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Black soldier fly (BSF) larvae (Hermetia illucens) serve as a valuable protein source
for animal feed. Limiting factors in the industrial rearing of BSF are the
reproduction process and egg output. Studies indicate the potential to
shorten preoviposition time and increase egg output through better utilization
of environmental variables, such as temperature and light, in industrial settings.
Excessive stimulation, however, can lead to stress, elevated production costs, and
reduced egg numbers, emphasizing the need for a delicate balance. This study
addresses these challenges by investigating controlled manipulation of
environmental variables to stimulate mating and enhance egg production,
thereby developing a comprehensive model encompassing the adult fly life
cycle, mating, and egg production. Model parameters were fitted using
literature data, and the model’s plausibility was tested through simulations.
Using the model and optimal control methods, the calculated dynamic
trajectories for environmental variables when compared to the standard
approach in a constant environment demonstrated higher output and shorter
production cycles at reasonable energy costs. Applications for this model-based
optimization are demonstrated for various scenarios, highlighting the practical
utility and versatility of the developed model. This study contributes valuable
insights for improving rearing practices of BSF through environmental
stimulation, offering potential advancements in egg production efficiency and
overall sustainability.
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1 Introduction

Mass production of insects is a relatively young but rapidly evolving industrial sector
which shows great potential for both standalone and circular production of high value
proteins (Francuski and Beukeboom, 2020; Chavez, 2021). Efforts to understand and
enhance mass rearing typically focus on investigating the effects of fixing parameters such as
feed or temperature at a constant level (Nayak et al., 2024). While some aspects of
automation have been investigated (Kröncke et al., 2020), there is limited work on
dynamic modeling of insect rearing and subsequent dynamic process optimization and
control Padmanabha et al. (2023).

Insect proteins from the black soldier fly (BSF) Hermetia illucens are a promising
alternative to conventional animal proteins. The BSF larvae can feed on a variety of
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substrates such as animal feed, algae, or waste (Liland et al., 2017),
which makes their rearing less dependent on global trade
fluctuations. Surendra et al. (2020) hypothesized that insects can
be used to achieve waste-free production cycles that enable more
sustainable food production. The dried larvae are rich in protein
(Spranghers et al., 2017) and can be used as supplements for animal
rearing and aquaculture (Liu et al., 2017). However, the flexibility of
the feed leads to challenges in process planning—both in the larval
and fly stage—as the development speed, fly life span, egg
production potential, etc. depend on it. While substantial efforts
have been directed towards understanding the rearing process of the
larvae (Bava et al., 2019; Padmanabha et al., 2020; Yakti et al., 2022),
it is noteworthy that the reproductive processes of matured flies have
not received the same degree of attention.

The production of eggs and young larvae often imposes a
bottleneck on the maximum rearing capacities of a production
site (Klüber et al., 2023). In standard practice, the flies will often
sit idly in their cages without mating, wasting precious resources.
However, the mating and oviposition process can be influenced
through various controllable variables, such as light or temperature
(Tomberlin and Sheppard, 2002; Zhang et al., 2010). At the same
time, unnecessary movement and stress will drain the flies’ energy
reserves, resulting in reduced life spans and fecundity (eggs per
female). Optimizing egg production with minimized stress and
energy costs while maximizing egg output necessitates a
systematic control approach.

In this study, we present a process-control-oriented model
designed to automate environment stimulation and to optimize
the egg production process of the BSF. First, the fly life cycle, the
mating process, and the egg production were analyzed and
abstracted into mathematical models. The impact of control
variables, including temperature and light, was systematically
modeled. Model parameters were fitted to data available in

literature and the model was tested for plausibility. Subsequently,
a time-varying optimal control sequence for light, and temperature
was computed for various scenarios. Simulation results were
compared to a standard approach in which environmental
conditions were kept at constant levels and the advantages of
optimal control in egg production were highlighted. This work
addresses issues in rearing efficiency, and process automation,
thus improving economic viability of insect protein production.

2 Materials and methods

2.1 Modeling fly life cycle, mating, egg
production, and death

This section introduces a comprehensive mathematical model
for the adult flies’ life cycle from eclosion to adulthood while also
considering oviposition processes. Controllable environmental
variables such as light and temperature were incorporated, in
recognition of their influential roles in the process. Figure 1
depicts the model dynamics in a forrester diagram. The parts of
the model—fly life cycle and life stage dynamics, egg production,
survival on energy reserves, and environmental impact
factors—were derived individually and would be combined in
Section 2.1.4. Model equations were mostly formulated in a
mechanistic way to allow for physical interpretation of equations.
A continuous state model that works with population averages was
used since data for modeling probabilistic and discrete events (like
individual fly death) are scarce. Additionally, the chosen modeling
approach greatly reduces complexity for simulation and
optimization.

