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Background: Currently, manual measurement of lumbosacral radiological
parameters is time-consuming and laborious, and inevitably produces
considerable variability. This study aimed to develop and evaluate a deep
learning-based model for automatically measuring lumbosacral radiographic
parameters on lateral lumbar radiographs.

Methods: We retrospectively collected 1,240 lateral lumbar radiographs to train
the model. The included images were randomly divided into training, validation,
and test sets in a ratio of approximately 8:1:1 for model training, fine-tuning, and
performance evaluation, respectively. The parameters measured in this study
were lumbar lordosis (LL), sacral horizontal angle (SHA), intervertebral space angle
(ISA) at L4–L5 and L5–S1 segments, and the percentage of lumbar
spondylolisthesis (PLS) at L4–L5 and L5–S1 segments. The model identified
key points using image segmentation results and calculated measurements.
The average results of key points annotated by the three spine surgeons were
used as the reference standard. The model’s performance was evaluated using
the percentage of correct key points (PCK), intra-class correlation coefficient
(ICC), Pearson correlation coefficient (r), mean absolute error (MAE), root mean
square error (RMSE), and box plots.

Results: The model’s mean differences from the reference standard for LL, SHA,
ISA (L4–L5), ISA (L5–S1), PLS (L4–L5), and PLS (L5–S1) were 1.69°, 1.36°, 1.55°,
1.90°, 1.60%, and 2.43%, respectively. When compared with the reference
standard, the measurements of the model had better correlation and
consistency (LL, SHA, and ISA: ICC = 0.91–0.97, r = 0.91–0.96, MAE =
1.89–2.47, RMSE = 2.32–3.12; PLS: ICC = 0.90–0.92, r = 0.90–0.91, MAE =
1.95–2.93, RMSE = 2.52–3.70), and the differences between them were not
statistically significant (p > 0.05).

Conclusion: The model developed in this study could correctly identify key
vertebral points on lateral lumbar radiographs and automatically calculate
lumbosacral radiographic parameters. The measurement results of the model
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had good consistency and reliability compared to manual measurements. With
additional training and optimization, this technology holds promise for future
measurements in clinical practice and analysis of large datasets.

KEYWORDS

artificial intelligence, deep learning, automatic measurement, lateral lumbar radiograph,
lumbosacral radiographic parameters

1 Introduction

Low back pain is a common clinical symptom of lumbar
diseases, affecting the quality of life and health of patients of all
ages while imposing significant economic burdens on individuals,
families, and governments (Hoy et al., 2012; Hong et al., 2013;
Maher et al., 2017; Kim et al., 2019). According to research, low back
pain is associated with lumbosacral instability (Panjabi, 2003).
While many studies have focused on the treatment and
prevention of lumbar diseases, there has been a shift toward
researching the role of the lumbosacral sagittal alignment in
lower back pain and lumbar diseases, emphasizing the
importance of accurately measuring lumbosacral radiographic
parameters (Kalidindi et al., 2022; Tartara et al., 2023).

The presence of various spinal disorders is linked to abnormalities
in the spine’s sagittal alignment, making proper spinal sagittal
alignment critical for quantitatively assessing spinal health (Scheer
et al., 2013; Schwab et al., 2013; Liu et al., 2015; Brink et al., 2017).
Spinal instability and the resulting compensatory reactions can put
additional strain on important spinal structures, resulting in pain
(Diebo et al., 2015; Lafage et al., 2017). Therefore, achieving proper
sagittal plane alignment is a crucial treatment goal for spine surgeons.
Accurately assessing and quantifying changes in lumbosacral
radiographic parameters is critical for clinical diagnosis, treatment,
surgical planning, and postoperative analysis of spinal diseases (Kumar
et al., 2001; Schwab et al., 2010). However, current manual
measurement method is time-consuming, rely on physician
experience, and are susceptible to inter-observer and intra-observer
variability, resulting in significant measurement errors that have an
impact on clinical diagnosis and decision-making (Loder et al., 2004;
Dang et al., 2005; Chan et al., 2014). Obviously, the traditional manual
measurement method has failed to keep up with the advancement of
imaging technology and the increase in the number of imaging
examinations, making it difficult to meet the demand for accurate
clinical diagnosis and treatment.

