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The conjugation reaction is the central step in the manufacturing process of
antibody-drug conjugates (ADCs). This reaction generates a heterogeneous and
complexmixture of differently conjugated sub-species depending on the chosen
conjugation chemistry. The parametrization of the conjugation reaction through
mechanistic kinetic models offers a chance to enhance valuable reaction
knowledge and ensure process robustness. This study introduces a versatile
modeling framework for the conjugation reaction of cysteine-conjugated ADC
modalities—site-specific and interchain disulfide conjugation. Various
conjugation kinetics involving different maleimide-functionalized payloads
were performed, while controlled gradual payload feeding was employed to
decelerate the conjugation, facilitating a more detailed investigation of the
reaction mechanism. The kinetic data were analyzed with a reducing reversed
phase (RP) chromatography method, that can readily be implemented for the
accurate characterization of ADCs with diverse drug-to-antibody ratios,
providing the conjugation trajectories of the single chains of the monoclonal
antibody (mAb). Possible kinetic models for the conjugation mechanism were
then developed and selected based on multiple criteria. When calibrating the
establishedmodel to kinetics involving different payloads, conjugation rates were
determined to be payload-specific. Further conclusions regarding the kinetic
comparability across the two modalities could also be derived. One calibrated
model was used for an exemplary in silico screening of the initial concentrations
offering valuable insights for profound understanding of the conjugation process
in ADC development.
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1 Introduction

Targeted anticancer therapeutics are becoming increasingly prevalent in the field of
biopharmaceuticals. One important class in this toolbox are antibody-drug conjugates
(ADCs), which consist of a conventional monoclonal antibody (mAb) chemically coupled
with a highly potent small-molecule (so called “drug” or “payload”). The success of an ADC
depends on conjugating a specific number, typically between two to eight, of cytotoxic
payload onto a mAb, determining the final ADC potency and toxicity (Chau et al., 2019).
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Related to this, one facet is the choice of the conjugation strategy
which controls critical quality attributes (CQA) of the final product,
such as the drug-to-antibody ratio (DAR) and drug load distribution
(DLD) (Ponziani et al., 2020; Dean et al., 2021). To overcome
problems associated with unfavorable DAR heterogeneities and to
improve the overall potency, site-specific conjugation or more
hydrophilic linkers have been developed (Panowski et al., 2014;
Joubert et al., 2020). On the downside, these continuous advances
hinder the development of a standardized platform process, and
thus increase the time and effort to develop a scalable and robust
manufacturing process (Hutchinson et al., 2018; Matsuda and
Mendelsohn, 2021).

Quality by Design (QbD) is increasingly expected by
regulatory agencies, aiming to ensure consistent product
quality and improve process understanding (Anurag and
Winkle, 2009). One major aspect in QbD is the utilization of
modeling techniques which has been proven to be an invaluable
tool for gaining insights into complex systems and optimizing
manufacturing operations (Roush et al., 2020; Babi et al., 2022).
Process modeling enables parametrization of (bio)chemical
effects dominating bioprocesses and hence, understanding the
impact of such effects in silico. In essence, process models serve as
a basis for digital and automation technologies that can accelerate
the development of efficient and robust manufacturing processes
(Narayanan et al., 2020).

For biochemical reactions, one particularly important aspect
of process modeling is kinetic modeling, which focuses on
characterizing the rates and complex mechanisms of reactions
involved. In contrast to statistical approaches, such as Design of
Experiment (DoE) which purely rely on the statistical
relationship between input and output variables, kinetic
models provide a quantitative description of the underlying
reaction kinetics, elucidating the impact of various factors
such as temperature, pH, reactant concentrations (Taylor
et al., 2022). Previous work has demonstrated the successful
establishment of kinetic models in the area of bioprocessing,
e.g., for biomass conversion (Vollmer et al., 2022), fermentation
(Kyriakopoulos et al., 2018) or small-molecule synthesis
(Ashworth et al., 2019), and with a special focus on protein
modification, e.g., for protein PEGylation (Pfister et al., 2016),
antibody oxidation (Tang et al., 2020) or antibody reduction for
ADCs (Nayak and Richter, 2023). The challenge of creating a
kinetic model usually centers around finding the correct rate laws
for each individual reaction step and their corresponding rate
constants. This can be cumbersome due to the presence of
multiple interacting species or complex reaction networks. To
find the most reliable process model among possible model
candidates, different techniques have been proposed in the
literature to assess the quality of the estimated parameters
(e.g., parameter identifiability analysis or Fisher Information
Matrix) and quantifying the output uncertainty (Sin et al.,
2009; Anane et al., 2019; Rodman and Gerogiorgis, 2020).

In ADC manufacturing, the conjugation reaction represents a
key step as it generates the ADC molecule (Abdollahpour-
Alitappeh et al., 2019). Comprehensive understanding of the
kinetics of this reaction step is vital for process developers, as
it enables the minimization of payload usage, thereby reducing
the cost-of-goods. Consequently, employing less payload also

facilitates the removal of free unconjugated payload, which is
crucial to minimize toxicity of the final product (Fernandez-
Cerezo et al., 2023). The currently available literature guiding
process development for ADCs is scarce (Matsuda et al., 2020).
Typically, DoE methodologies are utilized to gain knowledge
about reaction parameters, such as reactant concentrations,
temperature, time or pH, affecting the conjugation process
(Stump and Steinmann, 2013), which can be augmented when
high-throughput screenings (Andris et al., 2018) or continuous
flow reactors (Nakahara et al., 2022) are used to automatize
experimental work. However, DoEs cannot provide a deep
understanding of the molecular or chemical mechanisms that
drive the reaction. Andris et al. (2019) developed a mechanistic
kinetic model for a site-specific conjugation reaction using a
pseudo payload. The study showcases the benefit of the kinetic
model as a versatile in silico decision tool for the investigation
and development of the conjugation reaction. In subsequent
studies, we could show that conjugation kinetic models realize
their full potential by coupling a kinetic model with
computational fluid dynamics (CFD) to study large-scale
conjugation reactions (Weggen et al., 2023), and enable real-
time monitoring of non-observable ADC species during the
reaction through combination with UV/Vis spectroscopy via
an extended Kalman Filter (Schiemer et al., 2023). However,
applications of this kinetic model are still limited due to various
reasons: 1) The reliance on an analytical technique that is
performed under native (non-denaturing) conditions which is
usually limited to ADCs with low DAR values; 2) a relatively
small concentration range up to 2.5 g/L, whereas actual
operational conditions may be higher, typically around 20 g/L;
3) the unproven transferability of the kinetic model to other
payloads; and 4) the unverified application to alternative
conjugation modalities such as interchain cysteine conjugation.