The considered reproduction setup was a breeding cage with a
certain number of male and female pupae placed within. Gobbi et al.

FIGURE 1
Forrester diagram illustrating the model dynamics. Circular valves labeled u represent controllable variables. The transition between life stages is
predominantly influenced indirectly by temperature (TΣ) through uT, except for mating and subsequent fertilization, which are regulated by light uL.
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(2013) reported a female bias in Hermetia; however, male flies can
mate with multiple females and therefore no limiting effects would
be observed in such unevenly distributed populations. While a
percentage of flies could have been infertile or have life-
threatening deformations, e.g., wing damage during emergence,
such events were neglected and not included in the model.
Under the previous assumptions, only the number of female flies
N was relevant for egg production. Hence, male flies were not
modeled, which reduced model complexity without losing
plausibility (or predictive capabilities). At harvest, eggs are
collected and taken out of the system; no new pupae or flies are
introduced during a reproduction cycle. The basic structure for the
adult fly life cycle is a life-stage model. The four life stages are
introduced in the following paragraph.

2.1.1 Fly life stages and life stage dynamics
The process starts when pupae are introduced into the breeding

cage and ends either when all flies are dead orwhen the operator decides
that too few eggs are produced. The four fly life stages are ‘young’,
‘active’, ‘fertilized’, and ‘old’. Flies are categorized as ‘young’ (Ny) from
the time of their introduction to the system as pupae and continue to be
classified as such even after hatching. This classification extends
throughout the period during which they unfold their wings, and
undergo exoskeleton hardening persisting until mating occurs. After
the young fly stage comes the sexually ‘active’ stage Nact, where flies
actively search for mating partners. A fraction of the population then
has a chance to become fertilized,Nfert. Fertilized flies actively contribute
to the egg production process, and once they have completed
oviposition, they transition into the ‘old’ category (Nold).

The pupae placed in the breeding cage do not have the exact
same life history, e.g., age, genetics, etc. While, for the individual fly,
transition to the next life stage happens instantaneously, for the fly
population in the breeding cage—due to their variations in life
history and stochastics during mating—this is a gradual process. The
rate of change was modeled as an ordinary differential
equation (ODE)

_Ny � −ky2actNy − kμ,NμNy , (1)

in which the dot notation was used to represent derivatives with
respect to time. Parameter values for ky2act can be found in Table 1
and kμ,N = 1 d−1. The dying rate μ is introduced in the next section.

The flies undergo certain internal development processes which
result in time delays between hatching and mating, and fertilization
and oviposition (Tomberlin and Sheppard, 2002). Chia et al. (2018)
have found that temperature strongly impacts the time from
emergence to oviposition which suggests that both time and
temperature should be considered for development and stage
transitioning. For this, now introduced development sums TΣ

_TΣ � max 0, T − kTΣmin( )
with T as the temperature in the breeding cage and kTΣmin as a
threshold temperature below which development halts. The
transition rates would be only activated once a minimum
amount of development sums (i.e., threshold values) had
accumulated

fy2act(TΣ) � sw(TΣ − kΣy2act)ky2act
ff ert2old(TΣ) � sw(TΣ − kΣovi)kf ert2old

fovi(TΣ) � sw(TΣ − kΣovi)kovi
where ‘sw’ is a switch function defined as follows

sw x( ) � 0 if x≤ 0
1 else

{ (2)

with kΣy2act and kΣovi being threshold values for mating behavior and
oviposition, respectively. See Section 2.3.1 and Supplementary
Material for a smooth implementation of max and sw functions
to improve numerics. The next sections discusses fly dying rate and
egg production.

2.1.2 Energy reserves, fly survival, and egg
production

The diet during the larval stage allows the flies to accumulate
energy reserves (Gobbi et al., 2013), predominantly in the form of
the so-called fat body. These energy reserves play a crucial role in
determining both the remaining life span and the potential for egg
production in the flies (Hall and Gerhardt, 2002). As the energy
reserves diminish, the dying rate μ would increase at a rate of kμ

_μ � kμ. (3)

When μ = 0, this means most reserves are used up, and the flies
begin to starve, risking death. In reality, there may have been early
deaths due to problems during emergence or hardening of the chitin

TABLE 1 List of parameters with source of data used for parameter fitting. Aiming for consistency across various findings, data from multiple authors were
used for the development sums. When using data from (Chia et al., 2018), only data in the range of 20–37°C were used. Refer to Section 3.1.1 for more
details.