With the recent rapid development of artificial intelligence and
its increasing integration into the field of orthopedics, using artificial
intelligence technology to accurately process complex X-ray image
data has emerged as a research trend (Wang et al., 2022). Recently,
many studies have usedmodels based on deep learning algorithms to
measure various spinal parameters, improving the accuracy and
speed of medical images analysis (McBee et al., 2018).

The goal of this study was to develop a deep learning-based
model for automatically measuring lumbosacral radiographic
parameters on lateral lumbar radiographs. Furthermore, this
study will evaluate the performance of the model, which is
expected to be an effective tool for replacing manual
measurements if it achieves high accuracy and efficiency in
measuring lumbosacral radiographic parameters.

2 Materials and methods

2.1 Date preparation

We retrospectively collected data from 2,853 patients who
received standing lateral lumbar radiographs at the orthopedics
outpatient department of Beijing Chaoyang Hospital between
October 2022 and October 2023. The inclusion criteria were
adult patients with vertebral endplate closure. The following
exclusion criteria were used (Maher et al., 2017): a history of
spinal surgery (Kim et al., 2019); severe spinal deformity (Hong
et al., 2013); patients with metabolic bone disease, spinal fracture,
tuberculosis, and tumors; and (Hoy et al., 2012) patients with poor
X-ray image quality, severe osteophyte formation, or other factors
affecting measurements. The hospital’s institutional review board
and ethics committee approved this study. Furthermore, all aspects
of this study conformed to the principles outlined in the Declaration
of Helsinki.

A total of 1,240 lateral lumbar radiographs were included after
screening based on the inclusion and exclusion criteria. These images
were randomly divided into the training set, validation set and test sets
in the ratio of 8:1:1. The test set (n = 124) was used to evaluate the final
prediction performance of the model; the training set (n = 992) was
used to train the model and optimize the model parameters; and the
validation set (n = 124) was used to adjust the model hyperparameters
and conduct a preliminary evaluation of the model performance.
Figure 1 shows the flowchart of image screening.

2.2 Key point annotations

Three spine surgeons (S1, S2, and S3) received standardized
professional training and annotated 1,240 lateral lumbar
radiographs using the Labelme software for model training and
validation. Figure 2 depicts the detailed process of annotating key
points, naming vertebral key points, and measuring parameter
values (Koslosky and Gendelberg, 2020; Morita et al., 2020; Zhou
et al., 2022). All images were annotated independently by each spine
surgeon, with no knowledge of the annotations of the others. The
test set was re-annotated by the spine surgeon (S1) after 1 month to
evaluate intra-observer reliability.

2.3 Training model

First, lateral lumbar radiographs were annotated with the
Labelme software. The model was then trained with the
segmentation network model based on RADMFNet algorithm
(described in greater detail later in Section 2.4 of the article).
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Histogram enhancement, random Gamma transformation, and
random rotation of the original and annotated images were used
to increase the number of samples and improve the robustness of the
model (Shin et al., 2020). Finally, the corner detection algorithm was
used to process the segmentation results and identify the
corresponding key points. The model then computed LL, SHA,
ISA(L4–L5), ISA(L5–S1), PLS(L4–L5), and PLS(L4–L5) using the
positions of these key points. The training process of the model is
shown in Figure 3.

2.4 Segmentation network

To create a fast and accurate segmentation network model, this
study used dilated convolution (Zhang et al., 2020), ResNet (Tian et al.,
2022), attentionmechanism (Rondinella et al., 2023),multi-scale feature
fusion (Gao et al., 2023), and other technologies. Figure 4A illustrates
the structure of the segmentation network model.

First, the images were fed into the backbone network, which used
the multi-scale attention mechanism to extract image features.