This study focuses on mechanistic modeling of the conjugation
kinetic for two prominent cysteine-based modalities, site-specific
(DAR 2) and interchain disulfide (DAR 8) conjugation, which
represent a main part of current conjugation chemistries. Both
modalities rely on the conjugation to reactive cysteines, but differ
in the number and location of the reactive cysteines on the mAb.
Batch and fed-batch conjugation kinetics are generated across a
broad range of initial mAb concentrations and drug excess. Time-
course samples are analyzed using a widely employed and easily
implemented reducing reversed phase ultrahigh performance
liquid chromatography (RP-UHPLC) method that separates the
conjugated mAb into its respective subunits prior to analysis,
thereby producing well-resolved chromatograms that illustrate
conjugation state of heavy and light chains. Consequently, the
kinetic data represents the conjugation trajectories of heavy and
light chains. Due to the different quantities of reacting species in
the two modalities, multiple kinetic model candidates are proposed
and the optimal number of kinetic rates for each model type is
chosen based on multiple criteria: parameter identifiability,
parameter uncertainty and prediction errors. In addition,
absorbance measurements are conducted to determine the
stability of each payload in conjugation buffer. Ultimately, an in
silico screening is performed accounting for the effects of reactant
concentration and exemplifying the usage for process
optimization.
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2 Materials and methods

2.1 Experimental conjugation kinetic studies

The kinetic datasets encompass two distinct ADC modalities.
The datasets 1 and 2 use an engineered IgG1 mAb—ADC1—with
two inserted cysteines in the hinge region for a site-specific “DAR 2”
conjugation to engineered cysteines. The datasets 3 and 4 use two
different IgG1 mAbs—ADC2 and ADC3—for a “DAR 8”
conjugation to reduced cysteines that are usually engaged in
interchain disulfide bonds. Table 1 summarizes molecules and
conjugation conditions. Datasets 1, 2 and 4 were generated at
AstraZeneca and dataset 3 at Karlsruhe Institute of Technology
(KIT). Minor differences due to different raw materials in
chemicals and analytical devices are expected.

2.1.1 Chemicals, ADCs and functionalization steps
For DAR 2 conjugation of ADC1, the antibody was initially fully

reduced through treatment with tris (2-carboxyethyl) phosphine
hydrochloride (TCEP, EMD Millipore), followed by a buffer
exchange using Vivaspin 20 (30 kDa MWCO, Cytiva) and a re-
oxidation of the interchain disulfides with (L)-dehydroascorbic acid
(DHAA, Sigma-Aldrich). Conjugation was performed using a
maleimide-functionalized payload. Two payloads were compared
for ADC1, a cytotoxic payload (“Drug1”) and a nontoxic surrogate
N-(1-pyrenyl)-maleimide (NPM, Merck KGaA). For DAR 8
conjugation of ADC2 and ADC3, a full reduction of the
interchain disulfides with TCEP was performed. Conjugation for
ADC2 was carried out with NPM, while for ADC3 another cytotoxic
payload (“Drug2”) was used. For reaction quenching, N-acetyl
cysteine (NAC, Merck KGaA) was used. All payloads were
dissolved in DMSO (Sigma-Aldrich). All other solutions were
prepared with 20 mM sodium phosphate buffer (J.T. Baker),
1 mM EDTA (EMD Millipore), pH 7.0. For sample pretreatment
for DAR analysis, samples were diluted with denaturing buffer
containing guanidine HCl (Thermo Fisher), Tris (Thermo
Fisher), EDTA (EMD Millipore) at pH 7.6 and reduced with
dithiothreitol (DTT, Thermo Fisher). For the sample analysis, a
RP-UHPLC (Agilent Technologies) with acetonitrile (VWR) and
HPLC water (VWR) with 0.1% (v/v) trifluoroacetic acid (Thermo
Scientific) as mobile phases were used.

2.1.2 Conjugation kinetics
For site-specific DAR 2 conjugation (ADC1), the antibody was

initially treated with the reducing agent TCEP, which reduces both
the engineered inserted cysteine residues, as well as cysteines
engaged in interchain disulfide bonds. The reducing agent was

subsequently removed and the buffer was exchanged, before the
antibody was mildly re-oxidized with DHAA which allows re-
formation of interchain disulfide bonds, leaving only the two
inserted cysteines available for conjugation. DAR 2 conjugation
were performed by adding either Drug1 or NPM solution to the re-
oxidized mAb solution in a microcentrifuge tube at 1 mL scale.
Selected conditions were performed in duplicates. For conjugation
to reduced interchain disulfides, the native mAb was completely
reduced. In the DAR 8 conjugations of ADC2 ten out of thirteen
kinetics were performed in fed-batchmode, where drug solution was
continuously added to resolve the fast time-course of the individual
reacting species. These reactions were performed in centrifuge tubes
at a liquid volume of 4 mL and the required volume of payload
solution was constantly added with a syringe pump (Nemesys S,
Cetoni GmbH) over a defined period of time (10, 20 or 30 min) to
the stirred reaction solution. The remaining batch conjugations were
performed at 1 mL scale. For ADC3, batch conjugation and another
payload (Drug2) were used. An overview of the experimental
conditions for the conjugation kinetics is given in Table 1. A
detailed overview of all experimental conditions is given in
Supplementary Table S1. To acquire conjugation kinetics,
samples were taken at discrete time points over the course of
1 h, transferred to a microcentrifuge tube and immediately
quenched by adding a 12x molar excess over payload of NAC
solution to terminate the conjugation reaction.

2.1.3 Sample treatment and reference analytics
To determine the DAR and the DLD of each sample a reducing

RP method was used. A sample treatment was conducted to reduce
the conjugated ADC molecule into heavy and light chains. Sample
concentrations were adjusted to 1 mg/mL using ultrapure water.
Samples were then mixed with denaturing buffer and DTT solution
before incubating over 30 min at 37°C on an orbital shaker
(650 rpm). For the RP-UHPLC analysis, 10 µL of sample were
injected onto a BioResolve RP mAb polyphenyl column
(2.1*150 mm, 2.7 µm, Waters Corporation). An identical method,
including flow rate, gradient combination and buffer compositions,
was used at AZ and KIT, as described previously (Cao et al., 2019).
The peak areas in the resulting chromatograms were manually
determined. The molar concentrations of the corresponding
conjugated and unconjugated heavy or light chains were
calculated by normalizing the peak area of light/heavy chain to
the respective concentration in the reaction.

2.1.4 Payload depletion study
As the inactivation of the used surrogate NPM was reported in a

previous study (Andris et al., 2019), a depletion study for each of the

TABLE 1 Summary of experimental conditions of all conjugation runs using different ADC modalities and payloads. A detailed overview for the individual
experiments is given in the Supplementary Material.

