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Introduction: Hand gestures are an effective communication tool that may
convey a wealth of information in a variety of sectors, including medical and
education. E-learning has grown significantly in the last several years and is now
an essential resource for many businesses. Still, there has not been much
research conducted on the use of hand gestures in e-learning. Similar to this,
gestures are frequently used by medical professionals to help with diagnosis
and treatment.

Method: We aim to improve the way instructors, students, and medical
professionals receive information by introducing a dynamic method for hand
gesture monitoring and recognition. Six modules make up our approach: video-
to-frame conversion, preprocessing for quality enhancement, hand skeleton
mapping with single shot multibox detector (SSMD) tracking, hand detection
using background modeling and convolutional neural network (CNN) bounding
box technique, feature extraction using point-based and full-hand coverage
techniques, and optimization using a population-based incremental learning
algorithm. Next, a 1D CNN classifier is used to identify hand motions.

Results: After a lot of trial and error, we were able to obtain a hand tracking
accuracy of 83.71% and 85.71% over the Indian Sign Language and WLASL
datasets, respectively. Our findings show how well our method works to
recognize hand motions.

Discussion: Teachers, students, and medical professionals can all efficiently
transmit and comprehend information by utilizing our suggested system. The
obtained accuracy rates highlight how our method might improve
communication and make information exchange easier in various domains.
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1 Introduction

The study of hand gestures is becoming a growingly popular
discipline among various aspects of human activity recognition
(HAR) (Liu, H et al. (eds), 2023). The major purpose of the
study of these gestures is to reform the gestures, both static and
dynamic, that arise in our environment (Hu, S. et al., 2022) The
studies of gestures are not only interesting but also very useful in
aiding psychology, anthropology, sociology, cognitive science, and
communication (Mo, H et al., 2020; Rezae, K. et al., 2021). Hand
gestures are used to express feelings in multiple ways, give clues to
the understanding of characters, and reduce anxiety and stress.
Hand gestures are an excellent substitute for communication with
deaf people; they tell us what is going on inside their heads because
we are unable to communicate verbally (Maritta, A. et al., 2021). To
teach and learn efficiently, teachers need to be able to express their
ideas clearly and effectively. To be able to do that, they must first
understand the common gestures used by students and teachers.
This is true for any field of learning. In the context of online learning,
teachers frequently encounter difficulties while attempting to
successfully communicate with students using sign language. It
may be difficult to communicate complicated or difficult
concepts using current solutions since they are unable to
sufficiently track and recognize hand movements (Sundaram and
Chaliapin, 2020; Zhu, Y. et al., 2022; Wang, N. et al., 2022; Rehman
and Ullah, 2022). By creating a dynamic hand gesture tracking and
recognition system that enables smooth communication between
instructors and students in an online learning environment, the
proposed research seeks to overcome these shortcomings.

In the medical field, hand gestures are very important, especially
when communicating with patients or medical specialists (Tripathi
and Vishwakarma, 2019; Gochoo and Jalal, 2021; Wang, K. et al.,
2023; Cai, L. et al., 2023). Nevertheless, the precision and accuracy of
current techniques for hand gesture tracking and detection in
medical settings may be inadequate, impeding efficient
communication (Zhang, R. et al., 2023; Zhao, S. et al., 2024) and
patient care. In order to address these issues, this study suggests a
novel method that allows medical professionals to interact with
patients by using hand gestures to convey discomfort, ask for
assistance, or show hunger. Understanding how hands are used
in different medical fields can help people in the future when they
are dealing with more advanced physiology. Hand gestures can be
defined as the physical interaction of objects in the hand space. It is
important to understand these gestures in order to become a better
and more efficient person (Anastasiev, A. et al., 2022; Grant and
Flynn, 2017). In the medical field (Khan, D. et al., 2024), there are
many different types of hand gestures. For example, hand gestures in
the physical therapy world are used to control the person’s position
when trying to treat them (Gochoo and Jalal, 2021).

In this research paper, we have proposed a dynamic approach to
3D hand gesture tracking and recognition for the e-learning
platform (Yu, J. et al., 2021) to help teachers communicate with
students through sign language during class and also keep track of
their class notes, help students remember the answers to their
questions, and also help them understand complex or challenging
concepts. On the contrary, this system also helps medical specialists
communicate with their patients through various hand gestures like
pain, help, and hunger (Hou, X. et al., 2023; Shen, X. et al., 2022;

Jiang, H.et al., 2023). For the proposed system, two benchmark
datasets are selected, Indian Sign Language (ISL) and WLASL, for
system training and testing. The system is dependent on six major
steps. i.e., 1) pre-processing: the hand gesture dataset videos are
converted into frames, and then a fixed dimension is set to resize the
frames, and noise is removed from the frames. 2) Hand detection is
conducted using background modeling using the Gaussian mixture
model (GMM) (Liu, H. et al., 2021; Hartmann, Y. et al., 2022) and
CNN (Cao et al., 2024) for bounding box formation. 3) Skeleton
mapping is conducted for point-based feature extraction, where the
hand skeleton is mapped on the entire hand using SSD tracking
based on the landmarks plotted on the hand. 4) Feature extraction:
we have followed two approaches for feature extraction: point-based
feature extraction and full-hand coverage feature extraction. For
both of these approaches, we have used some techniques, which be
read about in Section. 5) Optimization: this is conducted to obtain
more precise and accurate results. We have used the population-
based incremental learning (PIL) technique. 6) Classification: at last,
the optimized set of features is passed to the 1D CNN classifier for
classifying the dataset classes.

