
The effects of antimicrobial
peptides buCaTHL4B and Im-4 on
infectious root canal biofilms

Ziqiu Hu1,2†, Haixia Ren1,2†, Yifan Min3†, Yixin Li1,2,
Yuyuan Zhang1,2, Min Mao1,2, Weidong Leng1,2* and
Lingyun Xia1,2*
1Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China, 2Institute of
Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China, 3Department of
Stomatology, Zhushan County People’s Hospital, Shiyan, China

Purpose: The primary cause of pulp and periapical diseases is the invasion of
bacteria into the root canal, which results from the continuous destruction of
dental hard tissues. Effective management of infections during root canal therapy
necessitates effectively irrigation. This study aims to investigate the effects of two
antimicrobial peptides (AMPs), buCaTHL4B and Im-4, on root canal biofilms
in vitro.

Methods: Two-species biofilms (Enterococcus faecalis and Fusobacterium
nucleatum) were selected and anaerobically cultivated. The following treatments
were applied: 10μg/mL buCaTHL4B, 10μg/mL Im-4, 5 μg/mL buCaTHL4B, 5μg/mL
Im-4, 1 μg/mL buCaTHL4B, 1 μg/mL Im-4, 1% NaOCl, and sterile water. Each group
was treated for 3min. Subsequently, the two strainswere co-culturedwith 10 μg/mL
buCaTHL4B, 10 μg/mL Im-4, 1% NaOCl, and sterile water for 24, 48, and 72 h. The
biofilms were examined using confocal laser scanning microscopy (CLSM) with
fluorescent staining, and the percentages of dead bacteria were calculated.
Quantitative real-time PCR (qRT-PCR) was employed to assess the variations in
bacterial proportions during biofilm formation.

Results: Compared to 1% NaOCl, 10 μg/mL buCaTHL4B or Im-4 exhibited
significantly greater bactericidal effects on the two-species biofilms (p < 0.05),
leading to their selection for subsequent experiments. Over a 48-hour period,
10 μg/mL Im-4 demonstrated a stronger antibiofilm effect than buCaTHL4B (p <
0.05). Following a 24-hour biofilm formation period, the proportion of F.
nucleatum decreased while the proportion of E. faecalis increased in the
sterile water group. In the buCaTHL4B and 1% NaOCl groups, the proportion
of F. nucleatum was lower than that of E. faecalis (p < 0.05), whereas in the Im-4
group, the proportion of F. nucleatum was higher than that of E. faecalis (p <
0.05). The proportions of bacteria in the two AMPs groups gradually stabilized
after 24 h of treatment.

Conclusion: buCaTHL4B and Im-4 exhibited remarkable antibacterial and anti-
biofilm capabilities against pathogenic root canal biofilms in vitro, indicating their
potential as promising additives to optimize the effectiveness of root canal
treatment as alternative irrigants.
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1 Introduction

Intact dental hard tissues effectively protect the internal pulp
tissues. However, when these hard tissues are destroyed, the
invasion of microorganisms can lead to pulp necrosis, followed
by periapical lesions (An et al., 2012). Periapical periodontitis is a
challenging oral infectious disease, often associated with E. faecalis
and F. nucleatum. Enterococcus faecalis is a facultative anaerobic
bacterium capable of long-term survival in the root canal due to its
resistance to host immunity and various antibacterial treatments
(Zhu et al., 2010; Lins et al., 2013; Barbosa-Ribeiro et al., 2016;
Bouillaguet et al., 2018). Numerous studies have shown that F.
nucleatum is frequently found in high prevalence and abundance,
primarily linked to primary endodontic infections (Mussano et al.,
2018; Hu Z. et al., 2023). As a “bridge bacterium”, F. nucleatum co-
aggregates with most oral bacteria via various cell surface adhesins,
contributing to biofilm formation (Haney et al., 2019a; Manoil
et al., 2020; Gomes et al., 2021). Additionally, it is reported that E.
faecalis and F. nucleatum can co-adhere, supporting bacterial
survival in unfavorable environments, encouraging interspecies
communication, and facilitating biofilm production (Yap et al.,
2014). These findings prompted us to create a biofilm model
resembling those in the infected root canal, using E. faecalis
and F. nucleatum as the dominant species. This biofilms
formation is particularly relevant in dental research, they
provide insights into how biofilms respond to various
disinfection strategies, ensuring that the findings are applicable
to actual dental practice.