Dataset ADC Type Payload cmAb / (g L−1) Molar drug excess Drug addition No. of conditions

1 ADC1 DAR 2 Drug1 1.5–10 1x–8x Batch 8

2 ADC1 DAR 2 NPM 1.5–3 3x–5x Batch 4

3 ADC2 DAR 8 NPM 1.5–3 6x–13x Batch/Fed-Batch 10

4 ADC3 DAR 8 Drug2 1.5 & 20 11x & 14x Batch 4
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tested payloads was conducted in order to determine the individual
stability in conjugation buffer. For that purpose, DMSO-dissolved
payload solution was added to conjugation buffer reaching a payload
concentration of 0.1 mM and 10% DMSO in a 1.5 mL
microcentrifuge tube. The solution was allowed to mix on a tube
rotator. Samples were taken over the course of 1 h and the
absorbance was measured using the UV/Vis function on the
Stunner light scattering instrument (Unchained Labs). For NPM,
the course of the absorbance was directly measured in a cuvette
using a spectrophotometer (Spectrostar Nano, BMG Labtech). To
verify the model assumption that depleted payload becomes
unreactive for conjugation, the payloads NPM and Drug1 were
separately dissolved in conjugation buffer (10% DMSO, 0.1 mM)
and mixed for 1 h on a tube rotator instead of using it immediately
for conjugation.

2.2 Conjugation kinetic model development

2.2.1 Modeling reduced conjugation kinetics and
reaction schemes

Due to the sample treatment, which reduces the mAb in each
sample and consequently eliminates information about the intact
ADC species, the kinetic models employed in this study describe the
conjugation reaction to the individual mAb chains. For the DAR 2
mAb, only conjugation to heavy chain was observed. This is
expected, as the inserted cysteine residues are located in the

hinge region of the heavy chain. In contrast, for DAR 8,
conjugation to both heavy and light chain was observed as
expected for stochastic conjugation. Given the absence of
analytical data to resolve positional isomers, iso-reactivity for
different binding locations on the heavy chain was assumed.
These constraints narrow the possible rate equations down to
consecutive reactions schemes describing the heavy chain as a
“black box” with a certain number of available binding sites and
exclude parallel schemes. The primary conjugation sites for the two
ADC types with an overview of the assumed kinetic models are
illustrated in Figure 1.

2.2.1.1 Initial cysteine distribution
To align with the observed DLD at the end of the reaction,

i.e., the ratio of differently conjugated heavy and light chains, an
ADC-specific initial reactive cysteine distribution of the starting
mAb material was set prior parameter estimation. With regards to
the DAR 2 conjugation, the main product in the final DLD is H1
(heavy chain +1 drug). To model the amounts of unconjugated and
over-conjugated heavy chains, H0 and H2, respectively, we assumed
an initial cysteine distribution of heavy chains with zero, one and
two reactive cysteines, namely, H00c, H01c, and H02c. Over-
conjugation in DAR 2 ADCs is thought to occur on cysteines as
discussed in Cao et al. (2019). On the contrary, for DAR 8, this
distribution contains heavy chains with up to four and light chains
with up to one reactive cysteine, while H03c (heavy +3 drug) and
L01c (light chain +1 drug) are the main species. In this case the

FIGURE 1
Overview of the kinetic model assumptions for DAR 2 (top row) and DAR 8 (bottom row) conjugation. The left panel illustrates the primary
conjugation sites for each ADC in orange. Themiddle panel indicates the initial cysteine distribution for each ADC. The right panel presents the proposed
stepwise conjugation reaction schemes of the payload to n reactive thiols on either light/heavy chain with either one kinetic rate (simple model) or j
kinetic rates (detailed model) for each ADC.
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distribution is primarily controlled by the conditions in the
reduction reaction, which were kept constant in this study. It is
important to note, that the presence of heavy chain with four drugs
in the case of DAR 8 depicts unspecific over-conjugation that is
likely to be attributed to additional “mis-alkylation” of the payload
to other residues such as lysine, which was demonstrated to occur
for other model proteins (Paulech et al., 2013). This mis-alkylation
appears to be marginal in the range of the studied drug excess, which
led to the assumption that it only occurs in addition to the primary
conjugation of the three cysteines. The chemical group of the fourth
binding site is unknown, but is declared as being part of the initial
cysteine distribution for the sake of simplicity. Furthermore, as the
distribution might slightly vary for each mAb-drug combination, it
was determined specifically for each ADC. Consequently, the initial
cysteine distribution was determined experimentally per ADC
based on the average distribution (%H0, %H1, . . . ) at the final
steady-state of the reaction (tf � 60min) in experiments with
sufficient drug excess to reach full conjugation of all available
cysteines, i.e., drug excess > 3x for DAR 2 and drug excess > 8x for
DAR 8. As an example, the percentage of H01c was calculated from
the averaged percentage of H1tf among all heavy chains. The
determined distribution was then used to calculate the molar
concentration of the various initial species within the starting
mAb. Example distributions for DAR 2 and DAR 8 are shown
in Figure 1.

2.2.1.2 Rate equations
For the conjugation reaction in a perfectly mixed system with

continuous drug addition over a fixed period, the dilution rate due to
added drug solution has to be considered. Therefore, the rate
equation for a reaction species i can be expressed as:

dci
dt

� rconj,i − ci t( )
Vl t( )qin , (1)

where ci represents the molar concentration of the ith species, rconj,i
is the conjugation reaction rate of the ith species, Vl represents the
reaction volume and qin is the feed flow rate. In case of the free drug,
the second term in Eq. 1 is changed to +cdrug,in

Vl(t) qin, where cdrug,in is the
drug concentration in the feed. The change in volume can be
described with Eq. 2:

dVl

dt
� qin . (2)

To account for the sampling at discrete time points, the equation
is integrated until each sampling time point and the volume is
subtracted by the sample volume. In case of a batch conjugation
reaction, Eq. 1 simplifies to Eq. 3:

dci
dt

� rconj,i . (3)

