). Nevertheless, since
protein secretion in eukaryotic cells requires a series of complex
processes such as signal peptide (SP) cleavage, endoplasmic
reticulum (ER) folding, Golgi processing, and vesicular transport,
it leads to longer period and inefficient protein secretion, thus
affecting the yield of protein (Zhou et al., 2018; Xu et al., 2022).
The yeast expression system, as an emerging exogenous protein
expression system, combines the advantages of both prokaryotic and
eukaryotic expression systems. It can express proteins at a high level
and has post-translational modifications (Karbalaei et al., 2020b).
However, the glycosylation remains distinct from mammalian cells
and yeasts are only suitable for homotrimers (Vaughan et al., 1998;
He et al., 2015; Cankorur-Cetinkaya et al., 2018). In the following
part, each recombinant fibrous protein will be introduced with their
frequently used expression systems and the used genetic information
or the sequence of ultimate products.

Table 1 summarizes the advantages and disadvantages of
frequently used expression systems for the production of
recombinant fibrous proteins.

2.1 Collagen

Collagen is one of the main components of extracellular matrix
(ECM) in skin and includes diverse members. These collagenous
family members share some common characteristics that
distinguish them from other proteins (Gelse et al., 2003; Ricard-
Blum et al., 2005). They individually present rod-like structures and
consist of three collagen α-chains folded into a triple-helix structure
(Kramer et al., 1999) (Figure 1A). Besides, each collagen α-chain
consists of the Gly-X-Y motif repeats. Any amino acid residue may
occupy the X and the Y positions of the Gly-X-Y triplets. However,
the Gly residues at every third position are mandatory to allow the
folding of the α-chains into a compact triple-helix conformation
(Shoulders and Raines, 2009). The proportion of collagen in ECM
directly determines the mechanical properties, appearance and
functions of skin (Lovell et al., 1987; Tzaphlidou and Zervakis,
2004; Rong et al., 2008; Kahan et al., 2009; Zorina et al., 2022; Liu H.
et al., 2023; Voller and Rahman, 2023). Due to its excellent bio-
functions, biocompatibility and biodegradability, collagens have
been widely used in STE. Most of the commercial collagens are
extracted from animal tissues. About three decades ago, researchers
started to use recombinant DNA technology and cell lines to obtain
various types of recombinant collagens (Schnieke et al., 1987; Olsen
et al., 1991; Specks et al., 1992; Fertala et al., 1994); nowadays, many
expression systems have been develop for recombinant collagens
(Bulleid et al., 2000; Fertala, 2020). Basically, recombinant type I and
III have mostly been used in STE and will be introduced in the
following parts.

2.1.1 Recombinant collagen type I
Type I collagen serves as the primary component of the skin

extracellular matrix (ECM), constituting 80%–85% of the dermal
ECM. It plays a vital role in maintaining the mechanical integrity
and appearance of the skin, while also providing sites for cell
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adhesion. Various expression systems can be adopted for the
production of recombinant type I collagen, including E. coli
systems, mammalian cell systems, yeasts, and insect cells.
Mammalian cell systems and insect cells have the capability to
express correctly modified and thermostable type I collagen with a
triple-helix structure (Fertala, 2020). However, due to the high cost
and limitations on scalable production of cultured cell systems,

E. coli and yeast systems are commonly used for collagen
production. Nevertheless, these systems require the co-expression
of prolyl 4-hydroxylase (P4H) subunits to facilitate the formation of
collagen chains into a triple-helical conformation and ensure
thermostability (Myllyharju et al., 2000). Additionally, proteolytic
enzymes are employed to extract collagens from crude materials,
albeit this process inevitably leads to the destruction of procollagen

TABLE 1 A comparison of the expression systems for production of recombinant fibrous proteins.

Expression
system

Cost Advantage Disadvantage Refs

Escherichia coli Low Fast proliferation; simple nutritional
requirements; high yield

Protein misfolding; lack of post-translational
modification; easily forming inclusion bodies; low

molecular weight

Kaur et al. (2018b), Karbalaei
et al. (2020b)

Mammalian cells High Protein folding; post-translational
modification; glycosylation

Long period; low yield; virus infection Geisler and Jarvis (2018), Xu
et al. (2022), Yang et al.

(2023)Insect cells High

Yeasts Low Fast proliferation; high yield; simple culture
conditions; extensive post-translational

modifications

Glycosylation is different from mammalian cells; only
suitable for homotrimers

Vaughan et al. (1998), He
et al. (2015), Karbalaei et al.

(2020b)

FIGURE 1
Schematic structures of commonly used fibrous proteins in STE. (A) A schematic of collagen’s triple helix structure (Kramer et al., 1999). (B) A
schematic of elastin and its crosslinking sites (Schmelzer et al., 2020). (C) A schematic of silkworm’s silk (a) (Zhang and Fan, 2021) and its 2D cartoon (b)
(Wongpinyochit et al., 2018). (D) The schematic of spider silk (Pennisi and Service, 2017).
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peptides and telopeptides. Consequently, due to the lack of intact
telopeptides, the isolated recombinant type I collagens are unable to
form proper fibrillar assemblies similar to those in the native tissue
matrix (Prockop and Fertala, 1998; Steplewski et al., 2007; Shayegan
et al., 2016). Thus, the structural and mechanical properties of
recombinant collagen are inferior to naturally extracted
collagen fibrils.

2.1.2 Recombinant collagen type III
Collagen type III is another crucial component of the skin

matrix, constituting approximately 8%–11% of the dermal
extracellular matrix (ECM). Recent research has demonstrated
that during the aging process, the proportion of collagen type III
in human skin gradually decreases (Lovell et al., 1987; Tzaphlidou
and Zervakis, 2004). Additionally, studies have shown that collagen
type III can significantly reduce scar formation and promote skin
regeneration (Wang J. et al., 2022; Huang et al., 2022; Xiong et al.,
2023), making it increasingly popular in skin repair applications.
The expression systems for collagen type III are similar to those for
collagen type I. Cultured cell systems, while effective, are associated
with high costs and are not suitable for scalable production.
Consequently, E. coli and yeasts remain the primary systems for
scalable production. In China, Shanxi Jinbo Biopharmaceutical Ltd.
Utilizes the E. Coli system to express collagen type III and has
developed a filler comprising freeze-dried type III collagen fibrils.
Another company in China, Bloomage Biotechnology Ltd., employs
Pichia pastoris (yeast) as the expression system. Studies have
indicated that recombinant human collagen synthesized by yeast
closely resembles native collagen compared to that produced by
E. coli systems; however, yeast systems can only yield homotrimers,
making them more suitable for scalable production of collagen type
III (homotrimer) (Vaughan et al., 1998; He et al., 2015). Similar to
recombinant collagen type I, recombinant collagen type III also faces
challenges in forming proper fibrillar assemblies due to the lack of
intact telopeptides.

