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Studies of cell and tissue mechanics have shown that significant changes in cell
and tissue mechanics during lesions and cancers are observed, which provides
new mechanical markers for disease diagnosis based on machine learning.
However, due to the lack of effective mechanic markers, only elastic modulus
and iconographic features are currently used as markers, which greatly limits the
application of cell and tissue mechanics in disease diagnosis. Here, we develop a
liver pathological state classifier through a support vector machine method,
based on high dimensional viscoelastic mechanical data. Accurate diagnosis
and grading of hepatic fibrosis facilitates early detection and treatment and
may provide an assessment tool for drug development. To this end, we used
the viscoelastic parameters obtained from the analysis of creep responses of liver
tissues by a self-similar hierarchical model and built a liver state classifier based on
machine learning. Using this classifier, we implemented a fast classification of
healthy, diseased, and mesenchymal stem cells (MSCs)-treated fibrotic live
tissues, and our results showed that the classification accuracy of healthy and
diseased livers can reach 0.99, and the classification accuracy of the three liver
tissues mixed also reached 0.82. Finally, we provide screening methods for
markers in the context of massive data as well as high-dimensional
viscoelastic variables based on feature ablation for drug development and
accurate grading of liver fibrosis. We propose a novel classifier that uses the
dynamical mechanical variables as input markers, which can identify healthy,
diseased, and post-treatment liver tissues.
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Introduction

Liver cirrhosis and cancer are serious liver diseases with highmortality rates due to their
irreversibility (Tapper and Loomba, 2018; Agarwal et al., 2019), whereas liver fibrosis is the
early stage of them (Friedman, 2010; Seitz et al., 2018; Stefan et al., 2019) and could be
reversed by rational medication (Li et al., 2018; Salarian et al., 2019). To date, early diagnosis
and quantification of the extent of liver fibrosis are of great clinical value for timely
intervention and reversing the development of liver fibrosis (Friedman, 2010; Zhao et al.,
2017; Tapper and Loomba, 2018; Balachandran et al., 2022). The current gold standard for
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diagnosing liver disease is liver biopsy, which relies on the
pathological examination of tissue samples obtained through
invasive puncture. However, the invasive nature of biopsies
significantly diminishes the patient experience and can
potentially lead to complications (Eskew et al., 1997; Yasufuku
and Fujisawa, 2007; Veronesi et al., 2010). In contrast, ultrasound
has gained widespread applications as the preferred method for
clinically screening liver diseases due to its radiation-free nature,
cost-effectiveness, convenience, and invaluable real-time imaging
capabilities (Bamber et al., 2013; Tapper and Loomba, 2018).

Currently, the primary diagnostic methods for the degree of liver
fibrosis are semi-quantitative methods (Sun et al., 2017; Xu et al.,
2021), such as liver examinations based on clinical, biochemical, and
imaging methods. Therefore, there is a lack of a satisfactory method
to accurately determine the degree of hepatic fibrosis. Liver
pathology is a complex process characterized by various features
at different stages. Utilizing a combination of diagnostic methods is
advantageous compared to relying on a single biomarker, as it offers
supplementary insights into the condition of the liver. It is well
known that the mechanical properties of cells and tissues are closely
related to their pathological states (Suresh, 2007; Grant and Twigg,
2013; Rigato et al., 2017; Mandal et al., 2019; Staunton et al., 2019;
Guimarães et al., 2020). Utilizing elastography, it is possible to derive
the modulus of elasticity of liver tissue and assess the grading of
lesions based on their mechanical properties. Many experiments
showed that the elastic stiffness is positively correlated with the
degree of liver fibrosis (Ziol et al., 2005; Yin et al., 2007). Recent
studies (Lei et al., 2017; Lewindon et al., 2019; Xue et al., 2020) have
demonstrated that the combination of biochemical and mechanical
parameters, along with imaging and ultrasound techniques, exhibits
a markedly enhanced diagnostic efficacy for liver lesions compared
to individual parameters alone. In addition, SVM has been
successfully applied to classify cancerous and normal cells,
yielding promising results (Wang et al., 2021). Linking
mechanical properties to pathological states provides a novel
precise and robust diagnostic marker for diagnosis (Staunton
et al., 2019; Wang et al., 2021). However, soft biological tissues
are not elastic materials, yet similar to living cells (Fabry et al., 2001;
Dimitrije et al., 2004; Smith et al., 2005; Hoffman et al., 2006;
Koenderink et al., 2009; Rigato et al., 2017; Hu et al., 2019), they are a
viscoelastic material that exhibits a fascinating scaling-law creep
response (Liu and Bilston, 2000; Chaudhuri et al., 2016; Chaudhuri
et al., 2020). For liver tissues, scaling-law response is also observed in
experiments (Chang et al., 2023). It puts doubts as to whether a
single value of elastic modulus sufficiently discriminates the
pathological stage of liver fibrosis. The correlation between the
viscoelastic mechanical properties of liver tissue and liver lesions
is currently unexplored. Therefore, quantifying the viscoelastic
mechanical properties during liver fibrosis development can
provide additional mechanical markers to grade the degree of
liver fibrosis and to evaluate the effect of drug treatment, which
further improves the precision of diagnosis. However, the high-
dimensional mechanical data generated by viscoelastic
characterization poses new challenges for evaluating the
mechanics of liver fibrosis. The application of machine learning
for medical diagnosis in imaging (Kononenko, 2001; Komura and
Ishikawa, 2019; Soelistyo et al., 2022) provides us with a viable
means to deal with such high-dimensional data.