Research into efficient root canal irrigants that suppress bacterial
biofilm is essential to reduce periapical irritation and increase
treatment success rates. During the preparation of an infected
root canal, sodium hypochlorite (NaOCl), a traditional irrigating
solution, is beneficial due to its ability to destroy necrotic tissue and
its broad-spectrum antibacterial qualities. (Clarkson and Moule,
1998; Barakat et al., 2024). However, improper use of NaOCl can
alter dentinal microhardness and bond strength, and degrade the
collagen structure of dentin (Slutzky-Goldberg et al., 2004).
Extrusion of NaOCl into periapical tissues may result in pain
(Huang et al., 2019). Therefore, there is an urgent need to
develop alternative irrigant additives that can effectively
inhibit biofilms.

Antimicrobial peptides (AMPs) are effector molecules of innate
defense systems. These small molecule products, typically composed
of 12–60 amino acids, 2 to 9 positive charges, and an amphiphilic
structure, are produced by single genes (Abdi et al., 2019; Grimsey
et al., 2020). Antimicrobial peptides may attach to bacterial
membranes via cations, causing damage to the membrane
through the formation of barrel-stave, carpet, and toroidal pore
model structures (Khurshid et al., 2016). By permeabilizing the cell
membrane and preventing DNA or protein production, AMPs
inhibit bacterial activity (Raheem and Straus, 2019). Additionally,
AMPs can target and prevent bacterial biofilm formation (Wang
et al., 2018). It has been discovered that peptide 1018 and DJK-5
inhibit a crucial signal molecule (P)ppGpp, involved in biofilm
production (de la Fuente-Nunez et al., 2014; Hu J. et al., 2023).
To address the limitations of traditional irrigants, AMPs may be
employed as agents for suppressing root canal biofilms (Haney
et al., 2019b).

In our previous investigation, buCaTHL4B and Im-4 were
identified as efficient antibacterial peptides against dental plaque
biofilms. buCaTHL4B exhibits significant bactericidal effects with
minimal cytotoxicity, distinguished by its high tryptophan
concentration. It causes bacterial membranes to rupture rapidly,
resulting in noticeable changes such as foaming, budding, and the
creation of pore-like structures (Brahma et al., 2015). Im-4, an
immune peptide produced byDrosophila upon activation of the Toll
innate immune system during defense against fungal infections, was
found to be particularly effective in reducing biofilm formation. Im-
4 shows increased inhibitory effects on filamentous fungi compared
to yeasts, Gram-positive bacteria, and Gram-negative bacteria
(Cohen et al., 2020). However, uncertainty persists regarding the
specific characteristics and effects of these two AMPs on root
canal biofilms.

The purpose of this study was to create a type of two-species
biofilms with E. faecalis and F. nucleatum. The antibacterial
properties of buCaTHL4B and Im-4 at different concentrations
were examined in vitro on these formed biofilms. Analyses were
also conducted on the impact of two AMPs on biofilm production
and the proportion of bacteria during the biofilm development
process. The null hypothesis was that: there is no significant
difference in the antimicrobial efficacy between buCaTHL4B, Im-
4 at different concentrations and NaOCl against the two-
species biofilms.

2 Materials and methods

2.1 Antimicrobial peptides synthesis

Peptide buCaTHL4B (AIPWIWIWRLLRKG) and Im-4
(FIGMIPGLIGGLISAIK-NH2) were synthesized by Sangon
Biotech (Shanghai, China) using solid-phase 9-fluorenyl
methoxycarbonyl (Fmoc) and purified to 98% using reverse-
phase high-performance liquid chromatography (HPLC). The
structures and sequences of buCaTHL4B and Im-4 were shown
in Supplementary Figure S1. The peptides were resuspended in
deionized water and utilized in the present experiments. All stocks
remained sterile throughout the duration of the study.