Table 2 summarizes crucial expression systems for the
production of recombinant collagen type I and III.

2.2 Recombinant elastin-like
peptides/proteins

Elastin is an important extracellular matrix protein in animals,
mainly composed of elastic fibres, which provide elasticity and
flexibility to a wide range of tissues (e.g., blood vessels, ligaments,
lungs and skin) (Almine et al., 2010; Vindin et al., 2019). Natural
elastin, one of the most stable proteins in the body, is a highly
insoluble matrix protein that forms fibre networks due to
interactions between hydrophobic fragments (Xiao et al., 2021).
It is rich in hydrophobic amino acids and has repetitive tetra-, penta-
and hexa-peptide sequences including Val-Pro-Gly-Gly (VPGG),
Val-Pro-Gly-Val-Gly (VPGVG) and Ala-Pro-Gly-Val-Gly-Val
(APGVGV), respectively (Urry et al., 2002; Karle and Urry, 2005;
Schmelzer et al., 2020) (Figure 1B). Elastin plays an important role in
the regulation of a variety of cellular functions, including the
promotion of cell adhesion, proliferation, differentiation,
chemotaxis and migration (Hinek et al., 2008). Based on these
characteristics, elastin is considered an ideal raw material for the

preparation of medical materials. However, elastin is insoluble in
water, and it is more difficult to study elastin, which limits its uses.
Besides, elastin extracted from natural animal tissues has a high
immunogenicity and at the same time a relatively homogenous
sequence. Chemically synthesized elastomeric peptides are less
capable of forming structurally regular macromolecular materials
and are more expensive to prepare. As a result, recombinant
synthesis methods are considered.

In 1973 Dan Urry and his colleagues discovered that natural
elastin contains a large number of VPGVG repeated amino acid
sequences (Urry et al., 1991). Based on this discovery, the
researchers synthesized a recombinant protein polymer, elastin-
like polypeptide (ELP), using gene synthesis based on the
repetitive amino acid sequence of the hydrophobic region of
elastin (Castiglione Morelli et al., 1993). The commonly designed
ELP is a pentapeptide repeat oligomer with a pentapeptide repeat
sequence of (Val-Pro-Gly-X-Gly) VPGXG, where X can be any
amino acid other than L-proline. ELP has peptides with amino acid
sequences similar to elastin that mimic elastin properties to some
extent (Meyer and Chilkoti, 1999a). As different amino acids possess
different structures and functions, ELP can exhibit different
biological functions with changes in X.

Escherichia coli (E. coli) expression system is most frequently
utilized to produce ELP (McPherson et al., 1996). The sequence
and length of ELPs can be designed by genetic engineering
technology, which can make the molecular weight, composition
and dispersion completely precise and controllable. The elastin
prepared by this method has the advantages of low cost, high
expression capacity and easy to produce in large scale (Bataille
et al., 2015). Additionally, ELP has exceptional temperature
responsiveness; it exhibits reversible phase transition behavior
with temperature change (Cao et al., 2019; Santos et al., 2019).
When the temperature is below its phase transition temperature
(Tt), ELP dissolves in solution as a monomer. At temperatures
higher than Tt, ELP is in an insoluble aggregated state (Shi et al.,
2014; Zhao et al., 2016). Tt can be controlled by varying the
number of X and pentapeptide sequence repeats in the ELP
(Meyer and Chilkoti, 2004). Table 3 summarizes common
recombinant elastin-like peptides/proteins.

2.3 Recombinant silk proteins

Silk fibroin and spidroin are two types of silk proteins
extensively utilized in skin tissue engineering (STE) (Kundu
et al., 2013; Chouhan and Mandal, 2020; Gholipourmalekabadi
et al., 2020; Salehi et al., 2020). Natural silk fibroin is produced
by silkworms, particularly Bombyx mori, while spidroin is secreted
by spiders. However, current industrial extraction processes for silk
fibroin can still impact environmental sustainability and the final
quality of the product. Additionally, the domestication of spiders for
large-scale silk production is challenging due to their territorial
nature. To address these challenges, scientists have turned to
recombinant DNA technology and microbial expression systems
to produce silk proteins with improved sustainability and quality
control (Aigner et al., 2018). This approach offers promising
alternatives to traditional extraction methods, enabling more
environmentally friendly and controlled production processes.
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2.3.1 Recombinant silk fibroin
Silk fibroin, extracted from silk fibers, is widely utilized in skin

tissue engineering (STE) owing to its outstanding biocompatibility,
mechanical properties, and processability. At the molecular level,
fibroin comprises three components: the heavy chain, the light
chain, and the glycoprotein, with the heavy chain (H-ch) being
the most crucial (Suzuki, 2016; Wongpinyochit et al., 2018; Zhang
and Fan, 2021) (Figure 1C). The H-ch features a highly repetitive
sequence consisting predominantly of glycine (43%), alanine (30%),
and serine (12%). These amino acids are arranged in 12 crystalline
domains, primarily characterized by Gly-X repeats, where X is
typically Ala (65%), Ser (23%), or Tyr (9%). The recurrent amino
acid motif Gly-Ala-Gly-Ala-Gly-Ser has been directly detected using
solid-state nuclear magnetic resonance (NMR) spectroscopy.
Furthermore, the 12 crystalline domains are interspersed by
11 very similar spacer sequences, known as amorphous motifs
(F1/F4/F8, amorphous F-motif) (Zhou et al., 2001; He et al., 2012).