In this study, we obtained the creep responses of mouse liver
tissue sections by atomic force microscopy (AFM). Then, we
characterized their creep responses using the self-similar
hierarchical model and then acquired high-dimensional
viscoelastic mechanical data of healthy, diseased, and MSCs-
treated fibrotic liver tissues. Based on a supervised machine
learning algorithm, the support vector machine (SVM) method is
applied to discover useful mechanical markers, exploiting the hidden
associations between viscoelastic parameters with liver pathological
states. The combination of high-dimensional viscoelastic
mechanical data and machine learning algorithm trained a liver
pathological states classifier and the rest of the untrained data was
used to test this classifier. We showed that the classifier could
achieve 99% accuracy for healthy and diseased livers, 86%
accuracy for healthy and MSCs-treated fibrotic livers, and 82%
accuracy for a mixture of the three livers together using the
viscoelastic mechanical parameters as the input markers.

Methods

Sections of the liver tissues of the mouse were used as the
experimental object to acquire a more accurate viscoelastic
mechanical response. The mouse liver tissues in the test were
divided into three groups: healthy, diseased, and MSCs-treated
fibrotic livers. The staging of liver biopsies through the fibrosis
scoring systems, such as Batts and Ludwig or Metavir, is deemed
most appropriate. Currently, achieving precise modulation for
accurate staging of liver lesions during mouse culture remains
challenging. Thus, we categorized the mice into three groups:
healthy, diseased, and MSCs-treated fibrotic livers. During the
mouse culture process, we implemented a relatively prolonged
culture period to induce the development of noticeable lesions,
with therapeutic drug injection serving as an intermediary state
between the healthy and diseased states. C57BL/6 Mice were
randomly assigned to three groups. The control group consisted
of healthy, wildtype mice that did not receive any injections of MSCs
therapy. Liver fibrosis was induced in the other two groups (diseased
and MSCs-treated fibrotic groups, n = 2) by intraperitoneal
injections of therapeutic drug (1 μL/g) for 7 weeks. At the end of
the sixth week, half of the mice received a single intravenous infusion
of 2 x105 MSCs. These mice constituted the MSCs-treated fibrotic
groups. In the initial step, mouse liver extraction was performed,
with particular attention given to isolating the tissues surrounding
the portal veins, which connect the left lobe to the rest of the liver
tissue. Subsequently, the liver tissues were immediately frozen at -
80°C and cryo-sectioned to a nominal thickness of 15 µm using a
Leica CM1850 cryostat (LeicaMicrosystems (United Kingdom) Ltd.,
Milton Keynes) and adhered to glass coverslips for future research.
Afterward, the dynamical creep indentation test was performed on
cells after conducting Masson’s trichrome staining, Sirius Red
staining, and aspartate aminotransferase (AST) assay. To mitigate
the effects of local remodeling events on the tissue structure under
investigation, measurements were carried out at multiple locations
separated by a significant distance (i.e., > 50 μm). To reduce the
influence of stiff collagen on tissue during characterization,
dynamical and static indentation experiments were intentionally
conducted away from the portal zones.