The major contributions and highlights presented in this paper
are summarized as follows.

We proposed a robust hand detection technique that promises
to give the best results of hand detection using backgroundmodeling
using GMM and bounding box formation using the CNN technique.
We have used both point-based and full-hand coverage-based
features to better train our model. Population-based incremental
learning optimization is used for the first time in hand gesture
tracking and recognition and gives us promising optimization
results. For classification, we have adapted 1D CNN, which gives
promising classification results on videos.

The rest of the article is arranged as follows:
Section 2 presents the literature review. Section 3 describes the

methodology of our proposed system. Section 4 provides a
performance evaluation of our proposed approach on two
benchmark datasets and also a comparison and discussion.
Finally, in Section 5 we conclude the paper and outline the
future directions:

• Development of robust denoising techniques tailored for
signal and audio sensor data, enhancing activity
recognition accuracy.

• Extracting novel features for detecting human localization
information.

• Development of a hybrid system that combines machine
learning and deep learning features to further improve
activity recognition performance.

• Furthermore, a comprehensive analysis was performed on
well-known benchmark datasets, which feature diverse
human actions and advanced sensors.

2 Literature review

Nowadays, for hand gesture tracking and recognition, different
computer vision approaches have been proposed by researchers. In
this section, we categorize the related work into two subsections, the
first section describes the recognition of hand gestures for student
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learning; however, the second subsection describes hand gesture
recognition used by medical specialists to communicate with the
staff and the patients.

2.1 Hand gesture tracking and recognition
for student learning

Many researchers have worked on different models to track and
recognize hand gestures for student learning. They have presented
ways to recognize sign words for communication between the tutor
and student. In addition, applications are designed via computer
vision to help in a particular domain; however, hardware systems are
also presented to solve the issue.

Boruah, B.J. et al., 2021) used three approaches for hand tracking
and recognition. First, the hand palm detection is conducted by
using a trained palm detector model. Second, regression is used to
localize the 21 landmarks on the entire hand. Third, a projected
hand skeleton is used to train a model to classify the hand gestures.
At the end, MediaPipe is used to classify hand gestures for
controlling various objects. They have used a vision-based system
for their model. The use of expensive equipment for system design
was neglected. The built-in models were used for better recognition
accuracy. The system has only used six classes for controlling the 3D
objects, which are not sufficient. The system should be trained on
more classes to better handle the objects. Erazo, O. et al.( 2017)
designed a hand gesture recognition system to increase the
interactivity of the students during class lectures. The system was
designed for the students to interact with the screen to perform
experiments. These gestures include hold, tap, pull, swipe, release,
draw, wave, and grip. The gestures are dependent on the screen that
recognizes the gestures. The viability of implementing touchless
hand gestures in lectures is to encourage and facilitate student

involvement to increase participation. THG-based applications
were proposed for gesture recognition. Users cannot interact with
the screen beyond a certain distance threshold. Second, the model
trained on seven classes was not enough to fully operate the screen.
Students who are handicapped cannot use this system to perform
experiments. A hand gesture recognition system (Xiao, Z. et al.,
2023; Zhao, X. et al., 2024) that is used for learning the 3D geometry
in school has been developed. The paper is based on two
technologies; AR and hand gesture recognition. The students can
understand the basic concepts of 3D geometry and also to construct
different 3D geometrical shapes in 3D space using VR, whereas the
hand gesture recognition can help the students operate the 3D
geometrical shapes and construct them in 3D space using different
hand gestures. They suggested software that would address certain
challenges in geometry teaching and give students an easier
approach to study geometry by fusing augmented reality (AR)
and recognition of hand gesture technology. The model was
trained in very few classes, which is not enough to learn
geometry. However, the response rate of the intuitiveness (very
easy) was also low. The system was not good for handicapped
students. The purpose of this research (Liu, N. et al., 2003) is to
recognize the alphabet using hand gestures. For that, the author used
the YUV skin segmentation technique to detect the hand
movements. Different morphological operations were applied to
remove the noise from the images. Then, the CamShift algorithm is
used to track the handmovements. Features are extracted for further
classification of the alphabets. Hand centroid is calculated, and the
HMM algorithm is used to recognize the 26 alphabets. The proposed
system provides a hardware-free model to recognize all alphabets.
They trained their own dataset for proposed architecture training
and testing. The YUV hand detection technique does not always
yield promising results when the skin color of the person varies.
Second, many alphabet trajectories have a large similarity index. The

FIGURE 1
Proposed system architecture using different hand gestures.
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system is unable to identify the correct alphabet, for example, letter
C is confused with G and O. Bhowmick, S. et al. (2015) proposed a
system to recognize the alphabets using hand gestures. The author
used a webcam to record the videos at a resolution of 720 × 480 at
40 fps. The hand is segmented using the HSV + YCbCr skin
segmentation technique. The hand is segmented to exclude the
background and find the region of interest. Features are extracted to
find their orientation, gesture trajectory length, and velocity and
acceleration. Then, the classification is performed using the MLP-
ANN and FTDNN. They propose a system, especially considering
the needs of deaf and mute people. A deep neural network is used in
the system to attain higher accuracy. They trained all alphabets by
extracting gestures from the background using a simpler technique
to reduce computation costs. The system does not give satisfactory
recognition results for the alphabets that look similar. For example,
alphabets like C, G, and O or E and F. (Zhu, M. et al., 2023) in their
research presented a novel gesture recognition method named DDF-
CT. It creates range-time and range-angle maps by using radar
signals to extract range, angle, and Doppler information. To
improve temporal connection learning and feature extraction, the
approach integrates deformable convolution and inter-frame
attention methods. The accuracy of 98.61% is demonstrated by
the experimental findings, with 97.22% accuracy even in new
surroundings. In terms of accuracy and robustness, the DDF-CT
method performs better than current techniques for hand gesture
recognition.