Despite the well-domesticated nature of silkworms and the
complexity of silk fibroin structures, there have been limited
studies on the heterologous production of silk fibroin. Escherichia
coli is commonly employed for recombinant silk fibroin expression.
However, the high frequency of homologous recombination among
tandem repeat sequences renders the E. coli expression system

unstable for silk fibroin production (Rosano and Ceccarelli,
2014b; Macek et al., 2019). Additionally, meeting the high
demand for tRNAs corresponding to glycine and alanine, the two
most abundant amino acids in the H-ch, poses a challenge, resulting
in the production of small fibroin proteins (Xia et al., 2010). In
attempts to address the issue caused by the high repeating frequency,
researchers have increased the number of amorphous motifs, albeit
this has led to more α-helix domains and poorer mechanical
properties (Wu et al., 2017). Consequently, scientists have
utilized E. coli systems to separately express the crystalline region
and the amorphous region to investigate their biomedical functions
individually (Yang et al., 2016). Table 4 summarizes the expression
systems of recombinant silk fibroin and the recombinant silk
fibroin products.

2.3.2 Recombinant spidroin (spider silk)
Spider silks have been utilized for centuries in hemostasis and

wound treatment and continue to be prominent in biomedical
science today (Salehi et al., 2020; Bakhshandeh et al., 2021).
Spiders have the ability to produce approximately seven different
types of silk using various silk glands and spinnerets (Pennisi and
Service, 2017) (Figure 1D). These silks possess distinct amino acid
sequences and functions (Poza et al., 2002; Hu et al., 2006; Hardy

TABLE 2 A summary of the expression systems for production of recombinant human collagen type I and III.

Expression system Transduced
genes

Collagen types in
skin

Refs

Mammalian
cell

NIT 3T3, HT1080 COL1A1 I Olsen et al. (1991), Geddis and Prockop (1993)

Prokaryote Escherichia coli (E. coli) COL1A1, PH4A/B I Buechter et al. (2003), Rutschmann et al. (2014), Liu et al. (2023b)

E. coli COL3A1, PH4A/B III Rutschmann et al. (2014), Shi et al. (2017a)

Yeast cells Pichia pastoris COL1A1, PH4A/B I Vuorela et al. (1999), Myllyharju et al. (2000), Báez et al. (2005)

Pichia pastoris COL3A1, PH4A/B III He et al. (2015), Xu et al. (2015), Shi et al. (2017b), Xin et al. (2020),
Fang et al. (2023)

Insect cells Spodoptera frugiperda
(Sf9 cells)

COL3A1 I, III Lamberg et al. (1996), Myllyharju et al. (1997)

TABLE 3 A summary of the common recombinant elastin-like peptides/proteins.

Expression system Product sequence Ref

Escherichia coli (E. coli) (VPGVG)120 (GY)7 Jenkins et al. (2021)

(VPGVG)2VPGCG (VPGVG)2 Monfort and Koria
(2017)

(GVGVP)4 (GYGVP) (GVGVP)3 Roberts et al. (2018)

VPGVG (VPAGVG)6 Ciofani et al. (2014)

VPAVG Li et al. (2023a)

APAAAAAAKAAAKAAQF GLVPGVG VAPGVG VAPGVG LAPGVG VAPGVG VAPGI; PGAPAA GLVPGVG
VAPGVG VAPGVG LAPGVG VAPGVG VAPGIG

Celebi et al. (2012)

[(A/G) GVPG]80; (SGVPG)80 Weitzhandler et al.
(2017)

V4L4G1-9 van Eldijk et al. (2012)

(VPGIG)20; (VPGIG)40; (VPGIG)60 Bataille et al. (2016)
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et al., 2008). Among them, major ampullate (MA) silk, also known
as dragline silk, has been extensively studied (Work, 1985; Knight
and Vollrath, 2001; Lawrence et al., 2004). MA silk is composed of
two highly conserved spidroins: the proline-free major ampullate
spidroin (MaSp) one and the proline-rich MaSp 2 (Hu et al., 2006).
Typically, MaSp one is hydrophobic, while MaSp two is hydrophilic
(Huemmerich et al., 2004); moreover, the hydropathy of these two
spidroins may vary among spider species. Colline et al. discovered a
new spidroin, MaSp 3, which differs from the typical two spidroins
by lacking polyalanine and glycine-proline-glycine domains, while
containing larger and more polar amino acids in its repeat motifs
(Collin et al., 2018).

Due to the challenges associated with harvesting natural
spidroins, recombinant production of spidroins has received
more attention than that of silk fibroin. The most commonly
used recombinant spidroins are based on DNA sequences from
Nephila clavipes or Araneus diadematus (Humenik et al., 2014;
Aparecido dos Santos-Pinto et al., 2018). Various expression
systems can be employed, including Escherichia coli, Pichia
pastoris, mammalian cells, and insect cells (Vendrely and
Scheibel, 2007; Heidebrecht and Scheibel, 2013). Among these,
E. coli is the most prevalent due to its fast growth and ease of
transformation (Rosano and Ceccarelli, 2014b). However, the
discrepancy in codon usage between spiders and E. coli remains
a significant concern. Additionally, as observed in silk fibroin
recombinant production, bacteria often eliminate repetitive
sequences through homologous recombination, resulting in the
production of small spidroins (Arcidiacono et al., 1998). To
address these challenges, scientists must optimize genetic
information and bacteria codon usage (Heidebrecht et al., 2015).
Through this strategy, it becomes feasible to produce sufficient and
tailored spidroins with varying lengths or amino acid sequences
(Heidebrecht and Scheibel, 2013; Heidebrecht et al., 2015). Table 5
summarizes the expression systems of recombinant spidroins and
the recombinant products.

2.4 Recombinant chimeric proteins

Another notable advantage of recombinant production is its
facilitation of obtaining chimeric biomaterials, allowing scientists to
create proteins with complementary properties, thereby leading to
the development of new or optimized functions (Hayashi et al., 2001;
Plowright et al., 2016; Addi et al., 2017; Dinjaski et al., 2017;

Humenik et al., 2018). The elastin-silk protein serves as a
prominent example in this realm (Dinjaski and Kaplan, 2016;
Chambre et al., 2020). Researchers could combine motifs from
fibrous protein to engineer recombinant proteins with enhanced
mechanical properties and temperature-responsive abilities (Bessa
et al., 2010; Gomes et al., 2011; Muiznieks and Keeley, 2016;
Petitdemange et al., 2017; Rim et al., 2017; Isaacson et al., 2018;
Le Fer et al., 2019; Patkar et al., 2024). Moreover, short cell adhesive
peptides can be incorporated into recombinant fibrous proteins to
promote cell adhesion (Tanaka and Asakura, 2009; Kim et al., 2010;
Wang et al., 2017). Consequently, researchers can leverage
recombinant technology to engineer innovative biomaterials
tailored to different applications by integrating the physical,
chemical or biological advantages of various proteins.