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Zhang et al. 10.3389/fbioe.2024.1404508

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1404508


To obtain the viscoelastic mechanical properties of liver samples,
the creep responses of the liver tissues were obtained by applying
step stress to the samples by AFMwith a customized spherical probe
(diameter = 20 μm) and holding for 10 s. Each creep compliance
indentation test was performed randomly on tissue sections with
100 μm spacing between two locations. Due to the relatively large
sample area (~1 cm2), each test performed by the micron-size
spherical probe is regarded as a single mechanical measurement
on 1 mouse. Each group received 800 measurements. Then, the
viscosity (η) of cytoplasm, the elastic moduli of cytoplasm (E1),
cytoskeleton fiber (E2), and whole cell structural network (E3), and
the transition frequency (fT) can be acquired by characterizing the
creep responses of liver tissues (Figure 1A) based on our previous
self-similar hierarchical model (Hang et al., 2021; Hang et al., 2022),
which provides a richer and physically meaningful description of the
rheological behavior of biological tissues. The model can well fit the
creep responses of cells and tissues, and more details about the
model fitting can be found in our previous work (Hang et al., 2021;
Hang et al., 2022). The R2 values of creep compliance for the three
liver tissues fitted using the self-similar hierarchical model are all
above 0.9. The spherical indenter was used to apply step stress to the

liver tissue sections, and the creep compliance expression can be
obtained by the Hertz model (Lin and Horkay, 2008):

J � 4
��
R

√
δ

3 /

2

3F 1 − ]2( ), (1)

where R and δ are the radius and indentation depth of the spherical
indenter, F is the step force, and ] is the Poisson’s ratio with a value
of 0.5 (i.e., incompressible). Experiments showed that the creep
compliances (Eq. 1) of all three groups exhibit a universal two-
stage scaling-law viscoelastic rheology (Chang et al., 2023). Typical
creep curves of liver tissue showed that the power-law exponent of
creep compliance is not constant with increasing loading time,
reaching between 0.5 and 1.0 at small time scales (αL) and
stabilizing around 0.2 at larger timescales (αR), which
corresponds to the double power-law viscoelastic behavior of
the complex modulus in the frequency domain (Rigato et al.,
2017; Hurst et al., 2021). The double power-law viscoelastic
model provides novel viscoelastic parameters as mechanical
markers for liver fibrosis. SVM is well-suited for the analysis of
high-dimensional data sets comprising numerous features, due to
its ability to map data into a high-dimensional space. In such

FIGURE 1
Performance assessment of single viscoelastic marker in the test data group of healthy and diseased livers. (A)Overview of machine learning-based
liver states classification and diagnosis using viscoelastic mechanical parameters. E1, E2, E3 and η can be obtained by performing creep testing through
AFM and then characterizing them using the self-similar hierarchical model, while Esum and fT can be obtained by model parameter operations. The
double power-law exponents (αL and αR) at different time scales can be obtained by the double power-law characterization of the creep
compliance. The viscoelastic mechanical data set from the characterization of liver tissues is used to train the machine learning models for the
classification of liver states. (B) The heat map of the Pearson correlation coefficient of viscoelastic variables between tissue status and viscoelastic
variables of healthy and diseased livers. (C) Receiver operating characteristics (ROCs) of the classifier with each viscoelastic variable as a singlemechanical
marker input.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Zhang et al. 10.3389/fbioe.2024.1404508

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1404508


scenarios, alternative classification algorithms often encounter
dimensionality catastrophes, whereas SVMs efficiently handle
the complexities of high-dimensional data (Dumais et al., 1998;
Cristianini and Shawe-Taylor, 1999; Evgeniou et al., 2015). Since
the individual viscoelastic parameters are not stand-alone and the
training data are linearly inseparable, a nonlinear SVM classifier is
developed by kernel method and soft interval maximization. The
objective function for classification optimization is

min
1
2
w‖ ‖2( ) + C∑n

i�1
ξ i, (2)

where the second is the regular term, w is the normal vector of the
classified hyperplane (Eq. 2), C is a constant, and ξi is the relaxation
factor. Here, we introduce the kernel function that can map the
sample from the original space to a higher dimensional idiosyncratic
space, making the sample linearly differentiable in the new space.
The best classification in this study is the Gaussian kernel function
with the expression of

κ xi, xj( ) � exp − xi − xj

���� ����2
2σ2

⎛⎝ ⎞⎠, (3)

where xi and xj denote the input categorical feature variables and σ is
the width (Eq. 3) of the Gaussian kernel. In this way, a classifier
(Figure 1A) for liver pathological states was built based on the SVM
method and Python programming language. In each liver tissue
sample, 70% of the data is allocated to the training group, while the
remaining 30% is assigned to the testing group.

