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Background: Osteoarthritis (OA) is a highly prevalent global musculoskeletal
disorder, and knee OA (KOA) accounts for four-fifths of the cases worldwide. It is
a degenerative disorder that greatly affects the quality of life. Thus, it is managed
through different methods, such as weight loss, physical therapy, and knee
arthroplasty. Physical therapy aims to strengthen the knee periarticular
muscles to improve joint stability.

Methods: Pedobarographic data and pelvis and trunk motion of 56 adults are
recorded. Among them, 28 subjects were healthy, and 28 subjects were suffering
from varying degrees of KOA. Age, sex, BMI, and the recorded variables are used
together to identify subjects with KOA using machine learning (ML) models,
namely, logistic regression, SVM, decision tree, and random forest. Surface
electromyography (sEMG) signals are also recorded bilaterally from two
muscles, the rectus femoris and biceps femoris caput longus, bilaterally during
various activities for two healthy and six KOA subjects. Cluster analysis is then
performed using the principal components obtained from time-series features,
frequency features, and time–frequency features.

Results: KOA is successfully identified using the pedobarographic data and the
pelvis and trunk motion with the highest accuracy and sensitivity of 89.3% and
85.7%, respectively, using a decision tree classifier. In addition, sEMG data have
been successfully used to cluster healthy subjects from KOA subjects, with
wavelet analysis features providing the best performance for the standing
activity under different conditions.

Conclusion: KOA is detected using gait variables not directly related to the knee,
such as pedobarographic measurements and pelvis and trunk motion captured
by pedobarography mats and wearable sensors, respectively. KOA subjects are
also distinguished from healthy individuals through clustering analysis using
sEMG data from knee periarticular muscles during walking and standing. Gait
data and sEMG complement each other, aiding in KOA identification and
rehabilitation monitoring. It is important because wearable sensors simplify
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data collection, require minimal sample preparation, and offer a non-radiographic,
safe method suitable for both laboratory and real-world scenarios. The decision
tree classifier, trained with stratified k-fold cross validation (SKCV) data, is observed
to be the best for KOA identification using gait data.
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1 Introduction

Osteoarthritis (OA) is the most prevalent type of
musculoskeletal disorder globally and is the leading cause of
chronic pain and disability in adults (Singh et al., 2022). Knee
osteoarthritis (KOA) accounts for four-fifths of the burden of OA
worldwide. The pooled global prevalence of KOA is 16% in
individuals aged 15 and over and 22.9% in individuals 40 and
over. The ratio of prevalence and incidence in women and men
is found to be 1.69 and 1.39, respectively (Cui et al., 2020). In India,
the prevalence is reported to be 28.7%. The prevalence is higher in
women at 31.6% than in men at 28.1% (Pal et al., 2016). KOA is a
degenerative disorder and requires total knee replacement, i.e., knee
arthroplasty at an advanced stage of the disease. It, however, results
in substantial health costs. Thus, an important aspect of managing
the disease is early identification and, hence, early intervention (Cui
et al., 2020). The diagnosis of KOA can be confirmed based on
clinical and/or radiological features. The current gold standard for
diagnosing OA is X-ray imaging, which is cost-efficient and widely
available. However, it is insensitive to detecting early OA changes
(Tiulpin et al., 2018) and involves high-energy electromagnetic
radiation. MRI has also been increasingly employed to diagnose
KOA. However, it can detect OA with high specificity and moderate
sensitivity. Thus, it is more useful for ruling out OA than ruling it in
(Menashe et al., 2012). Thus, early diagnosis of OA is particularly
challenging as it relies heavily on the subjective judgment of the
practitioner due to the lack of a precise grading system. The widely
employed Kellgren–Lawrence (KL) grading scale is semi-
quantitative and suffers from ambiguity. Such ambiguity poses an
obstacle to early OA diagnosis, thus affecting millions of people
globally (Tiulpin et al., 2018). Machine learning (ML) has been
employed for the diagnosis of KOA using kinematics (Yang et al.,
2020; Kwon et al., 2019; Kwon et al., 2020) and kinetics (Kwon et al.,
2019) of the hip, knee, and ankle joints. They have also been
employed along with radiographic images (Kwon et al., 2020) to
identify KOA subjects from healthy subjects (Yang et al., 2020) and
differentiate between the different grades of KOA subjects (Kwon
et al., 2019; Kwon et al., 2020). However, the data are collected using
either a 3D motion capture system (Kwon et al., 2019; Kwon et al.,
2020) or multiple IMUs (Yang et al., 2020), which require a post-
processing step before the data can be used for classification. In
addition, classification is performed using only one type of classifier.
Surface electromyography (sEMG) has also been employed in recent
years for the diagnosis of KOA, with a high accuracy of 92% (Chen
et al., 2019) and 96.3% (Khader et al., 2024). Data considered for
diagnosis were collected considering walking at a self-selected pace
as an activity. The different muscles considered are the quadriceps
femoris (Khader et al., 2024), medial gastrocnemius (Khader et al.,