3 Applications in STE

In terms of skin tissue engineering, natural fibrous proteins
(collagens, silk proteins, elastin, etc.) have been widely used in
constructing 3D scaffolds, involving different forms, such as
hydrogels, fibers, foams, etc. They can provide mechanical
support and proper microenvironment for cell migration and
adhesion. Traditionally, these fibrous proteins are extracted from
animal tissues or products, which might contain infectious
pathogens, threatening the health of human beings (Li Z.-H.
et al., 2013; Bakhshandeh et al., 2021; Akdag et al., 2023; Cao
et al., 2024a; De Giorgio et al., 2024; Gardeazabal and Izeta,
2024; Karahisar Turan et al., 2024; La Monica et al., 2024; Santos
et al., 2024). Herein, recombinant DNA technology offers appealing
alternatives to natural fibrous proteins, rendering them more
accessible for scientific and medical applications. Additionally,
the exceptional modular designing ability and bio-safety of these
recombinant biomaterials have captured the attention of scientists
and medical professionals alike. Consequently, recombinant
biomaterials are progressively gaining prominence in biomedical
applications. This trend is also evident in skin tissue engineering
(STE), where scientists have begun integrating recombinant
biomaterials with other advanced technologies such as 3D
printing and organoid culturing to develop innovative skin
scaffolds or equivalents for skin regeneration. In this section, we
will focus on the principal representative applications of
recombinant fibrous proteins (including collagen, elastin, silk
fibroin, spidroin, and chimeric fibrous proteins) and the chimeric

TABLE 4 A summary of the expression systems of recombinant silk fibroin and the recombinant silk fibroin products.

Expression system Recombinant product Refs

Escherichia Coli (E. coli) H-ch repetitive domain: [GAGAGS]16-tag;
[GAGAGV]16-tag
[GAGAGA]16-tag

Wang et al. (2009)

E. coli H-ch amorphous domain
F1; F4; F8

Yin et al. (2016)

E. coli H-ch repetitive domain and amorphous domain: [GAGAGS]16-F1-tag
[GAGAGS]16-F4-tag
[GAGAGS]16-F8-tag

Wu et al. (2017)

Pichia pastoris H-ch repetitive domain Manoharan et al. (2022)
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fibrous proteins in STE, aiming to provide guidance to those
interested in exploring this field further.

3.1 Recombinant collagen in STE

In skin tissue engineering (STE), recombinant human type I and III
collagens stand out as two of the most commonly utilized collagens,
given their significance as primary components of the human skin
extracellular matrix (ECM). Recombinant collagens have been
employed alone or combined with other biomaterials, such as
chitosan and hyaluronic acid, to create a variety of scaffolds for skin
regeneration (Deng et al., 2018; Cao et al., 2020; Cheng et al., 2020; Yang
et al., 2022; Liu T. et al., 2023; Kang et al., 2023; Xiong et al., 2023).

For instance, Kang et al. recently developed a double-network
hydrogel scaffold for skin regeneration, incorporating recombinant
human collagen type I (expressed in E. coli) (Figure 2A) (Kang et al.,
2023). In their study, recombinant human collagen type I and
chitosan were glycidyl methacrylated and methacrylated,
respectively, to form an ultraviolet-induced crosslink network.
Additionally, a physical crosslinking network was established
between Cu2+ and the catechol group of dopamine
methacrylamide (DMA). The scaffold exhibited antibacterial,
antioxidative, angiogenic, and hemostatic properties. However,
the specific role of recombinant collagen in skin regeneration was
not separately investigated. In another study, scientists utilized green
electrospinning technology to create a nanofibrous scaffold
incorporating integrin receptor-incorporated recombinant human
collagen type III (Figure 2B) (Dong et al., 2023). This scaffold
significantly accelerated wound closure and promoted the
recovery of skin structures and appendages in a mouse model of
full-thickness skin defects. Notably, the study compared the effects
of different crosslinking systems (glutaraldehyde or EDC/NHS) on
the nanofibrous scaffold, with the EDC/NHS system resulting in
better physical properties. Xiong et al. developed an injectable
hydrogel system containing methacrylated recombinant human
collagen type III (expressed in P. pastoris) and chitosan
(Figure 2C) (Xiong et al., 2023). The recombinant human
collagen type III enhanced cell adhesion, migration, and
proliferation, while chitosan provided antibacterial properties,
collectively accelerating skin regeneration. Furthermore, this
recombinant human collagen type III-based hydrogel could serve
as an overlay for minced split-thickness skin grafts, promoting skin

defect regeneration (Figure 2D) (Liu T. et al., 2023). The hydrogel
facilitated angiogenesis and collagen deposition at the wound sites,
leading to reduced scarring and improved appendage regeneration.
These strategies, focusing solely on biomaterials without cells or
growth factors, demonstrate the versatility of recombinant human
collagens in various forms to meet the requirements for skin repair.

On the other hand, drugs, growth factors, or even cells could also
be incorporated into the scaffolds system to realize efficient skin
regeneration. Long et al. established a dissolving hyaluronic acid
microneedle system; recombinant human collagen type III (E. coli
expression system) and naproxen (NSAID) acted as additives to the
microneedle (Figure 3A) (Long et al., 2022). The results demonstrated
that recombinant human collagen type III remarkably promoted cell
migration and proliferation, while naproxen reduced inflammation
level, together benefiting the recovery of chronic wounds. Besides,
growth factors, such as epidermal growth factor (EGF) and basic
fibroblast growth factor (bFGF), have been used with recombinant
human collagen to augment the ability of scaffolds to promote skin
regeneration (Figure 3B) (Guo et al., 2019; Cheng et al., 2020). These
studies together proved that recombinant human collagen-based
hydrogels could be delivery systems for growth factors. Further,
Mashiko et al. used human adipose-derived stem cells (hADSCs)-
loaded recombinant human collage type I peptide (yeast expression
system) hydrogel to treat wound after radiotherapy (Figure 3C)
(Mashiko et al., 2018). Another team from China established a
tissue-engineered skin equivalent using recombinant human
collagen (E.Coli expressing system) and fibroblasts to repair skin
defects (Figure 3D) (Guo et al., 2021). Their research suggests that
recombinant human collagen-based hydrogels act as biocompatible
bio-carrier for cells and stimulate the growth factor secreting of the
carried cells, indicating recombinant human collagens could be used
in tissue engineering-based cell therapies.