Ethical approval

It has been confirmed that the experimental data collection
complied with relevant institutional, national, and international
guidelines and legislation with permission from the
administration committee of experimental animals of The Second
Affiliated Hospital of Xi’an Jiaotong University, China. All methods
reported follow ARRIVE guidelines.

Results and discussion

Assessment of classification accuracy for
viscoelastic variables

The classification of healthy and diseased liver
tissues with a single mechanical marker

After building the prediction classifier to output liver
pathological states, we evaluated the accuracy of each viscoelastic
variable based on the classifier for healthy and diseased livers. In the
assessment of the viscoelastic variable of healthy and diseased livers,
70% of the data were treated as the training group and 30% of the
data as the test group. The status variables for healthy and diseased
liver tissues have been set as 0 and 2, respectively. We first analyze
the correlation between the parameters through Pearson’s
correlation coefficient. Pearson’s correlation coefficient was
calculated by the following formula:

r � ∑ x − �x( ) y − �y( )�����������������∑ x − �x( )2∑ y − �y( )2√ (4)

The Pearson correlation coefficient (Eq. 4) of each variable with
others is shown in Figure 1B. It indicates that the status of the liver
tissue exhibits the highest correlation with the power-law exponent
at small time scales αL, followed by the elastic modulus (Esum, E3, E2,
E1) and transition frequency (fT), while the viscosity and power-law
exponent at large time scales αR exhibit a minimal correlation with
liver status. Moreover, it is noteworthy that the correlation between
the elastic moduli is extremely high, suggesting that the increase in
elastic moduli during liver lesions is all-encompassing and not
limited to the cytoplasm or cytoskeleton. There was a significant
positive correlation between the liver tissue lesion and the stiffness,
which was consistent with many experiments (Yin et al., 2007; Patel
et al., 2015). Different from previous experiments (Wang et al.,
2021), we introduced several viscoelastic mechanical variables as
classification features and obtained precise correlations between
them and liver status. Overall, there is a clear perception that a
higher value of αL and a lower value of Esum indicate a lower
incidence of liver lesions. In addition, other variables, such as
viscosity (η), relaxation time (τ), and transition frequency (fT),
showed a relatively low correlation with the status of liver tissue,
however, they still have an appreciable degree of accuracy (85%). As
shown in Figure 1C, the elastic modulus Esum and E1 have the
highest accuracy, followed by αL, and meanwhile, the accuracy of the
transition frequency reaches more than 0.9. In contrast, the accuracy
of αR is extremely low, which is inextricably intertwined with the
self-similar hierarchical properties of liver tissues due to its power-
law exponent being concentrated around 0.2 at longer time scales. In
the third-level hierarchical model, the power-law exponent tends to
be constant as the stiffness increases, and thus, the increase in elastic
modulus has minimal effect on αR in this case.

The classification of healthy and diseased liver
tissues with multiple mechanical markers

As the viscoelastic properties of liver tissues differ substantially
between healthy and diseased states, high classification accuracy can
be obtained using a single viscoelastic variable (such as Esum and αL).
However, for the early stage of liver fibrosis, the single mechanical
property does not change significantly compared to healthy tissues,
and at this point, adding variables as classification features
contribute greatly to the classification accuracy. Using a
combination of viscoelastic mechanical variables without high
accuracy as the input marker of the classifier, the classification
accuracy could reach a higher level. As shown in Figure 2A, the
classification accuracy of the classifier with double variables as
classification input markers all reached over 0.93. Based on
machine learning, the implied relationships between certain
viscoelastic variables could be exploited to improve the accuracy
of liver status classification. When two mechanical variables were
used to classify healthy and diseased livers, they showed distinct
areas of aggregation (Figure 2B). When the number of variables was
increased to three, the accuracy of liver classification was further
improved (Figure 2C), which benefited from the more pronounced
aggregation characteristics of liver status (Figure 2D) at multivariate.
Here, the combination of three variables without high accuracy as a
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single marker input brings the classification accuracy to a higher
level, even exceeding 0.98, which is a great improvement compared
to that of a single input variable (Figure 1C).We tested nine different
combinations of two variables and three different combinations of
three variables as input markers of the classifier. Overall, the
classification accuracy has reached the best performance when
using three viscoelastic variables as marker input, and its
classification accuracy even reaches 0.98. This demonstrates that
the combination of viscoelastic mechanical variables can capture
more salient liver states, enabling a more accurate pathological state
prediction of liver tissues, by learning them directly from the implicit
connections of the viscoelastic mechanical variables.