2.2 Culture and growth detection of bacteria

Enterococcus faecalis (ATCC29212) and F. nucleatum
(ATCC10953) were employed in this study. Bacterial culture
conditions were adapted from a previous study (Huang et al.,
2015). The strains were subcultured on Brain Heart Infusion
(BHI; BectonDickinson, Sparks, MD) agar plates supplemented
with 0.5% yeast extract (YE; OXOID, Hampshire,
United Kingdom) and 5% defibrillated sheep blood (Solarbio,
Beijing, China). The planktonic strains were proliferated in BHI
liquid medium containing 0.5% YE. Both bacterial species were
incubated at 37°C under anaerobic conditions.

The bacterial suspension of E. faecalis, F. nucleatum, and
the mixed bacteria in equal volumes were adjusted to an optical
density at 600 nm (OD 600) of 0.10. This was determined using
a microplate reader (SpectraMaxi3x, Molecular Devices, United
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States) in a 96-well plate. Subsequently, the bacterial solutions were
diluted tenfold and 150 μL of each bacterial suspension was
dispensed into each well of the 96-well plate, with three
replicates per bacterial suspension. The plate was then incubated
under anaerobic conditions at 37°C, and the OD 600 was measured
every 2 h.

2.3 Minimal inhibitory concentration

The minimum inhibitory concentrations (MIC) of buCaTHL4B
and Im-4 were determined using the broth microdilution method.
The MIC was defined as the peptide concentration at which no
bacterial growth was observed. The bacterial suspension of E.
faecalis, F. nucleatum were adjusted to a final concentration of
5 × 105 CFU/mL and added to a 96-well plate, with 100 μL per well.
Peptides buCaTHL4B or Im-4 were added to sterile 96-well
polypropylene microtiter plates at increasing concentrations (0,
10, 20, 40, and 80 μg/mL), with each concentration tested in
triplicate, 10 μL per well. The plates were incubated at 37°C for
24 h, and the absorbance at 630 nmwasmeasured using amicroplate
reader after 24-hour treatment. Three repeated tests were
accomplished for the MIC test.

2.4 Biofilm model

Sterile hydroxyapatite (HA) disks (12 mm in diameter and
2 mm in thickness; Bayamon Bioactive Materials Ltd., Chengdu,
China) were used as substrates for biofilm growth. The HA disks
were coated with 1 mL of type I collagen solution (10 mg/mL
collagen in 0.012M HCl in double-distilled water; Biosharp, Hefei,
China) in 24-well plates and incubated overnight at 4°C. The

bacterial suspension of F. nucleatum and E. faecalis was mixed
in equal volumes, adjusted to an OD 600 of 0.10, and then diluted
tenfold for biofilm culture. The bacterial biofilms were grown in
BHI liquid medium containing 0.5% YE and 1% sucrose (Solarbio,
Beijing, China).

2.5 Antimicrobial peptides treat on
preformed biofilms

Figure 1 presents the workflow diagram of this study. The two-
species biofilms were incubated anaerobically at 37°C on the pre-
treated HA disks for 7 days. The disks were then divided into eight
treatment groups: (a) sterile water, (b) 1% NaOCl, (c) 1 μg/mL
buCaTHL4B, (d) 1 μg/mL Im-4, (e) 5 μg/mL buCaTHL4B, (f) 5 μg/
mL Im-4, (g) 10 μg/mL buCaTHL4B, and (h) 10 μg/mL Im-4. Each
group contained three disks and treated for 3 min. The test was
repeated three times.

2.6 Biofilm inhibition test

The disks were divided into four treatment groups: i) sterile
water, ii) 1% NaOCl, iii) 10 μg/mL buCaTHL4B, and iv) 10 μg/mL
Im-4. Each group contained three disks. The treatments were added
to the mixed bacterial suspensions at the onset of biofilm
development and maintained for 3 days under anaerobic
incubation at 37°C. The final concentration of the AMPs in the
bacterial suspension was 10 μg/mL. The blank group received equal
amounts of sterile water, while the positive control group received
equal amounts of 1% NaOCl. The disks were subjected to the
respective treatments at 24, 48, and 72 h. The test was repeated
three times.