Indeed, the aforementioned advanced studies collectively
underscore the effectiveness of recombinant human collagens as
alternatives to animal tissue-derived collagen. They show
extraordinary biocompatibility and could promote cell adhesion
as well as migration. Moreover, they hold promise for the
development of tissue-engineered medical devices tailored for
skin regeneration. Importantly, these devices can be designed
with or without additional additives, including drugs, growth
factors, and cells. This versatility not only enhances the potential
applications of recombinant human collagens in skin tissue
engineering but also opens up avenues for personalized and

TABLE 5 A summary of the expression systems and gene sources for production of recombinant spidroins.

Expression system Gene source Product Refs

Mammalian cell Hamster kidney cells Major ampullate
Nephila clavipes

Masp 1
Masp 2

Grip et al. (2006)

Prokaryote Escherichia coli (E. coli) Major ampullate
Nephila clavipes

Masp 1 Fahnestock and Irwin (1997), Xia et al. (2010)

E. coli Major ampullate
Argiope aurantia

Masp 2 Brooks et al. (2008)

Eukaryote Pichia pastoris Major ampullate
Nephila clavipes

Masp 1 Fahnestock and Bedzyk (1997)

Insect cell Spodoptera frugiperda (sf9 cell) Major ampullate
Araneus ventricosus

ASP Liu et al. (2011)
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multifunctional approaches to address various skin regeneration
challenges.

3.2 Recombinant elastin in STE

Elastin, another crucial fibrous protein in the skin extracellular
matrix (ECM), plays a vital role in conferring elasticity and resilience
to skin tissues. Recent studies have demonstrated the benefits of

elastin in promoting the deposition of elastin fibers and collagen fibers
at wound sites, thereby reducing scar formation (Daamen et al., 2008;
Antonicelli et al., 2009; Xie et al., 2017; Khalili et al., 2019; Yamamoto
and Kawamura, 2020). Consequently, recombinant human elastin has
emerged as a promising candidate for skin tissue engineering (STE),
either alone or as part of chimeric fibrous proteins fused with other
biomaterial sequences or functional motifs.

Studies focusing on recombinant elastin alone are relatively
limited in the context of STE. For example, Jelena Rnjak et al.

FIGURE 2
Various skin scaffolds containing recombinant human collagens. (A) A hydrogel based on recombinant type I collagen (rCol)/chitosan (CS) scaffold
to accelerate full-thickness healing of skin wounds (Kang et al., 2023). (B) Electrospun nanofibrous membranes of recombinant human collagen type III
(rhCol III) promote cutaneous wound healing (Dong et al., 2023). (C) Injectable hydrogels of recombinant human collagen type III (rhCol III) and chitosan
(CS) with antibacterial and antioxidative activities for wound healing (Xiong et al., 2023). (D) A recombinant human collagen hydrogel asminced split-
thickness skin graft overlay to promote full-thickness skin defect reconstruction (Liu T. et al., 2023).
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developed crosslinked scaffolds based on recombinant tropoelastin
(expressed in E. coli), the precursor of elastin in the human body
(Figure 4A) (Rnjak et al., 2009). Their primary objective was to
create a non-animal material-based skin substitute that outperforms
collagen scaffolds in terms of in vivo contraction. They utilized
electrospinning to fabricate highly elastic nanofibrous scaffolds with
a Young’s modulus of 265 ± 17 kPa. These scaffolds exhibited
excellent cytocompatibility with human skin fibroblasts,
highlighting their potential for skin regeneration. Future
investigations could explore the use of recombinant elastin to
enhance the mechanical properties of skin grafts.

In many cases, elastin sequences are fused with other biomaterial
sequences or functional motifs to create chimeric recombinant
fibrous proteins, leveraging the tunability afforded by
recombinant technology. For instance, Machado et al. engineered
an elastin-silk fibroin biomaterial (expressed in E. coli), combining
conservative motifs from both proteins to develop a material with
the high tensile strength of silk fibroin and the elasticity of elastin)
(Figure 4B) (Machado et al., 2013). Their electrospun scaffolds
exhibited significantly improved mechanical properties (modulus
of elasticity ~126 MPa) and supported the adhesion and
proliferation of human skin fibroblasts. Similarly, Feng’s team
utilized an E. coli expression system to produce an elastin-silk-
like protein with exceptional mechanical properties (Figure 4C)
(Feng et al., 2024). By combining this recombinant elastin-silk layer

with a nano bacterial cellulose layer, they fabricated a bilayer skin
substitute with excellent mechanical strength and antibacterial
properties. Furthermore, elastins have been fused with collagen to
create novel artificial biomaterials. Chen’s team reported a
recombinant human collagen-elastin protein using an E. coli
expression system (Figure 4D) (Chen Y. et al., 2023). The
incorporation of elastin sequences increased the stability of
human collagen, resulting in stable membrane scaffolds
conducive to efficient skin regeneration. Thus, elastin sequences
hold promise for engineering mechanically robust recombinant
biomaterials, either alone or in combination with other proteins,
for applications in skin tissue engineering.

Indeed, the fusion of elastins with other functional motifs has
opened avenues for creating recombinant elastin-like proteins with
diverse bioactive functions aimed at promoting skin regeneration or
wound healing. These functions include enhancing cell adhesion,
antibacterial properties, and managing diabetic wounds. In a study
by Beste Kinikoglu et al., in 2011, a recombinant elastin fused with
the RGD peptide (expressed in E. coli) exhibited significant cell-
adhering capacity, making it suitable for the preparation of skin
substitutes (Kinikoglu et al., 2011). Similarly, in 2015, a European
team incorporated an antibacterial motif (ABP-CMP4 amino acid
sequence) into elastin using an E. coli expression system (Figure 5A)
(da Costa et al., 2015). The resulting recombinant elastin
demonstrated remarkable antibacterial ability, showcasing its

FIGURE 3
Skin scaffolds containing recombinant human collagens and drugs, growth factors or cells. (A) A dissolving microneedle system (hyaluronic acid,
HA), encapsulating drug-loaded nanoparticles (nap@PLGA) and recombinant humanized collagen type III (rhCol III), for the treatment of chronic wound
(Long et al., 2022). (B) Hybrid freeze-dried dressings (RHC/EGF) composed of epidermal frowth factor (EGF) and recombinant human collagen (RHC)
enhance cutaneous wound healing in rats (Cheng et al., 2020). (C) A recombinant human collagen peptide (rhCP) bioscaffold with human adipose-
derived stem cells (hACSs) or endothelial cells (Mashiko et al., 2018). (D) A tissue-engineered skin equivalent consists of recombinant human collagen
hydrogel and fibroblasts (Guo et al., 2021).
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potential for use in tissue-engineered skin grafts, although further
research in this area is warranted. Moreover, a team from the USA
engineered a self-assembled elastin-like peptide with a functional
motif capable of competing with advanced glycation end products
(Figure 5B) (Kang et al., 2021). This innovative approach involved
using fibrin gels to release the recombinant peptides, ultimately
leading to the healing of diabetic wounds.