To describe the reaction rates, some assumptions were made:
conjugation refers to the second-order reaction of the maleimide of a
functionalized payload with the sulfhydryl residue (SH-group) of a
reactive cysteine. The reaction was assumed to be irreversible as no
de-conjugation was observed and temperature effects on the
conjugation kinetic were neglected as the temperature did not
show noticeable effects on the kinetics. Moreover, a payload-

specific depletion rate kdrug caused by, for example, unspecific
adsorption of the hydrophobic molecule to vessels wall, was
considered. Based on these assumptions, a system of ordinary
differential equations (ODE) describing the rate equations was
formulated. Two model candidates, for both DAR 2 and DAR 8
conjugation reaction, varying in their degree of complexity were
proposed: Either “simple” conjugation rates assuming one kinetic
rate for all conjugation steps, or “detailed” conjugation rates
assuming individual kinetic rates for each sequential reaction
step. The basic reaction schemes for both DAR modalities can be
found in the Supplementary Material. As an example, the seven
ODEs for the detailed model for the DAR 2 reaction are given in
Eqs 4–10:

dcH02c

dt
� −k1cH02ccdrug (4)

dcH01c

dt
� −k1cH01ccdrug (5)
dcH00c

dt
� 0 (6)

dcH12c

dt
� −k2cH12ccdrug + k1cH02ccdrug (7)
dcH11c

dt
� k1cH01ccdrug (8)

dcH22c

dt
� k2cH12ccdrug (9)

dcdrug
dt

� −k1cH02ccdrug − k1cH01ccdrug − k2cH12ccdrug − kdrugcdrug . (10)

Here, cH denotes the molar concentration of the heavy chain
with the number indicating the number of conjugated drugs and
the index indicates the number of initial available cysteines.
Furthermore, cdrug represents the concentration of the payload,
kj the reaction rate for the jth conjugation step and kdrug the
depletion rate of the specific payload. The system of ODEs for the
DAR 8 kinetic models can be found in the
Supplementary Material.

2.2.1.3 Payload depletion rate
Initially, the estimation of the model parameter kdrug led to large

confidence intervals and correlation coefficients to the other
conjugation rates. This could be attributed to the absence of
direct kinetic data for cdrug in combination with the
interconnected system of ODEs with regards to cdrug being
present in all ODEs (see Eqs 4–10). Consequently, the depletion
rate was considered non-identifiable given the available kinetic data
and was separately determined by UV/Vis spectroscopy (cf. Chapter
2.1.4). The UV/Vis-determined depletion rate for each payload was
then set constant for the subsequent estimation of the remaining
conjugation rates.

2.2.2 Data handling
All runs for one mAb and one payload were summarized as a

kinetic dataset resulting in four distinct datasets as outlined in
Table 1. All replicate kinetics were averaged. The dataset
involving Drug1 was used as the basis for DAR 2 model
candidate selection. A manual split in six training and two test
runs was done. The dataset with NPM was used for external model
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re-calibration to compare the conjugation kinetic rates of
the payloads.

In the case of DAR 8, two individual datasets were available: The
first one comprised fed-batch and batch kinetics of ADC2 with the
surrogate drug NPM and was utilized for DAR 8 model candidate
selection. Similarly, a manual split in ten training and three test runs
was performed. The second external dataset, containing batch
kinetics of ADC3 and Drug2, was later used for the in silico
screening. A detailed overview of all runs and the train/test split
is provided in the Supplementary Table S1.

As explained above, a sufficient drug excess, such as 3x for
DAR 2 and 11x for DAR 8, resulted in a saturation of both the DAR
and the DLD at the steady state of the conjugation reaction.
Lowering the drug excess led to lower DAR value and changing
DLD. The saturated DAR and DLD is assumed as being unique to
every mAb and payload. With regards to the modeling assumptions,
the average DLD of kinetics with sufficiently large drug excesses was
considered to compute the initial cysteine distribution for each
individual kinetic subset.

2.2.3 Parameter estimation
All simulations were performed in Matlab R2023a (The

MathWorks Inc.). Maximum likelihood estimation of the kinetic
rates in each model was conducted by minimizing the squared error
between model predicted and experimental concentrations using the
in-built lsqnonlin function. To account evenly for the entire
concentration range, each run was normalized using a scaling
factor corresponding to the maximum concentration in the
respective run. Model predictions were performed based on the
initial concentrations of the starting mAb, the initial cysteine
distribution and payload concentration. The ODE system is
numerically solved using the ode15s solver.

2.2.4 Model candidate selection criteria
The selection of the most appropriate kinetic model candidate

was conducted based on various metrics, namely, the quality of the
estimated parameters, parameter identifiability ranking and model
errors regarding the cross-validation of the training data and
the test set.

2.2.4.1 Uncertainty of the estimated parameters
The uncertainty of the estimated parameters was evaluated

based on their statistical uncertainty. First, the parameter
covariance matrix cov(θ̂) was calculated using the Jacobian
matrix J assuming independent measurement errors with
Gaussian white noise according to Eq. 11:

cov θ̂( ) � s2 J′ · J( )−1, (11)

with Eq. 12

s2 � ∑N
i�1ϵ̂2

n − p
, (12)

where s2 denotes the variance of the error, ϵ̂ is the error between
predicted and measured concentrations, n indicates the number of
samples and p is the number of parameters. The parameter standard
deviation σ is calculated from the diagonal elements of the
parameter covariance matrix given as Eq. 13:

σ �
������������
diag cov θ̂( )( )√

. (13)

Typically, parameter estimates can be considered reasonable,
when the parameter standard deviations values is below 25% relative
to the parameter estimate (Sin et al., 2016). The confidence intervals
of the parameters were estimated using nlparci in Matlab.

2.2.4.2 Parameter identifiability analysis
Local sensitivity analysis employing the one factor at a time

(OAT) method was conducted in accordance to Sin et al. (2009). In
this method, each model parameter, i.e., the kinetic rates, is
systematically varied holding others constant, and the resulting
impact on the model’s output is observed. In practice,
sensitivities for each model parameter are calculated using the
first-order derivative of the model output with respect to the
parameter. For each parameter, the derivatives are determined
numerically by perturbing the parameter of interest by 10% of its
nominal value. The sensitivities are then averaged over time and
relative sensitivities srj,i with respect to each species i and each
model parameter j are calculated by accounting for the parameter
nominal value θ̂j according to Eq. 14:

srj,i � ∂yi t( )
∂θj

θ0 . (14)

By computing the square root of the mean of all sensitivities over
all runs, the parameter significance values were calculated according
to Eq. 15:

δmsqr �
�����������
1
N
∑N

i�1 srj,i( )√
. (15)

Summing up all significance values returns the ∑ δmsqr value,
allowing for a parameter importance ranking according to their
impact on the model’s output. Thus, this approach aids in
identifying which kinetic rates are identifiable based on their
impact. The parameter identifiability analysis was performed for
the two detailed conjugation models using the previously calibrated
kinetic rates.