Category Parameters Data from

life stage dynamics ky2act 0.28 d−1 kact2fert 0.62 d−1 kfert2old 0.55 d−1 Nakamura et al. (2016)

development sums kTΣmin 12°C kΣy2act 28
◦Cd kΣovi 56

◦Cd various

oviposition kovi 5.9 mg d−1 Nakamura et al. (2016)

μ related kμ 0.0183 d−1 kμ,old 2.14 d−1 kμ,ovi 2.5 Nakamura et al. (2016), Chia et al. (2018)

light on mating chance a1 0.986 a2 0.368 d h−1 Hoc et al. (2019)

temperature on fecundity kT,ovi,0–3.17 kT,ovi,1 0.286 K−1 kT,ovi,2–0.005 K−2 Chia et al. (2018)

temperature on μ kT,μ,0 3.13 kT,μ,1–0.166 K−1 kT,μ,2 0.0033 K−2 Chia et al. (2018)
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carapace, or when trying to unfold their insect wings. However, this
was unrelated to μ and the choice of environment conditions for egg
production optimization.

Neglecting such premature deaths, there isa delay before the first fly
deaths start occurring—depending on initial weight and breeding cage
setup, e.g., temperature and availability of nourishing fluids (Nakamura
et al., 2016; Bertinetti et al., 2019; Macavei et al., 2020). One approach to
model this phenomenon, similar to how changes in behavior formating
and ovipositing were handled, would be to use switch functions and
development sums. However, employing such methods could have
compromised the mechanistic interpretability of the model when
explaining how access to water or nutrient-rich fluids impacted fly
lifespan. Alternatively, a more interpretable method would involve
working with the initial value μ(t = 0) = μ0. While μ was initially
introduced as the dying rate, an alternative interpretation would be to
view it as the proportion of energy reserves already consumed by the fly
relative to a fly on the verge of starvation (i.e., μ = 0). Negative values of
μ signify the presence of remaining energy reserves, while values greater
than zero indicate that the flies are in a state of starvation (and
consequently at risk of dying). It is important to note that μ is an
abstract variable and cannot be directly measured. However, its effects
can be readily observed bymonitoring when and howmany flies perish.
The initial value μ0 is influenced by the wellbeing and accumulated
reserves (i.e., weight) during the larval stage (see Section 2.2 for our
parameter fitting approach).

As seen in Eq. 1, flies die at a rate of −kμ,NμN. However, negative
values of μ would lead to an increase of population, which cannot
happen in reality. That is why the dying term −kμ,NμN needed be
modified such that population would not increase for negative μ, i.e.,

−kμ,N max 0, μ( )N. (4)

In the adult stage, due to their mouth physiology, the flies can only
consume fluids and no solids (Bruno et al., 2019). Consuming fluids like
water, nectar, ormilk slows down decay of energy reserves and increases
egg production (Bertinetti et al., 2019; Bruno et al., 2019; Klüber et al.,
2023). To accommodate for feeding, Eq. 3 could be extended with a
positive term that is added and therefore slows down the decay of
energy reserves. However, the purpose of this model is to calculate
dynamic trajectories for environmental factors. Choosing a fluid to
constantly supply the flies with does not require such sophisticated
methods. This concludes the description of the dynamics of μ.

As previously stated, μ influences the potential for egg
production, which can be described with

_me � 1 − kμ,oviμ( )koviNfert, (5)

where kovi is a constant for egg production per fertilized fly and kμ,ovi
adjusts how the energy reserves impact egg production. It can be
seen that bigger larvae and flies (i.e., negative μ0) result in higher egg
mass. This also means that the less energy flies spend before
ovipositing, the more eggs they can produce. In a study by
Tomberlin and Sheppard (2002), it was hypothesized that females
may reabsorb oocytes to maintain respiration, resulting in reduced
egg clutch size. Keeping stress levels and unnecessary movement to a
minimum enhances production potential.

Nakamura et al. (2016) found that flies that do not mate lived
significantly longer, suggesting that the search for a mating partner
and oviposition were the biggest energy drains for the flies. Tomodel

the flies dying faster after oviposition, the dying rate was multiplied
by a factor kμ,old.

The upcoming section explores how environmental variables,
including temperature and light, influence fly behavior.

2.1.3 Factors influencing the life cycle of adult flies
Recall that the aim is optimization of BSF egg production by

controlling certain environmental variables, as previously illustrated
in Figure 1. The three most influential factors during the life of the
fly are temperature, lighting, and access to nutrient rich liquids
(Holmes et al., 2012; Chia et al., 2018; Bertinetti et al., 2019; Hoc
et al., 2019; Nayak et al., 2024). Relative humidity of air impacts
multiple life history traits, including development speed (Holmes
et al., 2012). However, data on the effect of relative humidity on
mating behavior were insufficient for modeling. Results of (Holmes
et al., 2012) suggests that relative humidity should be kept
sufficiently high and at a constant level. Thus, dynamic
trajectories of humidity do not seem to have any optimization
potential and will not be modeled.