Figure 4B shows the structure of the backbone network based on
the multi-scale attention mechanism. The backbone network consisted
of three distinct scale branches. Among them, the 3 × 3 Convolution +
BN + SiLU module was utilized for feature extraction. The
Res–Attention Block was primarily improved based on the
SE–Resnet structure. The two consecutive FC layers (fully connected
layers) of SE–Resnet were converted to 1 × 1 convolutions, significantly
increasing the training efficiency of the network. Meanwhile, the
activation function was changed from ReLU to SiLU, increasing the
sensitivity of the model to edge information. The fusion module fused
the feature maps from multiple scales, reducing the risk of overfitting
and improving the generalization ability of themodel. Figure 4C depicts
the network structure of the fusionmodule. First, themulti-scale feature
maps were unified to the same scale using the sampling operation. The
feature maps were then concatenated, and 1 × 1 convolution was used
to perform a preliminary fusion of inter-channel information. To
ensure the integrity of detailed information, the preliminary fusion
result was added to the featuremap of theminimum scale and subjected
to 3 × 3 convolution operations, effectively completing the
feature fusion.

FIGURE 1
Flowchart of the process of selecting images.
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Next, the feature maps of the backbone network were processed by
two branches: the Residual-basedDilated ConvolutionalModule and the
Convolutional Feature Extraction Module. The Residual-based Dilated
Convolutional Module must perform three dilated convolution
operations on the feature maps: 1 × 1, 3 × 3, and 5 × 5. Dilated
convolution broadened the receptive field, allowing for a more
comprehensive perception of image features. To achieve a more
powerful feature expression, the feature maps processed by each
dilated convolution operation were concatenated and then subjected
to a 1 × 1 convolution operation to fuse the features. Meanwhile, the
information on the feature maps of the backbone network was better
preserved by referencing the residuals, which avoided problems like
gradient vanishing and improved the robustness of the model. The
Convolutional Feature Extraction Module primarily re-extracted the
image features obtained by the backbone network. It then combined the
re-extracted image features with the feature maps from the Residual-
basedDilatedConvolutionalModule to generate the segmentation result.

2.5 Identifying key points

The identification of key points was based on the segmentation
results of the images. Figure 5 illustrates a flowchart for identifying

key points. First, the lumbar vertebra and sacrum were extracted
from the segmentation results by connecting regions. The Harris
corner detection method was then applied to identify key points
(Harris and Stephens, 1988). Harris corner detection was used to
detect corners in images. First, this algorithm calculated the
gradient at each pixel in images and the degree of gradient
change in the neighborhood around each pixel. Then, it
evaluated the direction and intensity of grayscale changes at
each pixel by computing the covariance matrix. Based on the
eigenvalues of the covariance matrix, the algorithm calculated the
corner response function to determine whether the pixel was a
corner. Finally, the pixel with the largest response value was
selected by the method of non-maximum suppression to obtain
the final corner point detection result.

2.6 Statistical analysis

SPSS (version 27.00; Chicago, Illinois, United States) was used
for statistical analysis. The distribution of the demographic
information of the patients across the training set, validation set,
and test sets was represented with descriptive statistics. A p <
0.05 was considered statistically significant.

FIGURE 2
Annotating key points, naming vertebral key points, andmeasuring parameter values. (A) A typical example image annotated with Labelme software.
(B) L1SA: Vertex of the anterior superior edge of L1 vertebra; L1SP: Vertex of the posterior superior edge of L1 vertebra; L4IA: Vertex of the anterior inferior
edge of L4 vertebra; L4IP: Vertex of the posterior inferior edge of L4 vertebra; L5SA: Vertex of the anterior superior edge of L5 vertebra; L5SP: Vertex of the
posterior superior edge of L5 vertebra; L5IA: Vertex of the anterior inferior edge of L5 vertebra; L5IP: Vertex of the posterior inferior edge of
L5 vertebra; S1SA: Vertex of the anterior superior edge of S1 vertebra; S1SP: Vertex of the posterior superior edge of S1 vertebra. (C) Lumbar lordosis (LL):
The angle between the tangent line of the upper endplate of the L1 vertebra and the tangent line of the upper endplate of the S1 vertebra. (D) Sacral
horizontal angle (SHA): The angle between the tangent line of the upper endplate of the S1 vertebra and the horizontal line. (E) Intervertebral space angle
(ISA): The angle between the tangent line of the lower endplate of the upper vertebra and the tangent line of the upper endplate of the lower vertebra. (F)
Percentage of lumbar spondylolisthesis (PLS): Measure the distance (N) between the extension line of the posterior edge of the upper vertebra and the
extension line of the posterior edge of the lower vertebra, and then measure the distance (M) between two points on the anterior and posterior edges of
the upper endplate of the lower vertebra. Percentage of lumbar spondylolisthesis = N/M × 100%. Because lumbar instability is most common at the
L4–L5 and L5–S1 segments, this study only measures ISA and PLS at the L4–L5 and L5–S1 segments.
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2.6.1 Reliability of the key point annotations
To evaluate inter-observer and intra-observer reliability of key