FIGURE 1
The workflow diagram of this study.
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2.7 Confocal laser scanning microscopy
examination of biofilms

The biofilms on the HA disks were stained using the LIVE/
DEAD BacLight Bacterial Viability Kit L-7012 (Molecular Probes,
Eugene, OR, United States) for microscopy and quantitative assays
following exposure to the different treatments mentioned above
(Huang et al., 2019; Yu et al., 2022). Bacteria with intact cell
membranes were stained green by SYTO 9, while bacteria with
damaged cell membranes were stained red by propidium iodide
(PI). Images of the stained samples were captured using confocal
laser scanning microscopy (CLSM; FV3000RS, OLYMPUS, Japan).
The excitation wavelengths for SYTO 9 and PI were 488 nm and
561 nm, respectively. Four random areas of the biofilm on each
disk were scanned, with 50–70 slices of 2.0 μm collected in each
area from the top to the bottom of the biofilm. Imaris
9.0.1 software (Bitplane, Zurich, Switzerland) was used for
three-dimensional reconstruction and quantitative analysis of
each image. The volume ratio of red fluorescence to the total
fluorescence (green and red) indicated the percentage of
dead bacteria.

2.8 Quantitative real-time PCR

Biofilms co-cultured with AMPs for 24, 48, and 72 h were
collected and re-suspended in BHI. The genomic DNA of bacteria
was extracted using the Solarbio Bacterial Genomic DNA
Extraction Kit (Solarbio, Beijing, China). DNA concentrations
were measured with a micro-ultraviolet spectrophotometer
(Nanodrop 2000; Thermo, United States). Relevant literature
was consulted to determine primers, and the BLAST tool on
the NCBI website (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was
used to confirm primer specificity for each strain. The primers
were as follows: F. nucleatum: forward primer GGATTTATCTTT
GCTAATTGGGGAAATTATAG, reverse primer ACTATTCCA
TATTCTCCATAATATTTCCCATTAGA. Enterococcus faecalis:
forward primer ACCCCGTATCATTGGTTT, reverse primer
ACGCATTGCTTTTCCATC. A total of 100 ng DNA from
each strain was amplified using species-specific primers (0.
4 μM) and DNA Taq Polymerase (TAKARA, TB Green
Premix Ex Taq II, Japan). PCR protocol included an initial
step at 94°C 5 min, followed by 30 cycles of amplification
(94°C for 30 sec, 55°C for 30 sec, and 72°C for 30 sec), and a
final elongation step at 72°C for 10 min. Bacteria proportions in
the biofilms were calculated using the bacterial quantification
algorithm proposed by Livak and Schmittgen, (2001); Huang
et al. (2015).

2.9 Statistical analysis

Statistical analysis was conducted using SPSS Statistics 26.0
(IBM Corp, NY, United States). One-way analysis of variance
(ANOVA) with post hoc pairwise comparisons was performed,
and statistical significance was set at p < 0.05.

3 Results

3.1 Bacterial growth curve

The bacterial growth curve following a 24-hour culture revealed
that F. nucleatum grew rapidly between 2 and 10 h, climbed steadily
between 10 and 14 h, and stabilized after 14 h. Enterococcus faecalis
showed rapid growth for 2–12 h before stabilizing. Over the course
of 2–16 h, the OD 600 of the mixed strains was lower than that of the
single strains, with mixed bacterial growth tending to stabilize after
approximately 16 h (Figure 2).

3.2 Bactericidal effect of antimicrobial
peptides on preformed biofilms

For the MIC, we observed that at a concentration as high as
80 μg/mL, neither peptide substantially inhibited the growth of E.
faecalis and F. nucleatum (p > 0.05, Supplementary Figure S2).
However, different concentrations of buCaTHL4B or Im-4
demonstrated obvious bactericidal effects on the 7-day biofilms
(Figure 3A). The bactericidal rates corresponding to 10 μg/mL,
5 μg/mL, and 1 μg/mL concentrations of AMPs were 49.94% ±
2.39%, 42.03% ± 1.37%, and 32.66% ± 1.41% for the buCaTHL4B
groups, and 50.18% ± 1.31%, 42.02% ± 1.22%, and 31.81% ± 1.21%
for the Im-4 groups, respectively, in comparison to the sterile water
controls (p < 0.05, Figure 3B). At a concentration of 1 μg/mL, the
bactericidal rate of both AMPs was not significantly different from
that of the 1% NaOCl group (p > 0.05, Figure 3B).