2.2 Hand gesture tracking and recognition
systems for medical specialists

Various research studies have devoted their time and energies
for developing hand gesture recognition systems that can help
medical specialists communicate with the patients and staff (Xu
et al., 2016; Islam, M.N. et al., 2022; Wan and Chan, 2019). In
Gedkhaw and Ketcham (2022), an IoT system to recognize the
message of the patients using hand gestures is designed. The Haar

cascade algorithm is used to detect the hand, and principal
component analysis (PCA) is used with the histogram oriented
gradient (HOG) to achieve better accuracy. The system recognizes
eight classes which are need to relax, pain, hunger, thirst, meet a
doctor, take medicine, go to toilet, and please rub the body dry.
The designed model is made up using simple techniques. They
made the IoT system which recognizes messages of patients
effectively. The proposed method was not effective in different
cases, and the model needs improvements for better recognition.
The author (Lamb and Madhe, 2016) proposed a system to
control the movement of bed for accidental patients, old age
patients, and paralyzed persons. The patient uses certain hand
gestures to move the bed up, down, left, and right according to
their comfort level. At first, some pre-processing is conducted to
remove the background and extract the hand (Liu, H. et al., 2022;
Fu, C. et al., 2023). Then, the wavelet decomposition is used to
extract the shape features, and at last Euclidean distance is used as
a classifier. They used the existing bed and updated the
movements by using microcontrollers and sensors. The bed
only moved up and down; however, they added two more
positions and also tracked down the patient’s fall. The
proposed method was not effective in different cases, and the
model needs improvements for better recognition. The purpose of
this research (Haider, I. et al., 2020; Liu, H. et al., 2022) is to
facilitate communication in mute persons and make it easy for
them. In this system, a KINECT image base sensor is used to sense
the hand gesture of the person and then decode that hand gesture
into meaningful audio output to communicate with the person.
They build a device to interpret gestures. The device is user-
friendly and cost-effective. The device translates the hand gesture
and provides audio sound as interpretation (Cao and Pan, 2024;
Xue, Q. et al., 2023). A large dataset is used to train the decoder in
recognizing the hand gesture and interpreting correctly as to what
the person is saying. The system is not reliable enough to correctly
decode every hand gesture. Fayyaz, S. et al. (2018) designed a
system to control the movement of bed using hand gestures. This
system is based on image processing techniques. First, the hand is

FIGURE 2
Pre-processing on call gesture. (A) Filtered and enhanced image via AMF and (B) histogram of filtered and enhanced images.
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detected by applying the HSV color space on video frames. Then,
the hand contours are extracted using the erosion and dilation
filter and Pavlidis algorithm. The palm central point is calculated
through the Skyum algorithm. Then, the position of the fingers is
calculated through the Gram algorithm. The machine algorithm is
used to recognize the hand gestures, and a DC motor is attached
with the Arduino UNO kit and bed to control the movement. A
webcam is used to create the computer vision system. Simple
hardware components are used to build the system, which
reduced the high equipment cost. The execution time to
recognize the hand movement and move the bed is
significantly high with respect to other models. The proposed
model is developed to communicate with the deaf community
using hand gestures. At first, the bicubic technique is used to
resize the original images. Then, the low-pass filtration is used to
remove the noise. The feature vector implementation SIFT
algorithm is used, and for vector comparison, Euclidean
distance is used, a proper model for deaf people using
computer vision, rather than using color markers or gloves.
Light intensity improves the result accuracy, but more light
intensity causes blurring of the image and affects the output
result. The quality of the image in the database and the input
image should also be moderate so that the feature vector can be
matched easily, and a decrease in image quality can result in no
match. A convolutional neural network (CNN) is used by Alonazi,
M, et al. (2023) to recognize hand motions. Following the
detection of the hand gestures, features are retrieved via a
competitive learning technique known as neural gas.
Furthermore, locomotion thermal mapping is carried out in
order to improve the feature extraction procedure even more.
Fuzzy feature optimization is used to compute a feature vector
following feature extraction. Fuzzy logic techniques are used in
this procedure to optimize the feature vector representation.

3 Materials and methods

3.1 System methodology

In this paper, we have proposed a dynamic approach to hand
gesture tracking and recognition to help teachers, students, and
medical specialists convey their information in a better way.
Our approach is subdivided into six modules. Initially, the

videos are converted into frames, and pre-processing is
conducted to enhance the quality of the frames using the
adaptive median filter (AMF). Furthermore, hand movements
are detected by background modeling and the CNN method.
After that, hand skeleton mapping is conducted using SSD
tracking. The next step is to extract the features for better
training of the model. For that, we have used point-based
and full-hand coverage techniques. However, the population-
based incremental learning optimization algorithm is used to
get the most accurate results possible. At last, a recurrent neural
network (RNN) classifier is used to recognize the hand gestures.
Figure 1 depicts the overall structure of our proposed hand
gesture tracking and recognition model. In the following
subsections, the details of each of the aforementioned
modules are explained.