For the influence of light ξL the control variable is uL, i.e., light
hours per day. Only white light was considered, and the effects of
different wave lengths and light intensities were neglected. Hoc et al.
(2019) found that more light hours per day increase the amount of
eggs harvested. The reason is that the chance of finding a partner for
mating is enhanced (Jones and Tomberlin, 2021). Data from (Hoc
et al., 2019) were used to fit a model of the form

ξL uL( ) � a1 1 − exp −a2uL( )( ), (6)
where a1 and a2 are parameters. Parameter values were determined
from data (see Figure 2 and Table 1; Section 2.2).

Temperature influences three properties of fly life: lifespan,
fecundity, and life stage transition speed. The concept of
development sums already encompasses the transition speed, as
higher temperatures contribute to the accelerated accumulation of
TΣ, resulting in earlier sexual activity and oviposition.

Chia et al. (2018) found that fecundity (i.e., number of
unfertilized eggs per female) is significantly affected by
temperature. A 2nd order polynomial was found to be a good fit:

FIGURE 2
Data showing normalized egg mass from (Hoc et al., 2019).
Model fit shows response of ξL (uL).
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ξT,ovi uT( ) � kT,ovi,2u
2
T + kT,ovi,1uT + kT,ovi,0, (7)

with kT,ovi being the respective polynomial coefficients and uT being
the controllable temperature inside the breeding cage
(see Figure 3A).

Chia et al. (2018) also found that longevity is significantly
affected by temperature. A 2nd order polynomial was found to be
a good fit:

ξT,μ uT( ) � kT,μ,2u
2
T + kT,μ,1uT + kT,μ,0. (8)

Fitting results can be seen in Figure 3B.

2.1.4 Combined model
The combined model includes the influence of uT and uL and the

cross dynamics between TΣ and Ni as well as μ and me:

_Ny � −fy2act TΣ( )Ny − kμ,N max 0, μ( )Ny (9)
_Nact � fy2act TΣ( )Ny − fact2fertξL uL( )Nact − kμ,N max 0, μ( )Nact

(10)
_Nfert � fact2fertξL uL( )Nact − ffert2old TΣ( )Nfert − kμ,N max 0, μ( )Nfert

(11)
_Nold � ffert2old TΣ( )Nfert − kμ,old max 0, μ( )Nold (12)

and.

_TΣ � max 0, T − kTΣmin( ) (13)
_μ � ξT,μ uT( )kμ (14)

_me � 1 − kμ,oviμ( )ξT,ovi uT( )fovi TΣ( )Nfert. (15)

2.2 Parameter fitting

Parameters were fitted to data using functions from MATLAB
(r2022a) on a standard desktop PC. Initially, development sum
dependent stage transition parameters were identified using linear
regression. Next, base parameters (i.e., ξT = ξL = 1) for life stage

transition dynamics, oviposition, and dying rate were identified by
minimizing the difference between simulation results and data from
literature using lsqcurvefit. Polyfit was used to fit a parabola for ξT,ovi
and lsqnonlin to fit ξL. Finally, similar to the base parameters, ξT,μ
was identified by minimizing the difference between simulation
results and literature data. The source of data used for each
identification step is described in Table 1, and fitting results are
shown in Section 3.1.1 and Figure 2 as well as 3.

The starting value for dying rate μ0 could not be determined
through measurements but instead had to be chosen in accordance
withmodel assumptions and boundary conditions. As was explained
during modeling, μ0 is negative because there is a delay between
emergence and first death. Next, we know that—neglecting deaths
due to accidents during emergence—first flies start dying after
≈7 days (Nakamura et al., 2016). Lastly, data from (Nakamura
et al., 2016) indicated that the dying rate after 14 days should be
μ ≈ 0.15 days−1. With these three conditions, the starting value was
chosen to be −0.1, and parameters were fit accordingly.

2.3 Simulation and optimization of egg
production

In this section, the framework for simulation and optimization
of the egg production process is described. This includes explanation
of the method, process constraints, and other criteria. Simulations,
parameter fitting, and optimization were all performed in MATLAB
(r2022a) (The MathWorks, 2022).

2.3.1 Simulation framework
Eqs 9–15 describe a system of (non-stiff ordinary) differential

equations. Integrator cvodes from CasADi Matlab toolbox
(Andersson et al., 2019) was used for numeric integration using the
backward differentiation formula (BDF). Step size was 1 h, and
simulation time was 14 d to reflect typical production times. The sw
and max functions used in, e.g., Eqs 2, 4, respectively, caused numerical
difficulties during optimization, which is why they were instead

FIGURE 3
(A) Data showing normalized egg mass from (Chia et al., 2018). Model fit shows response of ξT,ovi (uT). (B) Data showing normalized fly life duration
from (Chia et al., 2018). Model fit shows response of ξT,mu (uT).
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implemented through a tangent hyperbole function (12 + 1
2 tanh(kx)),

where x is a state variable and k was chosen to be large enough to make
the tanh steep (see Supplementary Figures S1, S2).