3.3 Antimicrobial peptides inhibit biofilm
formation by CLSM

The two-species biofilm formation was inhibited by the two
peptides in inhibition experiments (Figure 4A). After 72 h of
treatment, the biovolume of the two-species biofilm was significantly
reduced by 10 μg/mL buCaTHL4B or Im-4, resulting in approximately
42.78% ± 3.55%, 40.34% ± 2.53%, and 44.74% ± 2.37% residual biofilm
biovolume for buCaTHL4B groups, and 36.88% ± 2.10%, 26.87% ±
0.40%, and 37.52% ± 1.79% for Im-4 groups after 24, 48 and 72-hour
time intervals, respectively, in comparison to the sterile water controls
(p < 0.05, Figure 4B). Im-4 exhibited a stronger suppression effect than
buCaTHL4B over the 72-hour period, with this difference being
statistically significant (p < 0.05, Figure 4B).

The percentage of dead bacteria in the developed biofilms was
estimated. Following 24, 48, and 72-hour time intervals, the
bactericide rates for the buCaTHL4B groups were 41.80% ± 4.02%,
38.31% ± 1.91%, and 38.83% ± 1.78%, while for Im-4 groups were
40.32% ± 2.66%, 42.59% ± 3.24%, and 39.64% ± 1.59%, respectively.
These rates were significantly higher than those of the sterile water
group (p < 0.05). Only at 48-hour mark did the bactericidal effect of
Im-4 surpass that of buCaTHL4B (p < 0.05), with no significant
difference observed at the other time points (Figure 4C). The
outcomes demonstrated that both Im-4 and buCaTHL4B could
effectively prevent the formation of two-species biofilms.
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FIGURE 2
Growth curves of E. faecalis and F. nucleatum in single and mixed cultures. Data are presented as means ± standard deviations. Ns represent p >
0.05, *p < 0.05, **p <0.01, ***p < 0.001. The red values represent the difference between the two species co-culture and the F. nucleatum cultured alone,
the blue values represent the difference between the two species co-culture and the E. faecalis cultured alone.

FIGURE 3
The bactericidal effect of buCaTHL4B and Im-4 on two-species biofilms. (A) Confocal microscopy images of two-species biofilms on HA discs
treated with 10 μg/mL, 5 μg/mL, and 1 μg/mL buCaTHL4B or Im-4. The sterile water group served as blank control, and 1% NaOCl group as the positive
control. (B) The proportion of dead bacteria as measured by viability staining and CLSM. Data are presented as means ± standard deviations. Different
lowercase letters within each group indicate statistically significant difference (p < 0.05).
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3.4 Antimicrobial peptides inhibit biofilm
formation by qPCR

The proportion of the two bacteria in the mixed biofilm
following treatment with various agents was determined using a
bacterial quantization algorithm. The percentage of F.
nucleatum increased significantly in all groups at the 24-hour
intervals. After 24 h of biofilm development, the proportion of
bacterial species changed significantly. In the sterile water
group, the proportion of F. nucleatum decreased, while the
proportion of E. faecalis increased. In the buCaTHL4B group,
F. nucleatum was found in lower proportions compared to
E. faecalis, whereas in the Im-4 group, F. nucleatum was
found in higher proportions. The bacterial proportion in
both AMP-treated groups gradually stabilized after 48 h of
treatment (Figure 5).

4 Discussion

This study evaluated the antibiofilm effects of buCaTHL4B and
Im-4 on biofilms formed by E. faecalis and F. nucleatum. The results
demonstrated that both buCaTHL4B and Im-4 at concentrations of
10 μg/mL exhibited significantly higher bactericidal activity
compared to 1% NaOCl. Among the two peptides, Im-4 showed
superior efficacy against biofilm formation over buCaTHL4B at the
same concentration. Therefore, buCaTHL4B and Im-4 at 10 μg/mL
are more effective against E. faecalis and F. nucleatum biofilms than
the conventional irrigant solution NaOCl, the null hypothesis
was rejected.