2024), rectus femoris (Khader et al., 2024), semi-tendinous (Chen
et al., 2019; Khader et al., 2024), biceps femoris (Chen et al., 2019;
Khader et al., 2024), and vastus lateralis (Chen et al., 2019; Khader
et al., 2024).

The diagnosis is followed by an intervention regimen, which
revolves around a combination of non-pharmacological and
pharmacological methods. One of the initial measures is weight
reduction, which can help slow down the progression of KOA.
Another most widely implemented remedy is physical therapy and
rehabilitation. It has been useful for patients with pain and mobility.
Specific useful programs include strength training, Tai Chi, aerobics,
electrotherapy, and hydrotherapy, among which strength training is
the most common approach. It improves the muscular strength and
joint stability of the individual, thus improvingWestern Ontario and
McMaster Universities (WOMAC) pain scores and overall health
benefits (Bhatia et al., 2013). Increased rectus femoris muscle force is
related to thinner knee joint cartilage in KOA (Yagi et al., 2022), and
increased muscle activations of the biceps femoris have been
reported in KOA subjects compared to healthy subjects while
performing activities of daily life (Hortobágyi et al., 2005). Thus,
the strength of the contraction of periarticular muscles (i.e., the
quadriceps and hamstrings for the knee joint) is an important
contributing factor to the quality of the cartilage. In addition to
increasing the strength of the muscles surrounding the knee, it also
increases the intra- and intermuscular coordination of the knee
extensor muscles, which results in lower impact and impulsive
loading being transmitted through the joint (Beckwée et al.,
2013). The assessment of the effectiveness of the physical therapy
further enables us to plan the intervention regimen and understand
the progress. One of the approaches includes the use of the QQ index
(Brouwer et al., 1999), where the subjects’ effective working hours
during a day are compared to those of the previous day (Reijonsaari
et al., 2012). Another approach is through a video system or a mobile
application through which the physiotherapist can remotely
monitor a patient in real time and provide instant feedback
(Saraee et al., 2017; Vaish et al., 2017)).

Since the assessment of the effectiveness of physical therapy for
KOA is subjective and relies on the clinician’s expertise, employing a
quantitative approach becomes highly beneficial in achieving more
objective results. The effectiveness of physical therapy on KOA has
been reported to be monitored in a case study that showed
improvements in temporal parameters such as stride length,
mean velocity, and cadence. Root mean square (RMS) values of
EMG are also used to infer the improvement of the condition post-
treatment (Liang et al., 2019). Physical therapy has also been
monitored using a pedometer, Fitbit, and accelerometer to assess
the influence of physical activity on a wide range of subjects with
different pathologies (de Leeuwerk et al., 2022). However, it only
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utilizes kinematic variables and does not consider the kinetic
variables associated with human movement. Thus, there is a need
for the identification of kinetic and kinematic variables that can be
used for KOA diagnosis and also for monitoring the effectiveness of
any intervention.

The highly interdependent nature of human movement allows
us to employ variables associated with other joints and muscles to
assess their effect on other parts and vice versa. It has been reported
that the quadriceps and hamstring muscles weaken and have delayed
reaction time in subjects suffering from plantar fasciitis (Lee et al.,
2020). Increased hamstring tightness also induces prolonged
forefoot loading (Harty et al., 2005). In addition, hamstring
length significantly influences the pelvic angle and flexion range
of motion (ROM), lumbar angle flexion ROM, and thoracic angle
flexion ROM. Short hamstrings are associated with decreased flexion
ROMs of the pelvic and lumbar angles and increased flexion ROM of
the thoracic angle (Gajdosik et al., 1994). This shows that there exists
a relationship between the muscular strength of the periarticular
muscles of the knee, the plantar pressure, and the ROM of the pelvis
and lumbar region.