2.2.4.3 Model error
The estimated kinetic rates were then used to predict the

kinetic and the resulting model error regarding the species i was
evaluated using the root mean squared error (RMSEi) given as
Eq. 16:

RMSEi �
������������������
1
N
∑N

i�1 ci t( ) − c̃i t( )( )2
√

, (16)

where ci(t) denotes the predicted species concentration, ~ci(t) is the
measured species concentration and N indicates the number
samples. Afterwards, the RMSEi values of each species were
averaged to one RMSE value for each subset. To assess the
capability of the model candidates to generalize and extrapolate,
both the prediction error based on cross-validation of the training
data and on the independent test set were conducted. Cross-
validation was performed based on leave-one-run-out scheme
using the training runs. This leads to two error metrics RMSECV
and RMSEP.
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2.2.5 In-silico screening for influence of initial mAb
and payload concentrations

An in silico screening was conducted for the calibrated DAR 8
kinetic model (ADC3 + Drug2) in order to observe the model output
at variable initial concentrations of mAb and payload. The model
outputs were the final DAR and the concentration of unreacted
payload after a reaction time of 30 min as well as the necessary
reaction time to reach the final DAR below a threshold of 1%. A
systematic screening with regards to the three model outputs was
done by independently varying the initial mAb concentration
between 1.5 and 10 g/L and the drug excess between 5 and 14 M
excess while keeping the other constant.

3 Results

First, the UV/Vis measurements for the different payloads and
the determination of the payload depletion rates are presented.
Second, the bulk of this work demonstrates the selection of
suitable conjugation kinetics models. Additionally, the established
kinetic models are assessed regarding their ability to predict
experimental kinetics for DAR 2 and 8 with high accuracy. An
additional test study was conducted to evaluate the model’s
capability for in silico screening using the DAR 8 model as example.

3.1 Payload depletion

The course of the normalized absorbance for the three payloads
is shown in Figure 2. For NPM, a rapid decrease in absorbance is
visible within 1 h, accompanied by larger error bars, whereas
Drug1 exhibits only a minor decrease, and no remarkable change
is visible for Drug2. The conjugation experiments using either NPM
or Drug1 which was previously hold in conjugation buffer for 1 h,
showed that for NPM the achieved DAR is strongly reduced as

opposed to Drug1 which still reaches a typical DAR value in the
range of 1.8–1.9 (see Supplementary Figure S1). Since the exact
mechanism of the payload depletion is unknown, a first-order
reaction was assumed to describe the depletion of NPM and
Drug1, similar to Pfister et al. (2015). The depletion rate for
NPM could be approximated by plotting the natural logarithm of
the absorbance over time (cf. Supplementary Figure S2). Hereby, a
depletion rate of kdrug,NPM � 0.041 s−1 could be derived using the
slope of the linear regression curve. For Drug1 a depletion rate of
kdrug,Drug1 � 0.001 s−1 was assumed, as this value showed to agree
within the modeling workflow. The depletion rate for Drug2 was
assumed to be zero.

3.2 Model complexity evaluation

Two types of kinetic models with varying complexity, namely,
simple and detailed, for either DAR 2 or DAR 8 conjugation kinetics
were evaluated with regards to the parameter importance (assessed
through the parameter identifiability analysis), parameter
confidence and model error. The entire set of estimated
parameters including their standard deviation and confidence
intervals as well as model error are listed in Table 2.

For DAR 2, the difference between the two models is the addition
of a second rate to account for an independent second conjugation
step. The rate k1 displays small standard deviation and narrow
confidence intervals for both model candidates as opposed to k2
which exhibits large confidence intervals. At the same time, the
addition of a second rate did not improve the average prediction
performance considerably as can be seen from similar RMSECV and
RMSEP values between the two parameter subsets. The parameter
importance ranking for the detailed DAR 2 model demonstrated that
the rate k2 has almost zero effect on the model output as opposed to
the rate k1 which has remarkably higher importance as shown in
Figure 3A. Hence for the further modeling purpose the simple (1k)
model was chosen for the modeling of DAR 2 conjugation kinetic.

With respect to the DAR 8 model, initially a model with five
conjugation rates accounting for each conjugation step were used. The
parameter importance ranking demonstrated that the last conjugation
rate k5 that accounts exclusively for the over-conjugation step is non-
identifiable compared to the other rates, as shown in Figure 3B.
Consequently, this rate was combined with the rate for the
previous conjugation step k4 (referred as k4/5) yielding a lumped
version of the model having four kinetic rates. The comparison for the
simple and detailedmodel regarding the parameters andmodel error is
given in Table 2. For both DAR 8 models, the confidence intervals are
in acceptable ranges, while the intervals relative to the mean for k1 and
k2 are with values below 1% considerably smaller than for k3 and k4
with values around 25%. It could be shown that the detailed model
reduces the RMSECV and RMSEP by approximately 49% and 37%,
respectively. To further examine the effect of the two models on the
prediction performance, a comparison of the two model’s predictions
is shown versus the experimental data for one example run in
Figure 3C. The experimental data indicate a more rapid decrease of
H0 compared to L0, as well as a sequential formation of the species H1,
H2, H3, and H4 in the mentioned order. It can be clearly seen that the
detailed (4k) model aligns with the kinetics of all single species more
precisely compared to the simple (1k) model. Specifically, the dynamic

FIGURE 2
Normalized absorbance for the three payloads NPM, Drug1 and
Drug2 at different wavelengths over time. The error bars indicate the
standard deviation of the duplicate measurements.
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behavior of H1, H2, and H3 is remarkably better captured by the
detailed model. As shown in Table 2, the resulting estimated rate for
conjugation to light chain (k1) is slower than the rates representing
conjugation to heavy chain (k2–k4). For the stepwise conjugation to
heavy chain, the second step (k3) seems to be faster than the first step
while the third/fourth step (k4) is again slower. The enhanced
performance of the detailed model was observed throughout all
runs. Therefore, the detailed (4k) model was used for the
subsequent modeling of the DAR 8 conjugation reactions.

3.3 Modeling site-specific DAR 2
conjugation kinetics

3.3.1 Batch conjugation kinetic
The dynamic behavior of the DAR 2 kinetics under various

starting conditions in comparison with the predictions from the

established kinetic model is depicted for the six training runs in
Figure 4 (test runs are given in the Supplementary Figure S3). The
experimental kinetics show a decrease in the concentration of
H0 over time concurrent with the formation of H1 and H2. This
trend intensifies with increasing drug excess and mAb
concentration. The species H2 generally exhibits very low
concentrations. Notably, the distribution of the final species
depends on the drug excess. Below a drug excess of 3x, the final
concentration of H0 diminishes, while H1 increases proportionally
with increasing drug excess, as can be observed for the kinetics in the
top row (Figures 4A–C). For a drug excess of 3x or higher (Figures
4C–F), the final composition remains consistent, which is also
characterized by reaching a constant DAR plateau (see
Supplementary Figure S4). This final DLD contains mainly 84%
H1 on average and lower quantities of H0 and H2 at 11% and 5%,
respectively. In general, the model accurately predicts the course of
the reacting species, exhibiting a minor deviation only during the

TABLE 2 Results of the parameter estimation for the kinetic model candidates for either DAR 2 or DAR 8 conjugation. Parameter estimation include
parameter estimate (θ̂), parameter standard deviation (σ) and lower (lb) and upper bound (ub) of the confidence intervals (all in L (mmol s)−1 units). Model
error include cross-validation (RMSECV) and test errors (RMSEP) in µmol L1.