The formation of biofilms in a laboratory setting serves as a
crucial model for studying microbial behavior and testing the
efficacy of various disinfection techniques (Swimberghe et al.,
2019). Pathogenic bacteria such as F. nucleatum and E. faecalis

FIGURE 4
The antibiofilm effect of buCaTHL4B and Im-4 during the development of two-species biofilms. (A) Confocal microscopy images of biofilm
development over 3 days in the presence of 10 μg/mL buCaTHL4B and Im-4. The sterile water group served as blank control, and 1% NaOCl group as the
positive control. (B) The total biovolume of the biofilm formed over 3 days in the presence of 10 μg/mL buCaTHL4B and Im-4. Data are presented as
means ± standard deviations. (C) The proportion of dead bacteria in the biofilm formed over 3 days in the presence of 10 μg/mL buCaTHL4B and Im-
4. Data are presented as means ± standard deviations. Different lowercase letters within each group indicate statistically significant difference (p < 0.05).

FIGURE 5
The proportion of E. faecalis (A) and F. nucleatum (B) in the biofilm of the different treatment groups at 24, 48, and 72 h exanimated by qPCR. Data
are presented as means ± standard deviations.
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are commonly found in the root canal wall and dentin tubules as
biofilms, contributing significantly to dental root canal infections,
posing significant challenges for effective disinfection and treatment.
(Razghonova et al., 2022; Hu Z. et al., 2023; Sheng et al., 2023). A
two-species biofilm model was developed, mimicking the
characteristics of an infected root canal biofilm. In mixed
cultures, the time required for the bacteria to reach a stable state
was longer compared to single cultures, consistent with previous
studies. This delay suggests antagonistic interactions between the
two strains, likely due to competition for limited nutrients within the
medium. Both species compete for essential nutrients in the limited
medium, leading to growth inhibition. This competition is more
pronounced in a co-cultured environment than in single cultures
(Chavez de Paz et al., 2015).

Fusobacterium nucleatum is known for having more adhesion
proteins on its cell membrane compared with other bacteria.
These proteins facilitate bacterial aggregation in the early stages
of biofilm development (Lima et al., 2019). This early dominance
was confirmed by qRT-PCR results, which showed an increase in
the proportion of F. nucleatum in the biofilm during the initial
24-hour culture stage. This indicates that F. nucleatum occupies a
dominant niche early in biofilm formation, potentially inhibiting
E. faecalis growth. After 48 h of culturing, the proportion of F.
nucleatum began to decrease. This shift can be explained by the
creation of an acidic biofilm environment by E. faecalis, which
inhibits the growth of F. nucleatum (Xiang et al., 2023). The
sequencing of clinical samples supports these observations,
showing E. faecalis prevalence in secondary infected root
canals and F. nucleatum dominance in primary infections
(Tennert et al., 2014; Bouillaguet et al., 2018; Qian et al.,
2019). These findings highlight the importance of considering
bacterial interactions when developing treatment strategies for
root canal infections.

In the study, CLSM detection confirmed that F. nucleatum and
E. faecalis could form a biofilm together after 7 days of co-culturing.
This indicated that F. nucleatum can provide specific links or
connections for other co-aggregative microorganisms during
biofilm formation (Johnson et al., 2006). E. faecalis could co-
adhere with F. nucleatum, facilitating biofilm formation,
promoting interspecies communication, and enhancing bacterial
survival in challenging environments (Yap et al., 2014). Further
research revealed that E. faecalis physically binds to F. nucleatum in
both planktonic and biofilm environments via the adhesion protein
Fap2 (Xiang et al., 2023). Factors such as interactions between
microorganisms significantly influence the composition of the
microbiota. Laboratory biofilm models are indispensable for the
preliminary assessment of root canal disinfection techniques. They
provide a controlled environment to study biofilm dynamics,
microbial interactions, and the efficacy of new treatments. Our
findings highlight the importance of using such models to
develop and refine strategies for managing biofilm-related
infections in clinical dentistry.