An interpretable predictive model for the
liver pathological states

Adding diseased tissues after drug treatment to
the classifier

Having enabled the classification of healthy and diseased livers,
we next expanded the machine learning framework to investigate

liver tissues after drug treatment (with the status variable of 1). We
trained the prediction classifier and measured the accuracy by
combining four different combinations of two viscoelastic
variables as input markers to the prediction classifier. For each
dataset, we split the data by liver status (healthy, diseased, and
MSCs-treated fibrotic) and computed separate confusionmatrices to
ensure that there is no systematic bias in the predictions. Overall, the
best-performing combination is the one combing the elastic
modulus Esum and the power-law exponent αL, followed by the
power-law exponent αL and transition frequency fT, which had
relatively few data points in the junction regions of three liver tissues
(Figure 3A). The increase in the number of viscoelastic mechanical
variables to the classifier led to an increase in the classification
accuracy (Figure 3B). With the introduction of the dataset of
diseased livers after drug treatment, there were essentially no
apparent changes in the Pearson correlation coefficient
(Figure 3C) between the liver status and the individual
viscoelastic variables, compared with the dataset of healthy and
diseased livers (Figure 1B).

As shown in Refs. (Ziol et al., 2005; Yin et al., 2007), the elastic
stiffness of healthy and diseased livers show significant differences.

FIGURE 2
Multiple dynamicalmechanical markers performance assessment on the test data group of healthy and diseased livers. (A) ROCs of the classifierwith
two viscoelastic variables as marker input. (B)Data points for healthy and diseased livers have their regions when double viscoelastic variables are used as
marker input. (C) ROCs of the classifier with three viscoelastic variables as marker input. (D) When the three viscoelastic variables were used as
classification marker input, the data point aggregation feature was more pronounced for healthy and diseased livers compared to that of the two
variables used.
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Since many viscoelastic parameters exhibit a strong correlation with
the elastic stiffness of tissues, a single viscoelastic variable could
achieve a sufficiently high classification accuracy. Consequently,
when classifying healthy and diseased livers, we mainly investigated
the cases of 2 and 3 variables as the marker input. With the
introduction of MSCs-treated fibrotic livers, we used cross-
validation to obtain optimal classification accuracy by feature
elimination for different numbers of mechanical variables. We
implemented a k-fold cross validation with k = 10, where the
training set was divided into 10 subsamples and one subsample
was reserved for model validation, while the remaining nine
subsamples were utilized for training. During cross-validation,
each subset is iteratively utilized as a test set once, while the
remaining k-1 folds are employed as a training set to train the
model and assess its performance on each fold. Subsequently, the
results from all k evaluations are averaged to derive the final
evaluation of the model’s performance. As illustrated in
Figure 3D, for the classification of healthy and diseased livers,
the optimal classification accuracy is almost independent of the
number of input markers, since Esum achieves an accuracy of 0.97 by
itself as the single input marker. The introduction of liver tissue data
after drug treatment led to a significant trend of increasing the

optimal accuracy with the number of input mechanical markers,
especially when three liver tissues were mixed for classification
accuracy exploration. A comparison of the classification accuracy
data of several groups shows that the classification accuracy has
reached the optimal value, when themaker number is around 5, after
which the increase of markers has little effect on the improvement of
accuracy. The viscoelastic variables corresponding to the optimal
accuracy of five markers are Esum, E2, E3, αL, and fT, which were
also the top five viscoelastic variables in terms of accuracy of
classification of healthy and diseased livers as a single marker
input in the classifier. Compared to the case when only the
elastic modulus Esum was used as a marker, the addition of
viscoelastic properties such as the power-law exponent αL and
transition frequency fT remarkably improved the classification
accuracy of the three liver tissues from 0.7 to 0.82, which is far
more significant than the improvement in accuracy in the
classification of the two liver tissues. The mean values of elastic
modulus (Esum) of MSCs-treated fibrotic liver tissues (681.4 MPa)
were not significantly different from that of healthy liver tissues
(456.1 MPa). The relatively small differences between the elastic
moduli of healthy liver tissues and MSCs-treated fibrotic lives
suggests the therapeutic efficacy of MSCs in ameliorating liver