Together, recombinant elastin is also a great candidate for
constructing skin scaffolds, in terms of biocompatibility and
tissue-regeneration efficacy. The aforementioned studies
underscore the versatility of elastin sequences, which can be
fused with other functional motifs to serve as therapeutic
additives in tissue-engineered scaffolds for treating various
skin defects or chronic wounds. Notably, by incorporating
elastin sequences, the mechanical properties of the chimeric
protein biomaterial could be enhanced remarkably.
Additionally, the anti-aging properties of elastin have garnered
significant interest among scientists and dermatologists (Yan
et al., 2022; Li J. N. et al., 2023; Yu-han et al., 2023). Although
studies in this area primarily focus on repairing UV-damaged
skin rather than addressing skin defects or wounds, they offer
valuable insights into the potential applications of recombinant
elastin in skin rejuvenation.

3.3 Recombinant silk proteins in STE

Silk fibroin and spidroins are both two kinds of insect-derived
fibrous protein. As silkworms have been successfully domesticated
for large-scale production of silk fibroin, little research has been
done on the STE application of recombinant silk fibroin. Thus, in
this part, the STE applications of recombinant silk fibroin and
spidroin are summarized together.

ChitraManoharan et al. bioengineered the heavy chain fragment
of silk fibroin (rSF) using a P. pastoris expressing system; besides,
cecropin B-functionalized silk fibroin heavy chain (rSFC) was also
produced using the same expressing system (Manoharan et al.,
2022). Actually, rSFC is a chimeric recombinant protein which
has already been mentioned in this review. The authors
compared their therapeutic efficacy on wound healing. It turns
out that, rSFC is superior to rSF in wound healing, which proves
that silk fibroin should be combined with other additives or
biomaterials to realize efficient skin regeneration from another
side. In addition, the rSF and rSFC were used once daily at a
dosage of 50 μg for 3 days, without being processed into
scaffolds or grafts in this study. Thus, it is not a conventional
STE research, while it does involve bioengineered silk fibroin and
evaluated their efficacy in wound repairing. Notably, transgenic

FIGURE 4
Skin scaffolds containing recombinant elastins or chimeric elastin-like proteins. (A) A 3D scaffold from recombinant tropoelastin promotes skin
fibroblasts adhesion (Rnjak et al., 2009). (B) Fibroblasts attach and spread well on electrospun recombinant elastin scaffolds (Machado et al., 2013). (C) A
electrospun skin substitute consists of recombinant elastin-silk-like protein (SELP) (Feng et al., 2024). (D) A scaffold consists of recombinant elastin-
collagen polypeptide (hCol-ELP) promotes skin regeneration (Chen Y. et al., 2023).
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silkworms or other creatures are also widely used for recombinant
silk fibroin or chimeric recombinant silk fibroin production.
However, we only discuss non-animal and non-plaint
recombinant fibrous proteins here; more details could be found
in the relevant references (Nagano et al., 2011; Kuwana et al., 2014;
Yang et al., 2015; Wang et al., 2016; Lewis et al., 2021).

For spidroins, they are usually functionalized, which means they
are fused with functional motifs to be chimeric for applications.
Dimple et al. prepared a 3D skin graft with silk fibroin matrices and
functionalized recombinant spidroins (Figure 6A) (Chouhan et al.,
2018). Silkworm-derived silk fibroin was fabricated into 3D scaffolds
and then coated with recombinant spidroins (E. coli expressing
system), fused with cell-binding motif from fibronectin, a growth
factor (fibroblast growth factor) and an antimicrobial peptide
respectively. They mentioned that recombinant spidroins could
self-assemble to form stable coatings. However, the therapeutic
efficacy was only investigated in vitro. Later, in 2019, the same
team reported a research regarding recombinant spidroins
containing a fibronectin motif (Figure 6B) (Chouhan et al.,
2019). The 3D scaffolds were prepared in the same way with
silkworm-derived silk fibroin as matrices and recombinant
spidroin as a coating. Their results demonstrate that the
recombinant spidroins containing a fibronectin motif are
promising in treating burned wounds.

What’s more, some teams combined recombinant spidroins
which are not chimeric with other biomaterials for applications.
Wang et al. established a strategy of fabricating recombinant
spidroins-based scaffolds (Zhu et al., 2020; Wang S. et al., 2022).
Briefly, they blended recombinant spidroins (E. coli expressing
system) and poly (L-lactide-co-ε-caprolactone) (PLCL); and then
electrospinning was used for nanofibrous scaffolds constructing.
The hemocompatibility and cytocompatibility of the scaffolds were
proved to be excellent, while without in vivo investigation. Lian et al.
prepared a recombinant spidroin (E. coli expressing system)

nanofibrous membrane loaded with sodium hydrogen sulfide and
endothelial progenitor cells for skin regeneration (Lian et al., 2021).
The scaffold realized continuous H2S releasing and maintained the
viability of the carried cells; they worked synergistically to
regenerate the skin.

The aforementioned researches together suggest that no matter
recombinant silk fibroins or spidroins should be fused with
functional motifs for applications and the sequences of silk
proteins basically serve as polymer chain backbones, providing
stability. After being fused, they chimeric recombinant proteins
could act as bioactive additives to other raw matrices and could
also be utilized to establish delivery system for drugs or cells in STE.
Taken together, recombinant fibrous protein (collagens, elastin and
silk proteins) and the chimeric of them have already been widely
studied in STE. Besides, the construction of tissue-engineered skin
grafts is becoming more biomimetic, in terms of components,
structures and functions. Looking into the future, more
recombinant biomaterials and technologies will be used in STE
to realize fast and efficient repair or regeneration; however,
challenges and opportunities coexist for us.