point annotations, percentages of key points within distance
thresholds of 1, 2, 3, 4, and 5 mm were calculated.

2.6.2 Segmentation performance
The accuracy and Dice coefficient were used to evaluate the

segmentation performance of the model. The segmentation
results for the lumbar and sacral regions were evaluated
separately. We further compared the segmentation

performance of our model with four other existing models,
including UNet, Att-UNet, UNet 3+, and TransUNet. All
models were trained on the same dataset.

2.6.3 Performance of key point prediction
The performance of the model in predicting key points was

evaluated using the PCK. The average of the results annotated by
three spine surgeons was the reference standard. PCK denoted the
percentage of predicted key points that were within a radius r of the
reference standard.

FIGURE 3
Flowchart of the model training.

FIGURE 4
The segmentation network model. (A) Structure of the segmentation network. (B) Structure of the backbone network based on the multi-scale
attention mechanism. (C) Network structure of the fusion module.
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2.6.4 Measurement performance of the model
We compared and evaluated the measured values of the model

with the average measured values of the three spine surgeons. We
calculated the intra-class correlation coefficient (ICC), Pearson
correlation coefficient (r), mean difference (MD), standard
deviation (SD), mean absolute error (MAE), and root mean
square error (RMSE) between the reference standard and model
estimates to evaluate the performance of the model. ICC is an
indicator of consistency, and ICC ≥ 0.75 is deemed sufficiently
reliable. |r| ≥ 0.7 indicates a strong correlation. Additionally, box
plots were used to show the distribution of error values between the
measured values of the model and reference standard.

3 Results

3.1 Demographic data

We obtained 1,240 lateral lumbar radiographs (male-to-female
ratio of 1:1). They were divided into three sets: 80% for training, 10%
for validation, and 10% for test. The included data sets showed no
significant differences in gender composition or age. The
Demographic data distribution is shown in Table 1.

3.2 Reliability of the key point annotations

The percentage of intra-observer annotation distance within the
3 mm threshold was 96%, while the inter-observer annotation

distance within the 3 mm threshold was 83% (S1 and S2), 81%
(S1 and S3), and 80% (S2 and S3), respectively (Table 2).

3.3 Segmentation performance

For lumbar segmentation, the Dice coefficient and accuracy were
0.962 and 0.947, respectively. For sacrum segmentation, the Dice
coefficient and accuracy were 0.954 and 0.939, respectively. The
segmentation results for the lumbar region were better than those for
the sacrum. Table 3 and Figure 6 showed that the segmentation
performance of our model was better than the other four
existing models.

3.4 Performance of key point prediction

Table 4 shows that the PCK within the 3-mm distance threshold
ranged from 88% to 98%.

3.5 Measurement performance of the model

Comparing the measured values of the model with the reference
standard, the result indicated that the reference standards for LL, SHA,
ISA(L4–L5), ISA(L5–S1), PLS(L4–L5), PLS(L5–S1) were 49.77° ± 7.82°,
38.09° ± 6.85°, 14.86° ± 4.07°, 19.15° ± 8.07°, 12.27% ± 10.31%, and
13.36% ± 9.25%, and the measured values of the model were 49.20° ±
7.03°, 37.79° ± 6.53°, 14.15° ± 3.78°, 18.86° ± 7.63°, 12.45% ± 10.38%, and

FIGURE 5
Flowchart for identifying key points.
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13.58% ± 10.75%, respectively. The differences between them were not
statistically significant (p > 0.05), as shown in Table 5.