3.2 Preprocessing

In the first phase, the static RGB video is converted into
frames. Through the AMF, frames are passed to effectively
exclude noise and distortion, which result in smooth edges.
The AMF filtration is conducted in two stages. At first, each
pixel of the original frame is compared with the neighboring pixel
using a certain threshold to detect noise (Zhao, P. et al., 2024;
Miao, R. et al., 2023). Then, it classifies the pixels below a certain
threshold as noise based on spatial processing. The noised pixels
of the frame are known as impulse noise, which is not similar
compared with the other neighborhood pixels. After the noise
labeling test, the pixels passed through it are replaced by the
median pixels. On the filtered images, AMF histogram
equalization was performed to adjust the contrast of the image
using Eq. 1 (Zhao, Y. et al., 2024).

sk � T rk( ) � M − 1( )∑k

j�0pr rj( ) H f( ), (1)

where s denotes the output intensity level, k = 0, 1, 2, . . ., (M − 1),
and r denotes input image intensities which need to be processed.
r = 0 represents black, and r = M − 1 represents white, as r is in the
range [0 – (M − 1)]. pr(r) represents the probability density
function (PDF) of r, where in pr, subscript of p was used to
indicate the PDF of r. By mapping each pixel on the input image
with intensity rk into a corresponding pixel with level sk in the

FIGURE 3
Polygon and bounding box obtained using the proposed method over ISL dataset gestures (A) call, (B) help, and (C) hot.
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output image, a processed output was achieved using Eq. 1, as
shown in Figure 2.

3.3 Background modeling

By using the proposed model, an accurate shape descriptor
estimation for the hand gesture is achieved. At the initial stage
of our detection framework, we are looking for region proposals
based on the variation in image intensities. To get better
accuracy, we approach each region proposal from per-pixel
analysis first, which then forms a bounding polygon and
eventually the bounding box as shown in Figure 3. We have
adapted GMM (Khan and Kyung, 2019) to robustly distinguish
the foreground pixels from the constantly updated background
pixels. Suppose that the RGB components of the pixels are
independent and identically distributed random variables in
the RGB color space, so we take Gaussian models G per
channel of the pixel over time. Let Mk

p,c � (μkp,c, σkp,c) be the
kth distribution of the channel c≤C at pixel p≤Ω, the model
is assigned by a pixel, and providing a new frame Xi if and only if
using Eq. (2) (Oudah et al., 2020).

|Xc
i p( ) − μkp,c | <m . σkp,c, (2)

where Xc
i is the cth slice of the image Xi and m is the threshold.

Practically, we have selectedm ∈ 1.5, 3.1{ } for the best results generated
by ourmodel. The posterior distribution for the kthmodel is updated by
the assignment (Li et al., 2022). If the closest Gaussian distanceXc

i(p) is
achieved by a model normalized by its standard deviation is the

background model in Xc
i whereas p is considered to be the

foreground image pixels.

3.4 Hand movement detection

The CNN is applied to Xi to get the set of observations denoted
by Ẑi. For each ẑ  Ẑi −1. The optimal result is found based on the
previous observation Ẑi −1 using Eq. (3) (Merad and Drap, 2016;
Chahyati and Arymuthy, 2020; Pradeepa and Vaidehi, 2019;
Gadekallu et al., 2022; Zhang et al., 2020; Li et al., 2022).

argmax
ẑ ϵ Ẑi −1 vc,i−1. Γi−1 zc( ) − Γi ẑ( )( ),{ (3)

where vc,i is the binary term used to indicate whether object wc is
observed in the ith frame. τ(z) is the normalized zero mean of the
1 − σ image patch covered by β(z). The bounding box is formed by z
and * shows the correlation operator. The association is then verified
using a distance check. If the value of zi is too far from ẑ in, then the
correspondence Zc ↔ ẑ is rejected.

For the pixels ẑ which do not match the previously tracked
pixels, a new entry is created and appended to Ẑi − 1 by making a
new observation set (see Figure 4).

3.5 Hand skeleton mapping

The first and foremost step in hand skeleton mapping is the
localization of the hand. For this, we have used the single shot
multibox detector (SSMD) to detect the palm, excluding the fingers.

FIGURE 4
Overall hand detection model.
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The palm is bounded by a blob. The palm region is converted to
binary, and the four-phase sliding window is moved to detect the
extreme left, right, top, and bottom points. The next step is the
localization of the fingers. Again, we have used a pre-trained SSMD
to detect the fingers, excluding the palms of the hands. The four-
phase sliding window is moved to identify the extreme top, bottom,
left, and right points. As a result, we have obtained five points on the
fingers and four points on the palm (Khan,M.U.K. et al., 2018; Zhou,
L. et al., 2021; Yimin, D.O.U. et al., 2019; Nawaratneand et al., 2019;
Chen et al., 2018). Figure 5 shows the overall hand skeleton mapping
model, and Figure 6 shows the mapping result on the ISL dataset.