ADC Model Parameter estimation Model error

Parameter θ̂j σ j lb ub RMSECV RMSEP

DAR 2 Simple (1k) k1 0.251 0.023 0.204 0.298 1.863 3.188

Detailed (2k) k1 0.297 0.027 0.242 0.351 1.808 3.207

k2 1.712 6.585 −11.515 14.939

DAR 8 Simple (1k) k1 1.733 0.018 1.697 1.768 1.213 1.339

Detailed (4k) k1 1.220 0.003 1.214 1.227 0.620 0.964

k2 1.853 0.006 1.841 1.865

k3 5.117 1.015 3.101 7.133

k4/5 2.312 0.356 1.605 3.020

FIGURE 3
Parameter importance ranking according to the summed significance∑δmsqr for the detailed DAR 2model (A) and DAR 8 (B), and (C) comparison of
the predictions for the simple (1k) and detailed (4k) DAR 8 kinetic model vs the experimental data for an example training run with 1.5 g/L ADC2+ 11x NPM
and tf = 30 min.
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initial dynamic stage of the reaction. In contrast, the model precisely
captures the steady state of each reaction. Overall, the averaged R2

values over both the training and test set for H0, H1, and H2 were
95.6%, 98.4%, and 71.1%, respectively.

3.3.2 Influence of different payloads
A model re-calibration on the NPM dataset yielded comparable

model accuracy with averaged R2 values of 93.1%, 94.4% and 86.1%
for H0, H1, and H2, respectively. Despite the higher depletion rate of
NPM, the kinetics revealed a faster conjugation compared to
Drug1 under identical initial conditions, as demonstrated for one
condition in Figure 5 (all NPM kinetics are provided in
Supplementary Figure S5). This comparison shows that NPM
reaches the steady-state more rapidly compared to the other
payload, while the distribution of the final species is comparable.
The observation was quantified through a comparison of the
estimated conjugation rate of the two payloads with k1,Drug1 �
0.251 L (mmol s)−1 and k1,NPM � 4.840 L (mmol s)−1 indicating a
substantial difference in the conjugation rates.

3.4 Modeling interchain-cysteine
conjugation kinetics

3.4.1 DAR 8 batch and fed-batch conjugation
The ability of the established model to predict both DAR 8 fed-

batch and batch conjugation reactions for the identical ADC was
investigated in more detail. The results of three representative
kinetics are presented in Figure 6 (all kinetics are given in the

Supplementary Figures S6 and S7). Compared to experimental batch
runs, the data from the fed-batch demonstrates that this drug
addition mode results in remarkably slower reaction rates for the
individual species within the initial time period of 15 min. This helps
resolve the trajectories of each of the reacting species. In contrast, the
samples from the batch kinetic exhibit complete conjugation already
for the first time point. Furthermore, the comparison of the final
steady states of all runs with a drug excess greater than 8x, suggests
that a constant final species distribution is reached, as also
characterized by reaching a DAR plateau (shown in
Supplementary Figure S8). This distribution is characterized by
L1 and H3 as the main species, with an average of 96% L1 (from
total light chain) and 84% H3 (from total heavy chain). The minor
species were L0, H0, H1, H2 and H4 with an average of 4% L0 and
0.01%H0, 0.5%H1, 9%H2 and 6%H4. The utilization of lower drug
excesses, such as 6x, does not lead to full conjugation as can be seen
in Figure 6C. Generally, the kinetic model is able to predict the
kinetics of L0, L1, H0, and H3 with high run-averaged R2 values of
0.97, 0.96, 0.98, and 0.93, respectively. However, it exhibits slightly
lower run-averaged R2 values of 0.86, 0.76, and 0.86 for predicting
the kinetics of H1, H2, and H4, respectively, across all runs. This
indicates a minor discrepancy between model predictions and
experimental data for the species H1, H2, and H4. The
predictions for all runs are provided in the Supplementary
Figures S5 and S6. The estimated kinetic rates for the DAR
8 conjugation of NPM range from approx. 1.2 to
5.1 L (mmol s)−1 (cf. Table 2). This demonstrates that these rates
are within the same range as observed for the conjugation of the
same payload in the case of DAR 2 (cf. Section 3.3.1).

FIGURE 4
Comparison of DAR 2 model predictions vs experimental data for the six training runs using ADC1 + Drug1. (A–F) The mAb concentration and drug
excess is shown in each title.
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3.4.2 In-silico screening for influence of initial mAb
and payload concentrations

The selected DAR 8 model was first calibrated to the dataset for
ADC3 + Drug2 resulting in similar kinetic rates and model fit with
an R2 of 0.99 averaged for all species (cf. Supplementary Figure S9).
Afterwards, this model was employed for the in silico screening for
DAR, free unconjugated payload, and reaction time. The results of
this screening are depicted in Figure 7 for the three outputs.
Figure 7A illustrates a rapid increase in DAR with escalating
drug excess, independent of the mAb concentration, reaching a
saturated DAR plateau at approximately 7.7x drug excess. The
concentration of unconjugated payload (Figure 7B) remains at
zero during the concentration range at which the DAR was
found to increase, and exhibits a linear rise dependent on both
variables as soon as the DAR saturation is reached. The required

reaction time to achieve the final DAR (Figure 7C) begins with short
reaction time of approximately 50 s, increasing with higher drug
excess and decreasing mAb concentration to a maximum reaction
time of 350 s. Subsequently, it decreases depending on both variables
to reaction times at around 50 s.