The results of our study found that the measured values of the
model for lumbosacral radiographic parameters were consistent and
reliable (LL, SHA, and ISA: ICC = 0.91–0.97, r = 0.91–0.96, MAE =
1.89–2.47, RMSE = 2.32–3.12; PLS: ICC = 0.90–0.92, r = 0.90–0.91,
MAE = 1.95–2.93, RMSE = 2.52–3.70), as shown in Table 6. In
addition, to visually demonstrate the robustness of the algorithm,
statistical analyses were performed on the maximum, upper quartile,
median, lower quartile, and minimum errors between the measured
value of the model and the reference standard for the lumbar angular
parameters and PLS, as illustrated in Figure 7.

4 Discussion

Accurate measurement of lumbosacral radiographic parameters of
the lumbar spine is critical for biomechanics evaluation, clinical
diagnosis, surgical planning, and prognosis prediction of lumbar
diseases (Sparrey et al., 2014; Azimi et al., 2021; Schlösser et al.,
2021). However, manual measurement of these parameters is time-
consuming and laborious, and inevitably produces considerable
variability. This study aimed to develop an accurate artificial

intelligence automated measurement technique that could recognize
and segment the lumbar and sacrum on lateral lumbar radiographs, as
well as automatically measure lumbosacral radiographic parameters.

Our model had excellent segmentation quality and precise
measurement of lumbosacral radiographic parameters. The Dice
coefficient and accuracy of lumbar segmentation were 0.962 and
0.947, respectively. For sacrum segmentation, the Dice coefficient
and accuracy were 0.954 and 0.939, respectively. Our study found
that (Maher et al., 2017): The model accurately and automatically
identified the key points, with the PCK ranging from 88% to 98%
within the 3-mm distance thresholds (Kim et al., 2019); The ICC
(MAE) for LL, SHA, and ISA ranged from 0.91 to 0.97 (1.89–2.47),
and the ICC (MAE) for PLS ranged from 0.90 to 0.92 (1.95–2.93),
which was comparable to or better than spine surgeons. The
excellent performance of the model in measuring PLS is
noteworthy. Due to the small volume of vertebrae, slight errors
can cause significant changes in PLS values, leading to incorrect
staging of lumbar spondylolisthesis. It is challenging to accurately
quantify the severity of lumbar spondylolisthesis.

The traditional manual measurement method is based on the
experience and judgment of the measurer, which results in inter-
observer and intra-observer variability (Loder et al., 2004; Dang et al.,
2005; Chan et al., 2014). Studies have shown that measurement errors
can range from 3° to 10° (Loder et al., 2004; Mok et al., 2008). Chen et al.
(2010) found that it was clinically significant to perform biomechanical
or clinical analysis when the average distance between key points
annotated by different observers was less than 3 mm. In this study,
the percentage of key points annotated by different spine surgeonswithin
the 3 mm threshold ranged from 81% to 83%, while the PCK predicted
by themodelwithin a 3mmdistance threshold ranged from88% to 98%.
This indicated that themeasurement results of themodel exceeded those
of our spinal surgeons.

The segmentation network model developed in this study
combined dilated convolution, RestNet, attention mechanism,

TABLE 1 Demographic characteristics of the patients.

Characteristic Training set Validation set Test set

Number 992(80) 124(10) 124(10)

Age(year)* 52.46 ± 16.54 50.85 ± 16.16 51.79 ± 17.23

Sex

Male 493(49.7) 59(47.6) 68(54.8)

Female 499(50.3) 65(52.4) 56(45.2)

Data are expressed as the number of patients, with percentages are in parentheses. * Data is expressed as mean ± SD.

TABLE 2 Intra-observer and inter-observer reliability (%) for key point
annotations.

Threshold(mm) 1 2 3 4 5

Intra-observer reliability 80 91 96 98 100

Inter-observer reliability

S1 vs. S2 28 65 83 91 94

S1 vs. S3 26 64 81 88 93

S2 vs. S3 24 61 80 86 91

TABLE 3 A comparison of the segmentation performance of our model with four other existing models.