3.6 Multi-fused features

Feature engineering is essential for human gesture and activity
recognition (Hartmann, Y. et al., 2023). In this section, we used key
point-based feature extraction methods using specific and full-hand
landmarks. It is observed from our testing that during the hand
movement, forming of different hand gestures in the video gives
more precise results as compared to the texture-based feature. The
reason is that when handmovement occurs, the key landmarks located
on the palm and the fingers show significant change. We have used 1)
hybrid-specific key point features, 2) polygon meshes, 3) K-mean
ellipses, and 4) co-occurrence generation techniques for feature
extraction. These topics are further discussed in the next sections.
Algorithm 1 describes the overall feature extraction techniques.

Input: F � H1 ,H2 ,....,Hz{ }
//where F is the set of video frames.

Output: Normalized feature vectors V1 ,V2,....,Vz

Feature vectors← get_window_size()

Overlap_time ← get_overlap_time()

For HandComponent in [x,y,z] do

Hand_Feature←get_window(hand features)

//Extracting point base features

Hybrid_keypoint_features←Extract_hrbrid_

features(Hand_Feature)

Polygon_meshes←Extract_polygon_

meshes(Hand_Feature)

Kmean_ellipsoids←Extract_kmeanEllipsoids_

features(Hand_Feature)

cooccurance←Extract_cooccurance(Hand_Feature)

festure_vectors←GetfeatureVectors(Hybrid_keypoint_

features, Polygon_meshes,Kmean_ellipsoids,

cooccurance)feature_vectors.append(feature_vectors)

end for

feature_vectors←Normalize(feature_vectors)

return feature_vectors

Algorithm 1. 3D hand gesture feature extraction.

3.6.1 Hybrid-specific key point features
In this section, we have explained the hybrid key point-based

features using the key landmark points of the hand. At first, the
hand silhouettes are represented with different colors, and their
boundary points are stored. Then, the center point of the hand
silhouette is calculated by accumulating the area inside the silhouette

(Jana, A. et al., 2022; Minaee et al., 2021). To locate the interacting
fingering with the palm or other fingers during different hand gestures,
the topmost, left, right, and bottom boundary pixels are marked with a
point, as shown in Figure 7. The distance between the interacting hand
fingers or the palm is calculated as Eq. 4.

h f1, f2( ) � 

























f1x − f2x( )2 + f1y − f2y( )2,√

(4)

where h(f 1, f 2) is the Euclidean distance with respect to x and y
(Sindhu et al., 2022; Ameur, S. et al., 2020; Sahbani and Adiprawita,
2016; Prakash, K.B. et al., 2020; Alzahrani and Ullah, 2020) for each
landmark point of one finger f 1 with the other landmark of hand f 2.
Figure 8 shows the graphical representation of n, which is the distance
between different landmark points in different hand gestures. If the
features that are paired with the Euclidean distance are greater than the
specific threshold, then these are distant features defined as Eq. 5.

dist f1, f2( ) ↔ d f1, f2( )≥ threshold, (5)
whereas, if the distance between the feature point is smaller than the
threshold is adjacent, it is defined as Eq. 6.

dist f1, f2( ) ↔ d f1, f2( )≤ threshold. (6)

3.6.2 Full-hand features: polygon meshes
Polygon meshes is a point-based feature extraction technique. In

thismethod, we have used the palm and finger points obtained from the
method discussed in Section 3.4. Hand geometry is formed, which
results in different polygonmeshes. These polygon shapes vary with the
change in the motion of the hand forming different gestures. The
polygons formed are irregular polygons generated by combining two or
more finger points and palm points. The area in the polygon is
computed using Heron’s formula as shown in Figure 9 (Miah,
A.S.M. et al., 2023) in Eq. 7.

H � 


















t t − a( ) t − b( ) t − c( )√

where t � a + b + c

2
. (7)

3.6.3 K-mean ellipsoids
The skeleton, or medial axis, is the set of centroids of the ellipses

formed that are tangent to the shape boundary during each hand
gesture. The tangent at each pixel point changes where there is a
maximum change in the motion of the hand and fingers during the
gesture change, where all such ellipses are formed with the boundary of
the hand forming a shape. For each ellipsoid, the 16-bin histogram is
calculated using the radius. The shape complexity of the hand is defined
using the function of entropy in the MAT-based histograms.

The ellipsoids in the circle are denoted by E, and EE represents
the fitting within the boundary by tangent and on the skeleton by the
augmentative ellipsoid fitting algorithm (AEFA) (Gadekallu, T.R.
et al., 2022) Based on GMM-EM models, the ellipsoids evolved by
the hypothesis are used to compute the parameters of fixed numbers
p when the ellipsoids E get the best coverage within the hand using
Eq. 8 (Zhu et al., 2010; Moin, A. et al., 2021; Cha and Vasconcelos,
2008; Chen and Xiang, 2012).

Ai a( ) � Pi · e− a−Ei( )SNi a−Ei( ), (8)
where A is the probability of pixels AϵFG, which belong to the
ellipsoid Ei in our model. Ei is the origin of Ci, whereas Ni is the
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positive definite 2 × 2 matrix representing the orientation and
eccentricity of Ci. The Gaussian amplitude Pi � 1; however, the
probability values of Ai(a) on the hand’s boundary are same for all
the ellipses. The probability of a point belonging to an ellipse Ci is
independent of the ellipse size and is dependent on the orientation
and position. To get the fixed number of ellipsoids, we have set the
value of k = 16.