In the study, the efficacy of buCaTHL4B and Im-4 was
evaluated using various experimental methods to determine
their bactericidal and inhibitory effects on mixed biofilms of
E. faecalis and F. nucleatum. At concentrations significantly
lower than 80 μg/mL (10 μg/mL), buCaTHL4B and Im-4
exhibited a significantly higher bactericidal rate in biofilms

compared to the 1% NaOCl and markedly reduced biofilms
volume. We employed the broth microdilution method to
determine the MIC of buCaTHL4B and Im-4 against E.
faecalis and F. nucleatum. However, buCaTHL4B and Im-4
may possess unique bactericidal mechanisms, such as rapidly
killing bacteria by disrupting the cell membrane. This rapid and
intense action might prevent the traditional MIC determination
method from effectively detecting their activity (Wang et al.,
2015). Among the two peptides, buCaTHL4B is a tryptophan-rich
peptide (Brahma et al., 2015; D’Souza et al., 2021; Necelis et al.,
2021). Tryptophan possesses potent hydrophobic qualities that
can facilitate the amalgamation of peptides and lipid membranes,
as well as cause bacterial mortality by disruption or passage
through the bilayer (Shagaghi et al., 2016; Wang et al., 2021;
Straus, 2024). Im-4 has been shown to work against Gram-
positive bacteria, but the exact mechanism of action remains
unclear (Guilhelmelli et al., 2016; Miyashita et al., 2017).
Additionally, antimicrobial peptides may exhibit a
concentration-dependent bactericidal effect, both buCaTHL4B
and Im-4 demonstrated significant bactericidal effects at
concentrations of 5 μg/mL and 1 μg/mL, though the efficacy
decreased with lower concentrations.

In the 24, 48, and 72-hour experiments, the bactericidal rates in
the 10 μg/mL buCaTHL4B and Im-4 treatment groups were
significantly higher than those in the 1% NaOCl
group. Although the bactericidal effects of the two antimicrobial
peptides were similar at most time points, Im-4 exhibited a
significantly higher bactericidal rate than buCaTHL4B at 48 h,
indicating that Im-4 has a stronger biofilm inhibition capacity
during certain time periods. This significant biofilm inhibition
effect could be attributed to the unique mechanism of
antimicrobial peptides, which cause cell death by disrupting
bacterial cell membranes. The higher efficacy of Im-4 might be
related to its stronger membrane-penetrating ability and may slow
the development of pulp disease by preventing the biofilm from
turning into secondary endodontic infections, as suggested by the
reduced proportion of E. faecalis in the Im-4 group after 24 h. In
addition, the inhibitory effect of buCaTHL4B and Im-4 on mixed
biofilms of E. faecalis and F. nucleatum may also include
interfering with bacterial signal transduction and hindering the
formation of biofilm matrix. The specific role of these mechanisms
needs to be further studied.

However, our study has some limitations. First, our model
included only two highly abundant bacteria and was grown in a
static environment, failing to capture the dynamic and intricate
nature of the disease process inside infected root canals. Second,
the in vitro data presented in this study may not fully replicate the
in vivo situation. Therefore, further studies on isolated teeth with
simulated root canal irrigation and clinical research are required
to explore the actual efficacy of root canal irrigant with
buCaTHL4B and Im-4 during root canal preparation. In
addition, preclinical studies were conducted on animal models
to verify the reliability and reproducibility of the laboratory
results. This step is crucial to evaluate the effects of
antimicrobial peptides in more complex biological settings.
Third, more research, including molecular mechanism, is
needed to fully understand the anti-biofilm processes of Im-4
and buCaTHL4B.
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5 Conclusion

This study demonstrated the effective antibacterial and
antibiofilm properties of both buCaTHL4B and Im-4, with Im-4
being more effective than buCaTHL4B in preventing biofilm
formation. Im-4 regulates the amount of bacteria involved in
biofilm production, which may slow the progression of pulp
disease. Im-4 and buCaTHL4B are anticipated to be the potent
components of a novel root canal irrigation solution.
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