4 Clinical applications

As many researches proved the therapeutic efficacy of
recombinant fibrous proteins in skin repair, some pioneers in
this field have already conducted clinical trials or launched
commercial products, which further validate the translational
potential of recombinant fibrous proteins in skin regeneration/
rejuvenation. Specifically, recombinant collagen has become
increasingly integral in the field of skin tissue engineering and
repair/rejuvenation, both in clinical trials and commercial
products. In clinical trials, researchers are exploring its use in
developing advanced wound dressings and three-dimensional

FIGURE 5
Skin scaffolds containing recombinant functional elastins. (A) An elastin-like recombinamer films with antimicrobial activity; CM4 is the antibacterial
peptide fused with elastin peptide (da Costa et al., 2015). (B) A self-assembled elastin-like polypeptide fusion protein (vRAGE-ELP) coacervates as
competitive inhibitors of advanced glycation end-products enhance diabetic wound healing (Kang et al., 2021).
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scaffolds aimed at enhancing wound healing and promoting skin
regeneration. These scaffolds are typically engineered to closely
mimic the natural composition and structure of native skin,
leveraging recombinant human collagen types such as type I or
type III (Yang et al., 2004; Ben et al., 2021; Cao et al., 2024b). The use
of recombinant collagen in these applications aims to improve
biocompatibility, support cell attachment, proliferation, and
differentiation, and ultimately facilitate tissue integration and
regeneration.

Commercially available products incorporating recombinant
collagen in skin repair and rejuvenation include dermal fillers,
which use collagen to restore volume and smooth out wrinkles
and fine lines (Fertala, 2020). These fillers often use recombinant
collagen type III to enhance skin elasticity and firmness. For
example, the Lyophilized Fiber of Recombinant Humanized Type
III Collagen (Ayouth™) from JINBO BIO-PHARMACEUTICAL
CORPORATION LIMITED is used as dermal fillers for skin
rejuvenation. Additionally, in the realm of anti-aging treatments,
skin care products like creams and serums utilize recombinant
collagen to improve skin texture, hydration, and overall
appearance (Ma et al., 2022). These products capitalize on the
ability of recombinant collagen to support the skin’s structural

integrity and stimulate collagen production within the dermis,
thereby reducing the signs of aging.

Overall, the clinical applications of recombinant collagen in skin
tissue engineering and rejuvenation underscore its versatility and
potential to advance therapeutic strategies for treating various
dermatological conditions and enhancing aesthetic outcomes.
Continued research and development in this field are expected to
further broaden the scope and efficacy of recombinant collagen-
based therapies for skin health and regeneration.

5 Future challenges and opportunities

So far, recombinant biomaterials have emerged as versatile tools
with significant potential not only for STE, but also for other
advancing healthcare, biotechnology, and beyond (Dandu and
Ghandehari, 2007; Wang et al., 2013; Choi et al., 2018; Mandal
et al., 2018; Garcia et al., 2023). As researchers continue to explore
the capabilities of these engineered materials, several challenges and
opportunities lie ahead. In this part, we discuss the future outlook for
recombinant biomaterials, highlighting key challenges and
opportunities for their development and applications.

FIGURE 6
Skin scaffolds containing recombinant silk proteins. (A) Recombinant functionalized spider silk with silk fibroins matrices as potential bioactive 3D
skin grafts (Chouhan et al., 2018). (B) Silk fibroin scaffolds functionalized with recombinant spider silk containing a fibronectin motif (spider silk fusion
proteins) for full-thickness burn wounds regeneration (Chouhan et al., 2019).
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5.1 Challenges

Skin is a highly complex organ composed of multiple layers,
each with unique cellular compositions and functions. As tissue
engineering advances, there’s a growing focus on recreating this
complexity in engineered skin substitutes, involving mimicking the
intricate interactions between keratinocytes, fibroblasts, immune
cells, blood vessels, and nerves. Achieving spatial organization, cell-
cell communication, and dynamic tissue remodeling in engineered
constructs remains a formidable challenge. Furthermore,
incorporating features such as hair follicles, sweat glands, and
sebaceous glands adds another layer of complexity to tissue
engineering efforts. Overcoming the complexity of future skin
tissue engineering definitely requires innovative biomaterials that
can provide spatial cues, biochemical signals, and mechanical
support to guide cell behavior and tissue organization. With its
modular designing nature, recombinant biomaterials will definitely
take a place in future STE.

Despite advancements, concerns about immunogenicity and
biocompatibility persist, particularly for long-term implantation
or in vivo applications. Immune responses to implanted
biomaterials may lead to rejection, inflammation, or adverse
effects (Meek and Jansen, 2009; Kourtzelis et al., 2013; Shadrina
et al., 2020; Doloff et al., 2021). Besides, the implantation of
biomaterials not only affects the implantation sites but also the
remote organs (Peng et al., 2023). Thus, understanding the
immunological response to these recombinant biomaterials,
especially over extended periods, is critical for ensuring their
safety and efficacy in clinical applications. Besides, developing
strategies to minimize immune reactions, enhance tissue
integration, and modulate the host response is essential for
improving the safety and efficacy of these biomaterials as well.
For instance, protein engineering to minimize antigenicity or
surface modifications to enhance biocompatibility, deserve further
investigation (Lebre et al., 2016; Antmen et al., 2021; Ye et al., 2021;
Dong et al., 2022; Rezaei et al., 2022; Backlund et al., 2023; Chen W.
et al., 2023; Yousefpour et al., 2023).

Scaling up the production of recombinant biomaterials to meet
clinical demands while maintaining cost-effectiveness presents
challenges. Current production methods may face limitations in
scalability, yield, and cost; developing scalable and cost-effective
production processes, optimizing purification methods, and
minimizing production-related impurities are necessary to ensure
affordability and accessibility of these materials (Rice et al., 1993;
Meyer and Chilkoti, 1999b; Mayer et al., 1999; Lojewska et al., 2016;
Faravelli et al., 2021). Notably, the differences between the used
expressing systems, such as post-translational modification and
protein folding, profoundly affect the structure and functions of
products as well, necessitating the systematic study to compare
expressing systems in order to choose the optimized one for scale
production (Fan et al., 2012; Gecchele et al., 2015).