4 Discussion

4.1 Kinetic model development

4.1.1 Importance of payload depletion rate
Additional measurements to determine the payload depletion

rates were necessary due to relatively high parameter
uncertainties and strong correlation coefficients with the
kinetic rates in models with the depletion rate as parameter to
be estimated. The difference in the decrease of the UV/Vis signal
for the three payloads, as observed in Figure 2, suggests that
Drug1 and Drug2 are stable in conjugation buffer over the time
studied here, whereas NPM becomes rapidly unavailable for
participation in the reaction. Conjugations using pre-mixed
NPM or Drug1 in conjugation buffer proved that NPM
becomes largely unreactive within typical reaction time (1 h)
as opposed to Drug1. This observation is in agreement with
Andris et al. (2019), who postulate that the depletion of NPM is
due to unspecific adsorption to the vessels walls or chemical
inactivation. In other studies, it has been similarly proven that
polycyclic aromatic hydrocarbons, such as pyrene, show high
affinity to plastic in water due to chemisorption and hydrophobic
interactions (Fung et al., 2023). NPM may also slowly precipitate
due to its low water solubility. The involvement of multiple
possible phenomena may result in the larger error bars as
observed for the duplicates. For Drug1, a minor inactivation
was apparent from a slight decrease of the UV/Vis signal and
since the model performance was improved by the addition of a
slow depletion rate. In summary, this demonstrates the need for
investigating the payload behavior and stability as well as
highlights the difference in depletion between the two real
drugs, Drug1 and Drug2, and NPM.

FIGURE 6
Comparison of DAR 8 model predictions vs experimental data for ADC2 at a mAb concentration of 1.5 g/L for (A) a fed-batch run with 20 min drug
feeding time and 11x NPM, and two batch runs with (B) 11x NPM and (C) 6x NPM.

FIGURE 5
Comparison of DAR 2 kinetic with Drug1 or NPM under the same
initial condition including the model predictions of the calibrated
kinetic models as lines (solid line: Drug1, dashed line: NPM).
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4.1.2 Model complexity evaluation for DAR 2 and
DAR 8

For both conjugation model groups, DAR 2 and DAR 8, the
parameter that exclusively accounts for the last conjugation
step, had almost zero effect on the model output as shown by
low parameter importance values (cf. Figure 3). This can be
attributed to the consecutive reaction pathway coupled with the
fact that the highest conjugated species are a low-concentrated
product formed as the last species during the reaction. For
instance, for DAR 2 the rate k1 affects all reacting species,
whereas the rate k2 only partially affects the concentration of
H2. In total, this results in minor contributions by the later
conjugation rates to the parameter sensitivity. Therefore, the
available data is not informative to estimate the rates for the
over-conjugation and justifies the removal of the over-
conjugation rate leading to a reduced model version with no
loss in prediction error indicated by similar RMSE values for
DAR 2. The decreasing trend of the influence of the later
conjugation rates, as shown in Table 2, can similarly explain
why the rates k3 and k4 in the DAR 8 model, representing the
subsequent conjugations, have lower importance and larger
confidence intervals. However, here the standard deviation is
below 20% relative to the estimated parameter, indicating
acceptable estimation quality (Sin et al., 2016). The
methodology of using the parameter uncertainty and the
parameter importance for the selection of proper sub-models
can also be found in other works (Montes et al., 2018).

Especially when applied to model DAR 8 fed-batch
conjugation, the detailed model demonstrates enhanced
accuracy compared to the simple model, as depicted in
Figure 3C, and supported by the reduction in RMSE values.
The simple 1k model exhibits inadequacies in resolving the
species trajectories during the initial stages of the reaction. In
contrast, the detailed model excels in capturing the nuances of
species trajectories by discerning the rates associated with each
sequential conjugation step. Notably, it is observed that the
conjugation to the light chain, with a rate constant (k1) of
1.408 L (mmol s)−1, is slightly slower than the first conjugation
step of the heavy chain, which has a rate constant (k2) of

2.111 L (mmol s)−1. This discrepancy may be attributed to the
presence of only one binding site on the light chain compared to
the three available binding sites on the heavy chain. Additionally,
the second conjugation step exhibits an almost twofold increase in
kinetic rate compared to the first step, while the third step
experiences a reduced kinetic rate. Consistent with findings in
Andris et al. (2019), an ascending trend in subsequent conjugation
steps is noted, associated with the increasing hydrophobicity on
the mAb when the payload is bound. The final decrease in the
kinetic rate in our case may be linked to the limited availability of
one binding site left to react. The estimated conjugation rates
ranged between 0.3 − 5 · 103 L (mol s)−1 which is in the expected
range for rate constants of maleimides with thiols (Smith et al.,
2018), and significantly faster than amine conjugation of reactive
PEG with rate constants around 1 · 10−1 L (mol s)−1 (Mao et al.,
2022). One disadvantage of the current model is the lack of
resolution for the reactivities of the different binding sites in a
single molecule. This would require more sophisticated analytics,
such as LC-MS (Janin-Bussat et al., 2015), in combination with
advanced kinetic models which could enable the forecasting of the
reactivity of specific sulfhydryl groups and how this would affect
the probability of the subsequent conjugation to the other residues.
For instance, Mao et al. (2022) recently presented a structure-
depended reactivity model for PEGylation which enabled them to
estimate the reactivity of individual amines based on molecular
descriptors.

4.2 Insights from DAR 2 conjugation
modeling

4.2.1 Modeling accuracy and analytical challenges
As shown in Figure 4, the DAR 2 model was able to model the

trajectories of the heavy chains accurately, especially for H0 and
H1 with R2 values above 93%. Only the species H2 is not precisely
modeled, which can be attributed to its high analytical variance
owing to poor HPLC resolution of this species. It was reported that
this over-conjugation is located at non-reformed disulfide bond
between heavy and light chain (Cao et al., 2019). The herein

FIGURE 7
Results of the in silico screening for (A) DAR, (B) free unconjugated payload and (C) reaction time for varying initial mAb concentration cmAb and
drug excess.
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established model, however, does not enable derivation of
additional information about this phenomenon as this species
makes up a low percentage of the total mixture, thus causing a
small impact on the model predictions. Notably, the transient
behavior of the distribution of the final species for varying drug
excess is also captured by the model. The observation that a
consistent composition is reached with around 3x drug excess,
despite a stoichiometric requirement of 2x drug excess for the
number of binding sites, further exemplifies the occurring
payload depletion for Drug1. Additionally, the model showed
a systematic discrepancy in the initial stage of the reaction.
According to Andris et al. (2019), the sequential conjugation
in the hinge region results in a step-wise increase in the
conjugation rate due to an increase in hydrophobicity in this
region. In contrast, the herein established heavy chain model
lumps this phenomenon in one single rate (k1) because of an
inability to account for this phenomenon due to the reducing
analytical assay which removes the information about the
number of payloads already bound to the intact ADC
molecule. In summary, these discrepancies were considered
acceptable for the purpose of modeling the DAR 2
conjugation kinetic.