For the populationNi, all states except Ny were zero, since pupae
are only introduced to the system in the beginning. The number of
young flies at the beginning was set to 50 to ensure simulation results
were comparable with data from (Nakamura et al., 2016). Egg mass
in the beginning was zero. Development sums were zero as well,
since, after emergence, a new life stage starts, and it was assumed
that temperature history during pupae stage would not influence the
life of the fly. The starting value for dying rate was μ0 = −0.1 as
explained in Section 2.2. Standard environment conditions were
taken from Nakamura et al. (2016) with uT = 25°C and uL = 16 h d−1.

2.3.2 Optimization approach, framework,
and variables

The model detailed in the preceding sections was formulated with
the objective of optimizing egg production. This was achieved through
the manipulation of environmental process parameters, specifically
temperature and daily light exposure hours. A model-based
optimization approach was used to find optimal trajectories for uT
and uL. TheCasADiMatlab toolboxwas used for the implementation of
the optimization algorithm (Andersson et al., 2019). Lower and upper
bounds for uT were chosen as 20°C and 37°C, respectively, under
consideration of data from (Chia et al., 2018). The upper bound for uL
was 24 h d−1, and the lower bound was chosen as 2 h d−1 as the
minimum stimulus required to keep flies alive (Nakamura et al.,
2016; Hoc et al., 2019). Interior point optimizer (ipopt) was used as
the solver, which utilizes gradients and Hessians obtained through
symbolic and automatic differentiation (Wächter and Biegler, 2006).
Input trajectories were discretized into 1 hour intervals. Time horizon
for optimization was tend = 14 d to reflect typical production times.

2.3.3 Optimization aim
To maximize egg output me with minimal effort, i.e., minimize

input u ∈ {uT, uL}, the optimization problem was formulated
as follows

min
u

∫tend

0
−Qme + u⊤Ru dt

s.t. dynamic model Eq. (9) to (15)
20◦C≤ uT ≤ 37◦C
2 h d−1 ≤ uL ≤ 24 h d−1

(16)

with weights R andQ. A common approach for choosing the weights is
to abstract them into money, i.e., costs per kilo watt hour and profit per
milligram eggmass. However, since those prices vary vastly by countries,
a different approach was chosen here. Note that the optimization
method and cost function were formulated in a generalized manner,
allowing for easy adaptation if economic parameters are available.
Instead, weights were chosen such that both me and u have similar
importance. From simulations, we know the expected value ofme (tend)
≈ 300 mg, while u ranges between low single to double digits. Thus, for
equal weighing, the ratio should beR/Q≈! 10. Based on systematic testing,
we chose Q = 12 mg−1 and R = 100I2 (units omitted).

The cost function awarded egg mass at every time step instead of
only final mass at the end of production cycle tend. That way, the
optimization calculated a trajectory that balances maximum output
and production speed.

3 Results and discussion

Parameter fitting results are explained, and the plausibility of the
theoretical model is assessed. Afterwards, optimization is evaluated
in various scenarios.

3.1 Simulation studies and comparison to
literature data

Model performance was evaluated by comparing simulation
results with data from literature. However, the scarcity of
available data and substantial variations in experimental setups
among different authors posed challenges for parameter
identification and model validation. Differences during the larval
rearing stage can especially influence adult fly performance,
including longevity and fecundity. However, we assumed that,
regardless of life history before pupation, the flies’ responses to
environmental variables are the same. Thus, computed control
trajectories would improve egg production even under parameter
uncertainties.

3.1.1 Plausibility of environment impact
Data from Hoc et al. (2019) were utilized to calibrate the light

impact component from Eq. 6 (see Figure 4A). The model predicted
that egg production would be reduced by 19% when uL is decreased
from 16 to 6 h d−1 and by 53% from 16 to 2 h d−1. These predictions
aligned well with the provided data and were consistent with
observations reported by Liu et al. (2021).

For the impact of temperature on fecundity, Eq. 7, data from
(Chia et al., 2018) were used (see Figure 4B). The model predicted
highest fecundity at 28.6°C and a significant drop for temperatures
above 35°C, which agreed well with (Chia et al., 2018; Shumo
et al., 2019).

No data were found that describe the impact of temperature on the
time period from emergence until first mating behavior occurs, but
(Tomberlin and Sheppard, 2002) reported this to be approximately
2 days. Due to the lack of data, parameter kΣy2act was decided to be half
of kΣovi (preoviposition period). Chia et al. (2018) investigated the
influence of temperature on the preoviposition period; however, their
findings conflicted with other authors. While Chia et al. (2018) found
mean preoviposition time to be above 9 days at both 25 and 30°C, other
authors report periods of 3–5 days (Tomberlin and Sheppard, 2002;
Nakamura et al., 2016; Heussler et al., 2018; Hoc et al., 2019; Liu et al.,
2021). We chose the parameters in such a way that the model produced
plausible results. Little data was found on the exact minimum required
temperature kTΣmin for development, but (Chia et al., 2018) reported
that development still occurred at 15°C. The parameter kTΣmin was
chosen as 12°C such that the model produced plausible results.