Input: Binary Image of hands B

Output: Set of ellipsoids E with the lowest AIC [X,Y] =

Compute hand shape skeleton (H)

C = compute shape complexity (X,Y)

CC = initialize ellipsoid formation (X, Y)

P = 1

AIC* = ∞
Repeat

H = calculate hypothesis (p, CC)

E = GMM-EM (B, H, P)

AIC = Calculate AIC (B, E, C)

Min_AIC = C.log (1-0.99)+2.k

If AIC < AIC*

Then, AIC* = AIC

E* = E

End

P=P+1

Until P = = 16

Algorithm 2. K-mean Ellipsoids.

Figure 10 shows the results obtained of the ellipsoids formed on
the hand in different hand gestures, whereas Algorithm 2 explains
the K-mean ellipsoid for feature extraction for hand gesture tracking
and recognition system.

3.6.4 Co-occurrence generations
After the extraction of all point-based features, the co-

occurrence matrix (Li et al., 2022) is computed. The purpose of
using this technique is the distribution of the co-occurring point-
based features at a given offset and save the execution time to
improve the efficiency of our model defined as Eq. 9.

Mi,j � 1
N
∑G

g�1δ Y1i, Y2j( ), (9)

where Y1i is the ith cue value of the first finger and Y2j is the jth
cue of the second finger or palm of the same image (Rabiee.H.
et al., 2016). Such means are beneficial to improve the overall
efficiency of the recognition system, especially essential for a
future real-time application potency (Liu and Schultz, 2018; Liu,
H. et al., 2023).

3.7 Particle swarm optimization (PSO)

After the successful extractions of the features, we have
applied the particle swarm optimization algorithm (Figure 11;
Chriki and Kamoun, 2021) to get the optimal set of features. In
this method, each feature is considered a particle. A number of

FIGURE 5
Model of hand skeleton mapping.

FIGURE 6
Skeleton mapping on ISL dataset gestures (A) pain and (B) accident.
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iterations are performed, and after every iteration, an
updated optimized swarm of particles is achieved. PSO
randomly initializes the swarm of particles and acts on their
social behavior. Thus, to find out the most optimum particles,
PSO adjusts each particle trajectory toward its own location and
to the global best particle in the swarm. This is done using the
following equations (Eqs 10, 11a) (Abdulhussain, S.H. et al.,
2019) and Algorithm 2.

pbest a, b( ) � arg min
k�1,2,...,b

f Qs k( )( )[ ], sϵ 1, 2, 3, . . . , Np{ }, (10)
gbest b( ) � arg min

s�1,2,...,Np

f Qs k( )( )[ ], kϵ 1, 2, 3, . . . , b{ }, (11a)

where Np denotes the total number of particles, s denotes the
particle index, b is the current iteration, f is the fitness function,
and Q is the position of the particle (Ma and Li, 2018; Miao and
Zhang, 2019; Xu and Xu, 2016). Figure 11 shows the
optimization graph.

3.7.1 One-dimensional CNN
All the point-based features extracted from the abovementioned

techniques are then passed through the CNN, which results in the
classification of hand gestures. It is observed in many research
studies that the CNN is powerful in the classification of images
and video-based features (Saqib et al., 2019; Pandey et al., 2020;
Reddy and Wang, 2020) than other deep learning techniques.
Figure 12 illustrates the overall architecture of our proposed 1D
CNN for hand gesture tracking and recognition.

In our model, we have used 1D CNN for the first time in hand
gesture tracking and recognition for learning and medical staff
assistance. The ISL dataset contains 9,876 feature sets of videos.
Our proposed 1D CNN contains three convolution layers, three
max-pooling layers, and one fully connected layer. First convolution
layer L1 contains the input matrix. This layer is convolved with
32 kernels. Each layer having a size of 1 × 13 which as a result
produced a matrix of 4500 × 10488 × 32. The convolution matrix is
calculated as done in Eqs 11b and 12.

Lm−1
n x, y( ) � ReLU z( ), (11b)

ReLU z( ) � ∑y

u�1Ω a, b − u + y + 1
2

( )( )weightmn u( ) + αmn , (12)

where Lm−1
n (x,y) denotes the convolution layer result for the two

coordinates x and y of them-1 layer with the nth convolutionmap. The
size of the kernel is represented by z, and the previous layer map is
represented by weightmn is the mth convolution kernel for the layer n,
whereas αmn is the mth bias of the n kernel. The result produced by the
first convolution layer is passed to the next max-pooling layer M1. A
ReLU is used between the convolution and max pooling layers. It is
responsible for passing the previous layer weights and bias to the next
layer (He and Gong, 2021; Neiswanger and Xing, 2014; Li et al., 2022).
The max-pooling layer downsamples the resulted matrix produced
from the convolution layer by using a sliding window of 1 × 2. The
pooling results are calculated as using Eq. 13.

FIGURE 7
Hybrid-specific key marked points on accident gesture.

FIGURE 8
Hybrid-specific key graphical representation.

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Al Mudawi et al. 10.3389/fbioe.2024.1401803

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1401803


Sm−1
n a, b( ) � max (Lm

n a, b − 1( ) × p + q( )( )( ), (13)
where 1≤p≤ q and n denotes the pooling window size. The first
pooling layer results are passed to the second convolution layer L2
that is convolved with 64 kernels and is passed to the next max
pooling layer M2. The same practice is followed by the next layer
that is convolved with 128 kernels. At the end, a fully connected layer
is obtained defined as Eq. 14.