Performance UNet Att-UNet UNet 3+ TransUNet Our

Lumbar

Dice coefficient 0.937 0.946 0.947 0.937 0.962

Accuracy 0.925 0.943 0.939 0.942 0.947

Sacrum

Dice coefficient 0.918 0.925 0.933 0.911 0.954

Accuracy 0.911 0.913 0.934 0.908 0.939
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multi-scale feature fusion, and other methods that offered high
speed and high accuracy. We found that this model obtained these
measurements much faster than spine surgeons, with the model
obtaining measurements in 0.5 s instead of several minutes for spine
surgeons. In addition, we used histogram enhancement, random
Gamma transform, and random rotation on the images to increase
data volume and improve the performance of the model. However,
in the L5–S1 region, PCK predicted by the model within the 1–2 mm
threshold was relatively poor due to the overlap of the iliac, lumbar,
and sacrum on the lateral lumbar radiographs. This also explained
why the segmentation results for the lumbar region were superior
those for the sacrum. For the image overlap problem, we intend to
manually adjust the results based on the prediction of the model and
incorporate them into the training set to continuously optimize
the algorithm.

Many studies had used deep learning-based models to
automatically measure spinal parameters (Pang et al., 2019;

Wang et al., 2019; Huang et al., 2020; Korez et al., 2020;
Schwartz et al., 2021; Vrtovec and Ibragimov, 2022). Schwartz
et al. (2021) used MultiResUNet for image segmentation and
spinopelvic parameter calculations from lateral lumbar
radiographs. The algorithm developed in their study worked well
in segmenting images, with an overall Dice coefficient and an
accuracy of 0.951 and 0.936, respectively. Referring to a
systematic review published by Vrtovec and Ibragimov (2022), it
was found that our model based on the RADMFNet algorithm
outperformed models based on the UNet, Mask R-CNN and
MultiResUNet algorithms in terms of segmentation performance.
Korez et al. (2020) conducted a study using RetinaNet and U-Net
algorithms to collect measurements in the sagittal plane. Their study
included patients with internal spinal fixation devices; however, the
proportion of images with internal fixation devices was not reported,
and no subgroup analyses were performed to determine the effect of
internal fixation devices on model performance. It is worth noting

FIGURE 6
The comparison of the segmentation results of our model with UNet, Att-UNet, UNet 3+, and TransUNet.

TABLE 4 The PCK for key points at 1–5 mm distance thresholds.

Threshold(mm) L1SA L1SP L4IA L4IP L5SA L5SP L5IA L5IP S1SA S1SP

≤1 29 25 32 26 21 15 35 22 15 16

≤2 77 71 82 81 63 62 83 67 60 61

≤3 93 94 98 94 89 94 96 90 88 89

≤4 100 98 100 99 97 99 100 98 99 92

≤5 100 99 100 100 99 99 100 100 100 97
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that most studies used annotations from a single or two observers
(Pang et al., 2019; Wang et al., 2019; Huang et al., 2020; Korez et al.,
2020; Vrtovec and Ibragimov, 2022), whereas our study used
annotations from three observers, thus constructing a more
reliable reference standard. To achieve high accuracy, it is

essential to train the model on a large dataset. However,
collecting and annotating images can be a time-consuming and
expensive process (Willemink et al., 2020). In the future, while
expanding the dataset, the training set can be enriched by using data
enhancement (applying image flipping, panning, rotating, cropping,

TABLE 5 Measured values of three spine surgeons and the measured values of the model.

S1 S2 S3 Mean Model t p

LL (°) 49.82
±7.79

49.65
±7.84

49.90
±7.91

49.77
±7.82

49.20
±7.03

0.58 0.58

SHA (°) 38.21
±6.84

37.95
±6.96

38.14
±6.93

38.09
±6.85

37.79
±6.53

1.47 0.15

ISA(L4-L5) (°) 15.02
±4.11

14.72
±4.05

14.81
±4.17

14.86
±4.07

14.15
±3.78

2.06 0.06

ISA(L5-S1) (°) 19.06
±8.10

19.39
±8.25

18.94
±8.41

19.15
±8.07

18.86
±7.63

0.28 0.79

PLS(L4-L5) (%) 12.33
±10.34

12.39
±10.42

12.09
±10.36

12.27
±10.31

12.45
±10.38

0.61 0.54

PLS(L5-S1) (%) 13.50
±9.20

13.22
±9.28

13.39
±9.39

13.36
±9.25

13.58
±10.75

0.74 0.48

Data are expressed as mean ± SD.

p < 0.05 indicates that the difference between the measured values of the model and the reference standard is statistically significant.