Fitting parameters for Eq. 8 was challenging since μ cannot be
directly measured. The parameters had to be indirectly inferred by
observing longevity at different temperatures. Experiments conducted
by Chia et al. (2018) provided relevant data; however, their findings
conflicted with observations from other authors. For instance, while
Nakamura et al. (2016) reported longevity to be around 18 d at 25°C
(with distilled water provided to flies), data from Chia et al. (2018)
indicated a longevity of around 14 days at the same temperature (with
sugar water provided)—a notable discrepancy. It is important to note
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that mating behavior and oviposition also indirectly influence longevity.
Higher temperatures accelerated the development time, causing flies to
lay eggs earlier—a highly energy-consuming process that can reduce the
overall lifespan. Nakamura et al. (2016) reported that female flies in
separated colonies lived up to 47.6 d when provided with sugar water. It
cannot be distinguished if decreases in longevity at higher temperatures
were due to earlier oviposition or due to increased energy consumption
from higher fly activity. Experiment setups between authors differed
greatly; feeding during larval rearing stage, final pupae weight,
population genetics, liquid feed provided during adult stage, etc. all
impact longevity, which made finding general parameters that robustly
predict longevity impossible. Parameters were chosen again for
plausibility (see Figures 4C,D).

3.1.2 Simulation studies
3.1.2.1 Standard conditions

Figure 5 shows simulation results of the model under standard
conditions. For N and me, root mean squared errors were 1.1 and
8.6 mg, respectively. Furthermore, a visual comparison of both total fly
population and egg production to data from (Nakamura et al., 2016)

indicated a reasonably good fit. Our model did not predict individual
flies dying after only 3 days; it is possible that individual pupae in the
experiments ofNakamura et al. (2016) suffered frommalnutrition, were
sick, or damaged themselves during emergence. Final egg mass of the
simulation overshot data by 0.15%. Egg production in the beginning
seemed to be delayed in comparison to the data; the reason might be
because the model for preoviposition time (kΣ,ovi) was fitted to data
from a multitude of authors. This delay can also explain why egg mass
in experimental data reached its peak faster thanmodel predictions and
why model predictions of N were slightly off around day 7 (earlier
oviposition results earlier deaths). Overall, the simulation results
indicated a plausible model for standard conditions.

3.1.2.2 Non-standard environment conditions
The model was controlled dynamically through environment

variables uL and uT. To better understand how the model behaved
in response to different inputs, see simulation results in Figure 6 or
Supplementary Figure S3. Egg production and longevity were
investigated at three different light input levels and over a range of
temperatures.

FIGURE 4
Change in fly performance in dependence of environment parameters. (A) Egg production is reduced by 10% when going from 16 to 6 h d−1.
However, at 2 h d−1, egg production is reduced to 51% of maximum value. (B) Fly fecundity peaks at 28.6°C and is reduced by 23% at 35°C. (C) Longevity
(i.e., when population reaches 5% of its starting value). is longest at 24°C and is reduced by 3.5 d (≈29%) at 35°C. (D) Fly dying rate increases most slowly at
24°C, but grows 42% faster at 35°C.
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Highest longevity was found at 22°C. At uL = 2 h d−1, longevity
decreased by 25% (12.4 d–9.3 d) from uT = 22°C to 37°C. At uT =
22°C longevity decreased by 2% (12.4 d–12.1 d) from uL = 2 h d−1 to
16 h d−1. Impact of uL on longevity was negligible. This agreed with
(Liu et al., 2021), who found that the survival rate after 10 d did not
differ significantly with changes in light regime.

Highest egg production occurred at uL = 16 h d−1 and uT =
28°C with 348 mg. It decreased by 52% (167 mg) and 54%
(157 mg) at 37°C and 20°C, respectively. At uT = 28°C, egg
production decreased by 2% (348 mg–341 mg) from uL =
16 h d−1 to 6 h d−1 and by 17% (348 mg–298 mg) from uL =
16 h d−1 to 2 h d−1. Results were compatible with the findings
of (Hoc et al., 2019).

First oviposition occurred after 2.46 d at 35°C, while at 30 and
25°C it occurred after 3.1 and 4.3 d, respectively. This agreed well
with data from (Bertinetti et al., 2019; Binsin et al., 2023).