FIGURE 3
Multiple mechanical markers performance assessment on the test data group of healthy, diseased, and MSCs-treated fibrotic livers. (A) Data points
for healthy, diseased, and MSCs-treated fibrotic livers have their regions when the two variables are used as classification marker inputs. (B) ROCs of the
classifier with 2, 6, and 9 viscoelastic variables as marker input. (C) The heat map of the Pearson correlation coefficient of viscoelastic variables of healthy,
diseased, andMSCs-treated fibrotic liver tissues. (D)Optimal accuracywas obtainedwhen different numbers of variables were used for different liver
classifications. Here, H, D, and T represent healthy, diseased, and MSCs-treated fibrotic liver tissues, respectively.
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fibrosis. For diseased liver tissue, the elastic modulus is
approximately five times or more than that of healthy tissue
(Ziol et al., 2005), which indicates that the elastic modulus may
serve as a biomechanical marker for assessing liver fibrosis. When
multiple variables were used as input markers, the classification
accuracy reached 0.87, indicating that using multiple makers can
classify liver tissues in different states by the implied relationships
between viscoelastic variables. Therefore, the effect of using all
viscoelastic variables as input markers for liver tissue
classification will gradually show up with the increasing number
of liver tissue statuses such as the grading of liver fibrosis, and
eliminates the process of mechanical marker screening.

Feature ablation studies
In this study, we used nine viscoelastic mechanical variables as

input markers in the classification of liver pathological states, but in
fact, not only do the viscoelastic properties of liver tissues change
when lesions occur, but also other properties such as plasticity,
component protein characteristics, and image characteristics.
Combining viscoelastic properties with these characteristics will
greatly improve the quality of liver lesion diagnosis, but will also
result in a considerable computational requirement, therefore, a
reasonable selection of markers is crucial to improve the efficiency of
liver diagnosis. To determine the minimal information required for
liver state prediction, we first determined the importance (Figure
4A) ranking of the viscoelastic features of the tissue using Support
Vector Machine Recursive Feature Elimination (SVM-RFE).
Subsequently, recursive feature ablation is conducted via cross-
validation to determine the optimal number of features. Then, we
systematically removed individual principal viscoelastic variables
(replacing them with Gaussian noise) and calculated the
performance of the classifier after the removal of each viscoelastic
variable. Through multiple iterations, we found that a single
mechanical marker (αR) could be used to predict liver tissues
with 42% accuracy—apparently higher than random chance
assuming the same probability of selecting a liver status (33.33%,

Figure 4B). The elimination of Esum in the positive-order feature
ablation (Figure 4C) does not generate a significant decrease in
accuracy, but the elimination of E1 and E2 has a significant effect on
accuracy, which results from the high correlation between the elastic
moduli, and a precipitous drop in accuracy when Esum is finally
eliminated in the inverted-order feature ablation. Feature ablation
studies demonstrated that Esum was the viscoelastic variable that
contributed most to prediction accuracy. Feature ablation studies
can determine the importance of input biomarkers and filter out
invalid feature variables, thus improving classifier efficiency in high-
dimensional data classification and liver diagnosis.