TABLE 6 A comparison of the measured values of the model to the reference standard.

Parameter ICC (95%CI) r MD SD MAE RMSE

LL (°) 0.97(0.94–0.97) 0.96* 1.69 2.87 2.04 2.65

SHA (°) 0.94 (0.93–0.96) 0.94* 1.36 1.84 1.89 2.32

ISA(L4-L5) (°) 0.96 (0.95–0.97) 0.95* 1.55 2.41 2.08 2.59

ISA(L5-S1) (°) 0.91 (0.91–0.94) 0.91* 1.90 3.61 2.47 3.12

PLS(L4-L5) (%) 0.92 (0.89–0.92) 0.91* 1.60 0.24 1.95 2.52

PLS(L5-S1) (%) 0.90 (0.88–0.90) 0.90* 2.43 0.69 2.93 3.70

95% CI: 95% confidence interval.

*p < 0.05 indicates a statistically significant correlation between the reference standard and the measured values of the model.

FIGURE 7
The box plots illustrate the distribution of error values between the measured values of the model and reference standard for the parameters of
lumbar spine angle (A) and PLS (B).
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and intensity transformations), ensemble learning (training multiple
models and then combining their results), or synthetic case
generation (for example, using generative adversarial networks)
(Shin et al., 2020; Vrtovec and Ibragimov, 2022).

Although this study has made advancements in automatically
measuring lumbosacral radiographic parameters, some limitations
remain. First, the training set for this study consisted of 992 lateral
lumbar radiographs. For complex spinal diseases and clinical settings,
this amount of data is insufficient. Furthermore, we included patients
with an uneven age distribution and all from the same hospital, making
it impossible to determine whether the performance of the model was
influenced by age, X-ray machines from different hospitals, or
variations in imaging acquisition techniques. In the future, we plan
to use a larger, more diverse, andmulticenter cohort to further train the
model, increasing its clinical utility. Third, ourmodel is currently unable
to identify lumbosacral transitional vertebrae. One reason for this is that
spine surgeons do not accurately identify and annotate lumbosacral
transitional vertebrae. Another reason is that our algorithm has not yet
incorporated the function to identify anatomical variations and
abnormalities. Future studies could further include data from
lumbosacral transitional vertebrae to determine whether the
performance of the model is affected by both anatomical variations
and abnormalities, allowing the model to be improved even further.
Finally, a limitation of this algorithm is the error handling. The box
plots demonstrated that the overall extreme error values of ISA and PLS
were larger in the L5–S1 segment than those in the L4–L5 segment.
Because in the fifth lumbar vertebra and sacral regions, segmentation
defects may occur and the segmentation quality of the model was poor,
leading to inaccurate measurements. We should incorporate error
handling functionality into the algorithm to prevent the generation
of highly erroneous measurement results when key points are not
correctly identified. So far, such error handling capability has only been
proposed in the study by Schwartz et al. (2021).

5 Conclusion

In summary, we had developed a model that could accurately
identify vertebral key points and automatically calculate lumbosacral
radiographic parameters. This model measured LL, SHA, ISA, and
PLS on lumbar lateral radiographs with high accuracy and speed.
Furthermore, compared to manual measurements, the measurements
of the model were more consistent and reliable. The automatic
measurement of lumbosacral radiographic parameters is
anticipated to have a significant impact on spinal surgery in the
coming years. In clinical practice, our model can help spinal surgeons
save time and effort when measuring radiographic parameters.
Besides, the model can be applied in research settings to conduct
large-scale studies on lumbar anatomical parameters. In future
research, we intend to include additional datasets and disease
categories to improve the accuracy and stability of the model, as
well as to continuously explore and improve the model’s algorithms.
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