In the range of reasonable inputs, the model delivered plausible
predictions and was sensitive to changes in control variables. Note
how longevity, fecundity, and development speed all have their
maximum at different temperatures. These differences were the
reason why temperature trajectories have high potential for egg
production optimization compared to constant temperatures. The
optimization potential is explored in the following section.

3.2 Results of optimal control

3.2.1 Optimization potential
Higher temperature increased the development speed of the

flies, i.e., oviposition occurs sooner, which is beneficial in industrial
production. Simultaneously, increased fecundity is observed at
higher temperatures. This came at the price of higher operation

FIGURE 5
(A) Simulation results and (B) comparison to data from Nakamura et al. (2016). Simulation starting values are Ny0 = 50 and μ0 = −0.1.

FIGURE 6
Life history characteristics as a function of environmental conditions. Plot (A) shows time until population is halved while (B) hows egg mass
after 14 d.
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costs and accelerated dying rate. However, keeping dying rate μ low
increased egg production. This resulted in conflicting requirements
for TΣ, ξT,mu, and ξT,ovi with concern to uT.

Changing uL did nothing while there were no active flies, and,
therefore, light hours should be kept short at the beginning of the
reproduction cycle.

Certain assumptions and simplifications were made while
modeling. As previously mentioned, relative humidity, choice of
liquid food supplements, population density, and light quality
parameters such as wave length spectrum and intensity can
impact the egg production process (Klüber et al., 2020; Nayak
et al., 2024). However, there are—to our knowledge—no
dynamic effects to these process parameters. It thus sufficed
to make a choice at the beginning and to keep those
parameters constant.

Another simplification was that, while fecundity (number of
eggs laid per female) was modeled, fertility (number of fertilized
eggs) and hatchability (portion of fertilized eggs that survive and
become larvae) were neglected. It is important to recognize that an
increase in fecundity might not necessarily lead to a proportional
increase in the number of hatched larvae if optimal temperatures for
fecundity, fertility, and hatchability differ. This implies that

optimizing the process solely based on fecundity may yield
suboptimal results for the reproduction of larvae.

Another necessary simplification was that dynamic effects
(i.e., long term effects) had to be neglected due to lack of
information. For instance, exposure to high temperatures during
the early stage (for accelerated development) might influence
fecundity in the fertile stage. Additionally, there is a question of
defining temperature in this context—whether it refers to the
currently measured temperature, the average temperature, or the
highest temperature since emergence.

3.2.2 Standard scenario
The benchmark scenario was chosen similar to (Nakamura et al.,

2016) with 16 h d−1 and constant 25°C. Process optimization was
performed according to Eq. 16. Resulting state trajectories can be
seen in Figure 7.

Comparison of states shows that, while fly population declined
faster, the amount of eggs per cycle increased by 9.4% after 14 d
(benchmark 315.2 mg versus optimized 345.2 mg). The shorter life
cycle was a result of faster transition between life stages due to higher
temperature at early stages. Flies reached sexual maturity faster but
also burn their energy reserves faster. Shorter life cycles, however,
mean that breeding cages can be refilled more often, resulting in
more cycles and consequently higher egg production per time.

A production cycle abort criteria of 90% of predicted maximum
eggmass was defined.With that, Table 2 shows results on howmuch
production could be improved through optimization. While the
total energy invested into heating was 3.7% higher, light input was
reduced by 41.4%, cycle time was reduced by 1 d and egg production
was increased by 9.4%.

FIGURE 7
State and input trajectories for benchmark scenario versus OC with R = 100I2 (units omitted). Benchmark inputs are constant 16 h d−1 light period
and 25°C.

TABLE 2 Accumulated inputs and final egg mass when abort criterium of
megg > 0.9me (tend) was violated.

ΣuT ΣuL (h) Time (d) me (mg)

benchmark 270◦Cd 173 10.9 284

optimization 281◦Cd 101 9.9 311
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FIGURE 8
State and input trajectories for benchmark scenario versusOC with R = 1000I2 (units omitted). Benchmark inputs are constant 16 h d−1 light period
and 25°C.

FIGURE 9
State and input trajectories for benchmark scenario versus OC where only light is controlled. Benchmark inputs are constant 16 h d−1 light period
and 25°C.
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3.2.3 High penality for inputs
The benchmark scenario was chosen similarly as before with

16 h d−1 and constant 25°C. However, input weights were set to R11 =
R22 = 1000. The reasoning was that light and heating can be rather
costly and leave high CO2 footprints; a reduction of inputs u is of
interest. Figure 8 shows the results. Egg mass after abort criteria in
the benchmark was 284.2 mg versus 289 mg, an increase of 1.7%.
Heat input was decreased by −7.33% and light input by −66.6%.
Production time was decreased by 1.3 d.