Regulatory approval for clinical translation and
commercialization of recombinant biomaterials involves
navigating complex pathways governed by regulatory agencies
such as the EMA, FDA or NMPA, which is challenging and
time-consuming. Meeting stringent safety and efficacy standards,
conducting comprehensive preclinical and clinical studies, and
demonstrating long-term safety profiles are critical steps in the

regulatory approval process. Furthermore, ensuring compliance
with quality assurance and quality control standards throughout
the manufacturing process is essential for obtaining regulatory
clearance and market approval. Thus, collaborations between
academia, industry, and regulatory agencies are essential for
streamlining the regulatory process and accelerating the
translation of promising technologies into clinical practice and
commercial products.

Last but not least, the ethical considerations surrounding
recombinant fibrous proteins are multifaceted, involving genetic
modification, the use of animal models, and the potential impact
on human health and the environment, as well as issues related to
commercialization and accessibility. Genetic engineering raises
concerns about unforeseen ecological consequences and the
risks associated with gene editing techniques like CRISPR-Cas9.
When evaluating the therapeutic efficacy of recombinant fibrous
proteins, animal models are necessarily needed. However, the use
of animal models necessitates careful attention to animal welfare
and the exploration of alternative testing methods. Additionally,
rigorous safety testing is essential to address potential health risks
to humans, while environmental assessments are crucial to prevent
accidental release and ecological disruption. The
commercialization of these therapies also presents ethical
challenges, including ensuring equitable access to treatments
and addressing the implications of intellectual property rights
on innovation and accessibility. Engaging stakeholders,
including patients, policymakers, and the public, in ethical
discussions is essential. Establishing clear ethical guidelines,
ensuring informed consent, and promoting responsible
stewardship of biological resources are crucial for navigating
these complex ethical considerations.

5.2 Opportunities

Where there are challenges, there are opportunities as well. Due
to the possibility of customizable and modular designing,
recombinant biomaterials offer opportunities for personalized
medicine by enabling tailored therapies based on individual
patient characteristics. Not only for skin scaffolds and implants
but also drug delivery systems, they can be customized and designed
to match patient-specific needs, improving treatment outcomes and
patient satisfaction. Specifically, with recombinant technology,
multifunctional biomaterials can be engineered to deliver
multiple therapeutic agents simultaneously, addressing various
aspects of the wound healing process. For example, the
recombinant biomaterials could include multiple functional
motifs, such as growth factors, antimicrobial peptides, and
extracellular matrix components, together to promote tissue
regeneration while preventing infection. Furthermore, stimuli-
responsive motifs could also be incorporated as well to
dynamically release therapeutic agents in response to specific
cues within the wound microenvironment, optimizing treatment
efficacy. By tailoring the composition, structure, and properties of
these multifunctional biomaterials, clinicians can develop
personalized treatment strategies for complex wound conditions,
such as diabetic foot ulcers, burn injuries, and chronic wounds
associated with vascular or immune dysfunction.
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Biomaterials can also be engineered to modulate immune
responses and create a pro-regenerative environment within
wounds (Lebre et al., 2016; Antmen et al., 2021; Ye et al., 2021;
Dong et al., 2022; Rezaei et al., 2022; Backlund et al., 2023; Chen W.
et al., 2023; Yousefpour et al., 2023). For example, recombinant
biomaterials could be chimeric, which means they can be fused with
immunomodulatory cytokines or mesenchymal stem cell-recruiting
peptides to promote tissue regeneration while suppressing
inflammation. Additionally, recombinant biomaterials
functionalized with immune cell-recruiting peptides can enhance
the recruitment of endogenous immune cells to the wound site,
accelerating the healing process. Thus, by harnessing the body’s
immune system and the recombinant technology in this way,
clinicians can improve outcomes in conditions such as chronic
wounds, autoimmune skin diseases, and tissue rejection following
transplantation.

Finally, recombinant biomaterials can be integrated with other
advanced engineering technologies, like 3D bioprinting and organ-
on-a-chip. 3D bioprinting offers unprecedented control over the
fabrication of skin constructs, allowing precise placement of cells
and biomaterials to mimic the complex architecture of native skin
(Kim et al., 2018; Patel et al., 2021; Shin et al., 2021; de Souza et al.,
2023). For instance, researchers can bioprint skin grafts containing
vascular networks, which are crucial for graft survival and
integration. By incorporating recombinant biomaterials, patient-
derived cells and disease-specific features into these engineered skin
models, scientists can create personalized platforms for drug
screening and disease modeling. Furthermore, recombinant
biomaterials can be combined with organ-on-a-chip systems, to
replicate the physiological microenvironment of skin tissue and
enable researchers to study disease mechanisms and test potential
therapeutics in a more accurate and clinically relevant context.

Together, challenges coexist with opportunities. Although there
still are some major concerns waiting to be addressed, the future of
recombinant biomaterials must be prosperous. Due to the limited
natural sources and environmental pollution, recombinant
biomaterials will greatly help human beings not only in
healthcare but also in many aspects of our daily life. Thus,
scientists, doctors and policymakers should work together to
make breakthrough in this field.

6 Conclusion

Fibrous proteins like collagens, elastin, and silk proteins have
long been integral to skin tissue engineering (STE). However,
concerns such as cross-infection risks, extraction pollution, and
batch-to-batch variations have spurred the search for alternatives.
With advancements in recombinant DNA and fermentation
technologies, recombinant fibrous collagens have emerged as
promising solutions in STE. This review introduces recombinant
human collagen types I and III, as well as recombinant elastin and

silk proteins (silk fibroin and spidroin), along with their chimeric
derivatives. We provide an overview of commonly used expression
systems and the fundamental properties of these recombinant
fibrous proteins. Subsequently, we analyze their diverse
applications in STE. We anticipate that artificial skin grafts and
substitutes will become increasingly biomimetic with the integration
of recombinant biomaterials, enhancing their resemblance to
natural skin in terms of composition, structure, and functionality.
Moreover, we address the challenges and opportunities in this field,
emphasizing the need for collaborative efforts among scientists,
engineers, doctors, and policymakers to overcome technical,
manufacturing, and commercialization obstacles. Despite existing
challenges, we maintain a strong belief in the potential of
recombinant biomaterials to thrive in personalized medicine,
cross-disciplinary healthcare technologies, and everyday life.
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