Fm+1
n � ReLU ∑

i
xm
i weight

m
mv + αmv( ). (14)

From the above equation,Weightmivweight
m
iv is the matrix having

weights from the node i of layer m to the node v of layer m + 1. xm
i

denotes the node m content at layer i. Figure 13 represents the
convergence plot of 1D CNN of all datasets using 300 epochs.

4 System validation and
experimentation

4.1 Experimental setup

In this section, we have discussed the experiments performed to
validate our proposed model. The backend of the system is

developed in Python using Visual Studio Code. The hardware
system used is Intel Core i5-6200U with 2.40 GHz processing
power, 16 GB RAM, 2 GB dedicated graphics card Nvidia 920M
having x64 basedWindows 10 pro.We have divided this section into
three subsections. In the first Section 4.1, we have discussed the
details of the benchmark datasets used in our proposed system. In
Section 4.2, we tested our model using various performance metrics.

4.2 Dataset description

The ISL and WLASL datasets were the two that we used in our
investigation. A variety of hand gestures used in Indian sign language
communication can be found in the ISL dataset, which is a compilation
of gestures from the Indian Sign Language (ISL). In contrast, the
American Sign Language (ASL) hand motions found in the WLASL
dataset are commonly utilized in sign language recognition studies.

We have access to the ISL dataset at [https://live.european-
language-grid.eu/catalogue/lcr/7631], as it is accessible to the public.
Additionally, accessible to the general public, theWLASL dataset can be
found at [https://www.kaggle.com/risangbaskoro/WLASL-Processed].

4.2.1 ISL dataset
The ISL dataset contains video files of the eight hand gestures

(Sharma and Singh, 2021). The gestures include accident, call, doctor,
help, hot, lose, pain, and thief. The dataset is specially designed for
emergency situations. The videos have been collected from
26 individuals including 12 men and 14 women between the age
group of 22–26 years. The videos are captured indoor under normal
lighting conditions by placing the camera at a fixed distance.

4.2.2 WLASL dataset
The WLASL dataset is the largest video dataset of the ASL hand

gesture dataset (Li, D. et al., 2020). It contains 2000 hand gesture classes.
The dataset is especially designed for communication between the deaf
and hearing communities. We have taken eight classes used for the
communication between the teachers and the students, i.e., hungry,
wish, scream, forgive, attention, appreciate, abuse, and admit.

5 Results and analysis

We provide a thorough analysis of our suggested hand gesture
recognition system in this section. We used a variety of performance

FIGURE 9
Polygon mesh subdivision into regular triangle shapes.

FIGURE 10
K-mean ellipsoids on hand where k = 16.
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indicators to test the system’s efficacy on the ISL and WLASL
datasets. Initially, we computed our system’s accuracy, which
expresses the total percentage of correctly classified data. Using
the ISL and WLASL datasets, our system’s accuracy was found to be
83.71% and 85.71%, respectively. We also calculated precision,
recall, and F1-score for every hand gesture class to give a more

thorough study. Recall gauges the percentage of real cases correctly
identified for a given class, while precision shows the percentage of
correctly classified instances inside that class. The F1-score
integrates both recall and precision into a single metric. For most
hand gesture classes, our system’s precision, recall, and F1-score
values were favorable, indicating that it can distinguish various

FIGURE 11
Particle swarm optimization over the ISL dataset.

FIGURE 12
Architecture of the 1D CNN model.
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motions with effectiveness. In addition, we evaluated the
misclassification rate, which is the proportion of cases that were
erroneously classified. We found that the misclassification rate
differed among hand gesture classes, underscoring the difficulties
in recognizing gestures, especially when they have identical visual
characteristics.

Apart from the quantitative assessment, we conducted a
qualitative analysis of the outcomes. We looked at examples of
hand gestures that were identified properly and erroneously in order
to look into possible causes of misclassifications. We were able to
pinpoint areas that needed improvement and gain understanding of
the system’s functionality, thanks to this qualitative investigation.

5.1 Hand gesture detection and
recognition accuracy

Supplementary Tables S1, S2 show the overall detection
accuracies concerning different video frames sequences over the
ISL and WLASL datasets for this study.

5.2 Confusion matrix of the proposed hand
gesture recognition

To measure the performance of our system, we have used the
confusion matrix of two datasets shown in Supplementary
Tables S3, S4.

5.3 Other performance measures of our
proposed model

We have used five evaluation metrics, i.e., precision (Eq. 16),
recall (Eq. 17), F1-score (Eq. 18), accuracy (Eq. 19), and

misclassification rate (Eq. 20), using the following equations,
whereas Supplementary Tables S5, S6 show the results of all
these evaluation metrics over three benchmark datasets.

Precision � TP

TP + FP
, (16)

Recall � TP

TP + FN
, (17)

F1 score � 2 ×
Precision × Recall

Precision + Recall
( ), (18)

Accuracy � TP + TN

TP + TN + FP + FN
, (19)

Misclassification � FP + FN

TP + TN + FP + FN
, (20)

where TP denotes true positive, TN is true negative, FP is false
positive, and FN is false negative.