3.2.4 Light control only
Egg production facilities may not allow for precise control of

temperature, or breeding may happen in big halls with multiple
unsynchronized breeding cages. In such cases, dynamic control of
temperature is no longer an option, but optimization of light
stimulation still is. Simulations showed that, while impact on egg
output and time related performance parameters was negligible,
light input could be reduced by −44% when compared to the
benchmark scenario (see Figure 9).

3.2.5 Delay production to avoid weekends
and holidays

Another plausible scenario, especially in batch setups, involved
intentionally delaying oviposition. The process of egg collection
typically involves manual labor. If the initiation of the oviposition
phase aligns with weekends and holidays, there might be up to 4 days
during which eggs are not collected. The designated areas for
oviposition, usually specialized units designed for easy egg
extraction, may become full, prompting the flies to avoid these areas
and instead lay eggs in locations where collection is less convenient.

To address this issue, we utilized our model-based control to
formulate a strategy capable of intentionally delaying oviposition by
2 days. This action aimed to potentially minimize the overlap between
the egg collectionwindow and labor-free days. For that, we introduced a
constraint that ensured TΣ(t = 6) ≤ kΣovi. Optimization results can be
seen in Figure 10. While the standard approach seemingly produced
4.5% more egg mass, not all of them could be harvested, as previously
described. Assuming that one-third of the eggs oviposited before day
6 could not be collected, amount of eggs harvested using optimal control
was actually 10.6% higher.

4 Conclusion and outlook

We have developed a dynamic control model that describes the life
cycle and oviposition processes of Hermetia flies as a function of
environmental factors. Dynamic models are in general useful tools
for life cycle assessment and process monitoring, where comparison of
measurements to model prediction may help in detecting possible
faults. Other uses are process analysis through simulation studies
and—as was showcased in this work—process optimization and
control. During the review of literature, one thing became clear:
there is a lack of information on dynamic effects of uL and uT on
Hermetia flies. Most experiments in literature are conducted at near
constant parameters. One, however, wants to dynamically control the
environment which leads to the question of whether certain effects have
a ‘memory’. For example, high temperatures during the young stage
results in faster life stage transition to the active stage. However,
fecundity is impaired by too high of a temperature, so temperature
is reduced when first ovipositing occurs. According to the model, no

FIGURE 10
State and input trajectories for benchmark scenario versus OC where production is intentionally delayed. Benchmark inputs are constant 16 h d−1

light period and 25°C.
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problems would arise and one could benefit from fast development and
high egg output simultaneously. But in reality, temperature might
already affect fecundity during the time between becoming fertilized
and oviposition. If the flies’ life processes have something similar to a
‘memory’ in regards to environmental parameters, it raises the question
on just what the meaning of parameters such as temperature is: the
current temperature, highest temperature since emergence, or some
average temperature? Due to lack of data, such effects could not be
considered during modeling. The absence of proper modeling for long-
term effects raises concerns regarding the optimization algorithm
potentially generating trajectories that appear optimal within the
model but could be detrimental in real-world application.
Approaches to address this challenge are the incorporation of
process knowledge not only into the model itself but also into the
process constraints during optimization or the extension of the model.

Possible extensions of the model may involve the identification
of additional process control variables. For instance, studies may
explore how airborne time of flies could be influenced, as this
potentially increases the chances of finding a mating partner.
Inputs such as sound, light flashes, or air jets represent potential
variables for investigation. Environmental factors such as
temperature and humidity have an effect on fertility and
hatchability—processes which could also be included in the model.

The plausibility of the model was examined and tested against
literature data, reaffirming that the model dynamics evolve in a realistic
and plausible manner. We then used the model to calculate input
trajectories to optimize the egg production process in various scenarios.
Compared to a benchmark scenario, in our simulation study, the
optimized process was able to generate more egg mass (9.4%) in less
time (1 day faster) at reasonable costs (−41% uL and +3.7% uT). Overall,
we could show the versatility and usefulness of the model and optimal
control in various scenarios. A possible extension to the optimization is
to parameterize weights Q and R based on economic factors—allowing
for direct economical evaluation of the optimization.

In our forthcoming work, we aim to address a critical
aspect—parameter uncertainties, with a specific focus on μ0.
Since μ cannot be measured, the starting condition μ0 was
chosen without a strong data basis. It was tested how the model
reacts to a parameter uncertainty of 50%—which can also be
interpreted as very well fed larvae/pupae (see Supplementary
Figure S4). A change of 50% in the initial value results in a 46%
increase in time until the first fly dies and in an increase of 24% in
produced egg mass. Georgescu et al. (2020) have found that female
weight impacts fly egg output. This shows that the reactions of the
model to parameter changes in μ0 are plausible. However, it also
shows that the model is rather sensitive to this parameter and a
fitting choice for μ0 (which cannot be directly measured) is crucial
and subject to future experimental work.
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