A method for evaluating drug treatment effects
Having established the SVM-based classifier that can classify livers in

an interpretable manner, we sought to define a new approach to drug-
based screening using a predictive classifier. To this end, we tested the
classification accuracy of liver tissues after drug treatment against healthy
and diseased livers to determine the effect of the indicated drug on liver
states. The accuracy of classification of treated livers with healthy and
diseased livers reached 0.86 and 0.85 (Figure 3D), respectively. The
MSCs-treated fibrotic liver tissuewas clearly classified fromdiseased liver
tissues and there is a tendency for the elastic modulus to be greatly
reduced, which indicates that the drug treatment has freed them from
the diseased state. The accurate classification of healthy liver tissues also
indicates that the drug treatment has not completely restored them to a
healthy state. Overall, drug treatment allows the liver tissue to recover
from the disease to healthy state. The accuracy of the classification of
liver tissue after drug treatment compared to healthy and diseased liver
tissues allows a clear determination of the effect of drug treatment and
the need for continued drug use. When the classification accuracy of the
MSCs-treated fibrotic liver tissues with healthy liver tissues is reduced to
0.33 and the classification accuracy with diseased tissue reaches a high
level, we can assume that the liver tissue has recovered to its original state
under drug treatment, which is, of course, the ideal situation. As an
example, our method can be used to determine the effect of a drug by
screening the recovery of viscoelastic properties induced by the drug.We

FIGURE 4
Feature ablation studies of the classifier with healthy, diseased, and MSCs-treated fibrotic liver tissues together. (A) The normalized importance of
each feature. Feature ablation (B) from high to low importance and (C) from low to high importance. Feature ablation demonstrates the role of each
principal viscoelastic variable in the prediction of the classifier. Each arrow indicates the cumulative replacement of a given principal viscoelastic variable
with Gaussian noise.
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can further analyze the changes in the main viscoelastic biomarkers to
determine the target of the action of the drug. In addition, in the process
of liver fibrosis, there exists a grading of its lesion degree. At this time, our
three-class classifier can be further extended to achieve accurate grading
of liver fibrosis and provide the basis for subsequent treatment.

Discussions

Machine learning is now a powerful tool for medical diagnosis.
Although many machine learning diagnostic models are mainly
based on the recognition of image technology, they lack suitable
mechanical markers, which makes them rarely used to identify
tissue lesions in similar states or less severe lesions. Here, we
analyzed the creep responses of liver tissues by a self-similar
hierarchical model and obtained the viscoelastic properties of
liver tissues in different states. Then, we built an SVM-based
machine learning classifier with viscoelastic properties as input
mechanical markers. Remarkably, our SVM classifier successfully
identifies elastic modulus Esum and power-law exponent αL as the
strongest predictors of liver tissue status. Furthermore, the
addition of many viscoelastic variables makes the accuracy of
this classifier greatly improved compared to the case where only
a single variable is used. An extension of this work would be the use
of this classifier for the quantitative assessment of drug treatment
effects. The classification accuracy of liver tissue after drug
treatment with healthy and diseased liver tissues can be
obtained towards the classifier, and a lower classification
accuracy with healthy tissue and a higher classification accuracy
with diseased tissue indicated a better recovery effect of the drug.
Furthermore, it is also feasible to combine multiple different states
of liver tissue for classification, which provides a new strategy for
grading liver fibrosis. For such cases, we also give screening
methods based on feature ablation for inputting biomarkers at
high dimensional data. We have shown that a novel classifier,
based on the learned model, can predict the pathological states of
liver tissue based on the implicit relationship of viscoelastic
biomarkers. Once trained, this fully automated classifier can
distinguish between normal, diseased, and MSCs-treated fibrotic
liver tissue without any further human intervention, paving the
way for drug screening and development. Currently, creep testing
relies on liver tissue sections, which, despite their clinical utility,
pose significant limitations. Biopsy-based procurement of liver
tissue sections for clinical purposes is invasive, causing damage
and discomfort. AFM measurements also fall slightly short in
facilitating large-scale lesion diagnosis. However, this study
presents a novel approach for characterizing liver tissue lesion
progression. There are two main advantages of our proposed
method in relation to existing methodologies. One is the
richness of viscoelastic mechanical markers, which is conducive
to improving the reliability of diagnosis. The second is the
quantization of viscoelastic mechanical markers, which is
conducive to improving the accuracy of diagnosis compared
with the qualitative judgment of imaging. In future work,
improving the culture conditions to achieve precise staging of
liver lesions in mice will be the focus. Subsequently, further
validation of the method proposed in this study will then be
carried out, based on the improved staging of liver biopsies

using fibrosis scoring systems. With the advancement of non-
invasive detection techniques for liver tissues, our proposed
viscoelastic mechanics markers and machine learning-based
diagnostic method offer valuable insights for diagnosing liver
tissue lesion progression.
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