5.4 Comparison of 1D CNN with other well-
known classifiers

In this experiment, we have compared the hand gesture tracking
and recognition results with other state-of-the-art models. It is
observed from our experiment that 1D CNN gives more precise
and accurate results of hand gesture tracking and recognition.
Figure 14 shows the comparison graph of our proposed model
with other well-known classifiers.

In operating rooms, doctors could operate computer interfaces,
change settings, and operate medical equipment with hand gestures
without compromising the sterile environment. Diagnostic imaging:
by using hand gestures to control medical imaging software (such as
zoom, pan, and rotate), radiologists and technicians can free up their
hands for other duties.

Some possibly helpful hand gestures based on the healthcare use
cases include pinch-to-zoom: to zoom in or out of computer displays

FIGURE 13
Performance evaluation of the 1D CNN model.
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or medical pictures, pinch and spread your fingers. Swipe/scroll: use
hand gestures to swipe through slide shows or patient records. Point/
choose: making pointing motions to highlight particular regions on
a screen or to choose alternatives. Rotation: rotate 3D medical
models or change the orientation of surgical instruments with
hand motions that twist. Volume control involves raising and
lowering the hand to adjust the sound of warnings or instructions.

Limitations: different hand shapes and sizes: the system might
need to be resilient to variations in skin tones, hand sizes, and other
physical features. Blockages and occlusions: preserving precise hand
tracking and gesture recognition while medical equipment, surgical
gowns, and other things are present. Lighting conditions:
guaranteeing dependable performance in a range of healthcare
environments, such as operating rooms and exam rooms, with
varying lighting requirements.

5.5 Comparison of the proposed model with
other conventional methods

In this experiment, we have compared the proposed hand
gesture tracking and recognition model with conventional
models as shown in Figure 15 (Kumar and Kumar, 2020).
After extensive testing on all 26 alphabet signs, their
algorithm achieved an astounding 100% accuracy on the
majority of them. The average accuracy for all alphabet signs
was an astounding 80.76%, even with these anomalies. These
outcomes show the system’s good performance and its capacity to
correctly identify and categorize most letter signs. Hosain, A.A.
et al. (2021) offers a unique pose-guided pooling technique that
improves the extraction of additional features from a 3D CNN
within the context of global sign language recognition. They get
notable gains in overall recognition accuracy (68.30%) on the
WLASL 300 dataset by incorporating features from several
network layers. This study (Sharma, S. et al., 2021) presents

the G-CNN deep learning model for classifying hand gestures in
sign language. The model outperforms state-of-the-art methods
with high accuracy (94.83%, 99.96%, and 100%) across many
gesture categories. Because it does away with user reliance and
the requirement for external hardware, the G-CNN approach is
useful. It functions well with enhanced data and is resilient to
scaling and rotation changes.

Our proposed system provides promising results with the
techniques (combination of machine learning algorithm and
CNN) used in our model. Supplementary Table S7 provides the
gesture tracking and recognition accuracies over the ISL and
WLASL datasets with other state-of-the-art methods.

6 Discussion and limitations

Considering the healthcare scenario, the objective of this work is
to create a dependable and efficient system that can understand
patient hand gestures in order to improve communication between
patients and healthcare providers in the healthcare setting. Our goal is
to train a reliable gesture recognition system that can function well in a
range of healthcare environments by utilizing publically available
hand gesture recognition image datasets. There are seven classes of
datasets in NUS. NUS I is not included because the images in it have
uniform backgrounds. However, NUS II has images that show every
challenge that arises while recognizing hand gestures. Two thousand
color images and 700 images depicting human skin in regions other
than the hands are included. We evaluate our proposed system that
interprets the hand gestures made by the patient and transmits
messages to healthcare professionals. The purpose we had in
developing this hand gesture recognition system is to improve
communication between patients and healthcare providers in
environments where verbal communication may be difficult or
limited. This will allow patients to communicate their needs,
concerns, or messages to the staff more effectively.

FIGURE 14
Comparison graph of the proposed model with other well-known classifiers.
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The system might need to be resilient to variations in skin tones,
hand sizes, and other physical features. When there are a lot of skin
objects (many hands or faces) available in the background, the
system usually performs poorly. The only skin thing the system is
likely to pick up in a hospital setting, though, is the patient’s hand.
However, we will continue to strive for improved efficiency when
there are several skin objects present, guaranteeing dependable
performance in a range of healthcare environments, such as
operating rooms and exam rooms, with varying lighting
requirements.

7 Conclusion

We have presented a novel method for hand gesture recognition
in the fields of medicine and e-learning in this article. We employ
pre-processing RGB frames, backdrop modeling, and CNN blob
detection methods for hand movement detection in our
methodology. For skeleton mapping, we have implemented the
SSMD approach, and point- and texture-based features are
retrieved according to our earlier studies. We have used the PSO
algorithm to optimize the characteristics. Lastly, a 1D CNN is used
to classify hand gestures. After a great deal of experimentation, we
have obtained encouraging findings. It is important to recognize the
limitations of our system, though. In particular, our model’s
classification accuracy declines with similar-looking hand
gestures. Furthermore, the inability to clearly see fingers impairs
the precision of skeleton mapping.

Future studies will concentrate on resolving these issues and
simplifying the system. We also intend to further our research by
investigating additional hand gesture classifications for the medical
and e-learning domains.
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