4.2.2 Conjugation rates difference for the
utilized payloads

Calibrating the model on the two datasets using either
Drug1 or NPM could show that the conjugation kinetic rate for
NPM is approximately 20 times higher than for Drug1 (see
Figure 5). This difference may be rather related to molecular
size than hydrophobicity, as NPM has a molecular mass that is
approximately five times lower than Drug1 and both drugs
exhibited a similar elution time in the RP (data not shown).
Pfister et al. (2015) demonstrated differences in conjugation
rate depending on the size of the conjugated molecule, in the
case of conjugation of PEG to lysozyme which was described using
a core-shell model. In our case, the finding highlights the inequality
of two payloads with regards to their conjugation kinetic rate in
addition to the said difference in their depletion.

4.3 Insights from DAR 8 conjugation
modeling

4.3.1 Modeling accuracy and exploring drug excess
thresholds

The experimental data revealed that there is a drug excess
threshold between 8–11x in which a consistent DLD is achieved.
Using a drug excess larger than 8x did not alter the percentages in
the final DLD or led to higher DAR values (cf. Supplementary
Figure S8), which suggest that a critical point is reached beyond
which further increases in the drug excess does not result in a
higher DAR. Drug excesses below this point (e.g., 6x, see
Figure 6C), lead to not reaching full conjugation which is
exemplified in the lower percentages of L1 and H3 in the
steady-state. Because NPM was found to simultaneously deplete
in the solution, this suggests that some payloads require a drug
excess higher than the stoichiometric molar quantity of binding
sites to achieve full conjugation. Furthermore, the species

distribution in the final steady states remained relatively
constant, primarily related to the constant reduction conditions
within this kinetic subset. The lower percentages of L0, H0, H1,
and H2 likely originate from partially reduced species, with fewer
interchain disulfides. In the literature, comparable DLDs were
reported with these low levels of under-conjugated species
(Källsten et al., 2018; Jones et al., 2020), and it was noted that
achieving full conjugation is challenging due to the relatively low
concentration of reactants (Li et al., 2020). The presence of low
percentages of H4 is unique to the herein utilized IgG1 and is likely
to be attributed to the said “mis-alkylation” of the payload
(Paulech et al., 2013).

4.3.2 Feeding mode comparison
The utilization of fed-batch runs lowered the conjugation

rates enabling the elucidation of the reaction mechanism (see
Figures 6A,B). Feeding times of 10 min or longer yielded
satisfactory analytical resolution of the individual species.
The model exhibited slightly lower accuracy for the species
H0, H1, H2, and H4, which can be primarily associated to their
higher analytical error due to lower concentration ranges. The
batch runs emphasized that DAR 8 conjugation reactions are
notably faster than DAR 2, with a time-scale of only a few
minutes, compared to 5–10 min for DAR 2 reaction. Hereby it
became also evident that the utilization of the complex (4k)
model and the precise determination of the conjugation rates
are only required when modeling fed-batch conjugation
reaction. As expected, the model’s performance is primarily
affected by the initial cysteine distribution when being applied
for the batch reaction, as this defines the steady state of the
reaction. Using the simple (1k) DAR 8 model for the prediction
of the ADC3 batch kinetics yielded an identical average R2 of
0.99 as the detailed (4k) model. This highlights the importance
of accurately determining the initial cysteine distribution for
the model precision, when applying the model to
batch kinetics.

4.3.3 Model adaptability
Moreover, it was demonstrated that the estimated kinetic rates

for the same payload molecule are comparable among different
ADC types in our study. This suggests the potential adaptability of
the utilized modeling approach across different modalities and its
potential for transfer to diverse conjugation kinetics without the
necessity of prior calibration.

4.3.4 In-silico screening for enhanced reaction
understanding

The observed behavior in the screening for ADC3 +
Drug2 reveals significant insights into the interplay of initial
mAb concentration and drug excess on the studied key model
outputs, as shown in Figure 7. The rapid increase in DAR until a
plateau with increasing drug excess, independent of mAb
concentration, aligns with the already observed saturation
effect. The saturation is independent from the initial mAb
concentration as the initial mAb concentration only defines
the time point at which the DAR is reached. Notably, the
achieved saturated DAR is achieved once the stoichiometric
molar drug ratio to mAb is utilized, as Drug2 did not show to
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deplete and, thus, being complete available for conjugation.
Similar results were reported for the DAR 2 reaction for the
DAR saturation (Andris et al., 2019). The linear increase in
unconjugated payload concentration beyond the DAR plateau
phase suggests that, once the saturation point is reached, excess
drug molecules remain unbound and contribute to the free
payload concentration. Regarding the reaction time, the initial
rapid increase is due to the increasing saturation DAR value
below the critical drug excess of 7.7x, which requires prolonged
reaction times. The maximum reaction times, aligning with DAR
saturation, is achieved at low mAb concentration due to slower
conjugation rates. After the DAR is saturated, both initial mAb
concentration and drug excess lead to faster conjugation rates
which corresponds to shorter reaction times. Overall, these
findings highlight the benefit of being able to forecast the
reaction behavior for various process parameters. Overall, this
screening showcases the benefit of a kinetic model due to
additional insights into the reaction kinetics and the reaction
time-scales which is crucial for optimization of operating
conditions. Especially, the knowledge of the optimal drug
excess is highly useful since payloads are costly and free
payload requires subsequent filtration steps in order to ensure
product safety (Fernandez-Cerezo et al., 2023).

5 Conclusion

In this study, we developed a kinetic modeling methodology
that can accurately predict both site-specific conjugations (DAR 2),
and conjugations to reduced interchain disulfide bonds (DAR 8)
of various payloads. A readily available RP-UHPLC method
was used to acquire the kinetic data. For the kinetic model
development, we covered multiple facets: First, UV/Vis
measurements were performed to determine the payload
stability in conjugation buffer alone. Secondly, different kinetic
model candidates for the two modalities were formulated
and selected. Fed-batch experiments proved to be crucial in
resolving the rapid conjugation kinetics in the case of
interchain disulfide conjugation. Thirdly, the kinetic model was
applied to external datasets containing other payloads. A
key outcome was the confirmation of major differences in both
the conjugation rates and the stability of the tested pseudo
and real payloads. Modeling DAR 2 and DAR 8 conjugation
with the same payload demonstrated comparable rates, while
for DAR 8 conjugation varying conjugation rates became
apparent for the sequential conjugation steps. Following
this, the calibrated DAR 8 kinetic model was used for an
exemplary in silico screening to study the reaction behavior
across a range of initial conditions. Overall, these results
emphasize that this kinetic model framework is highly valuable
for augmenting experimental studies, providing enhanced process
understanding and optimizing the conjugation process. This
approach not only complements traditional DoE methodologies
but also addresses the inherent gap in DoE by offering mechanistic
insights of the conjugation process, thereby accelerating process
development. In future, it could be extended with other relevant
influencing factors, such as pH or salt effects, or tested on other
conjugation chemistries.
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