This work thus aims to identify KOA subjects using both kinetic
and kinematic non-knee joint parameters, which are the
pedobarographic measurements and the pelvis and trunk ROM
variables. In addition, the effect of KOA on the periarticular muscles
of the knee is studied through sEMG, and using these data, the
kinetic and kinematic variables are to be established as potential
biomarkers for monitoring the effectiveness of any neuromuscular
rehabilitation intervention technique for addressing KOA. This is
possible as knee health has been associated with hamstring and
quadriceps muscle strength and is also associated with pelvis and
trunk ROM along with plantar pressure distribution. The variables
considered for KOA identification are dynamic in nature and
require minimal subject preparation.

2 Methodology

Figure 1 shows us an overview of the various steps undertaken
during the study. It includes a two-fold methodology to investigate KOA
identification andmonitoring through gait andmuscle data. Initially, gait
data from 56 subjects (28 healthy and 28 KOA) are analyzed using
supervised ML algorithms to demonstrate the ability to identify KOA
using beyond knee-related gait data. The effect of KOA on the
periarticular muscles of the knee is then studied through the analysis
of sEMG data from the rectus femoris and bicep femoris caput longus
bilaterally. The features obtained are then used for cluster analysis.
Successful clustering will indicate the effect of KOA on the muscular
activity of the periarticular muscles. Integrating the two studies, we can
propose using gait data to monitor muscle strengthening to rehabilitate
KOA subjects. Data are collected using the wearable sensor,
pedobarographic mat, and sEMG sensors. Pelvis ROM is captured
using the wearable sensors while the subjects walk comfortably at a
self-selected speed for 20 m. The wearable sensor was also used to
conduct the Timed Up and Go (TUG), which provides the trunk ROM
in the sagittal plane during the sit-to-stand and stand-to-sit parts of TUG
and the total TUG time. TUG is considered because it is recommended
by the Osteoarthritis Research Society International (OARSI) as an
assessment tool in KOA, which is necessary to detect functional mobility

and the risk of falls. Measuring trunkmovement during these steps helps
health workers and physiotherapists provide a proper rehabilitation
strategy for KOA (Dobson et al., 2013). The subjects walk at a self-
selected speed over the pedobarography mat to capture the 56 kinetic
and kinematic features. There is evidence of neuromuscular adaptations
associated with even early stages of KOA and without gait adaptations
(Duffell et al., 2014). Thus, sEMG data are collected from two muscles,
namely, the rectus femoris and the biceps femoris caput longus, while the
subjects walk at a self-selected speed. sEMG data are also collected while
standing under different stability conditions. Walking is chosen because
it has been reported that individuals with KOA exhibit higher gait
deviations than healthy subjects (Mills et al., 2013). KOA has also been
reported to cause deficits in balance control, with its severity increasing
in moderate to severe KOA (Kim et al., 2011). In addition, standing data
under different stability conditions have been reported to be useful in
classifying balance-related disorders (Sarmah et al., 2024). Hence,
standing under different stability conditions are considered for sEMG
data collection.

2.1 Participants

The study was approved by the Institute Human Ethics
Committee (IHEC), IIT Guwahati, and conducted in compliance
with the relevant regulations. Written informed consent is obtained
from all the study participants. Pedobarography and wearable sensor
data from the pelvis are collected from KOA subjects with different
degrees of severity, as well as from healthy subjects. Age, sex, and
BMI are recorded for each subject and are summarized in Table 1.
Data are collected for 28 able bodied subjects and 28 subjects with
KOA. The inclusion criteria for healthy subjects are (i) age greater
than 18 years and (ii) ability to perform normal activities of daily life.
For KOA subjects, the inclusion criteria are (i) age greater than
18 years, (ii) being diagnosed with KOA and referred by an
orthopedic doctor, and (iii) being able to walk and stand without
the need for any support. The exclusion criteria in both healthy and
KOA cases are (i) diagnosed with neurological disorders like
Parkinson’s disorder. The 28 KOA subjects contain 11 subjects
with Grade 1 severity, 13 subjects with Grade 2 severity, and
4 subjects with Grade 3 severity according to KL grade.

2.2 Gait data collection

All the gait data are collected in the Gait and Motion Analysis
Laboratory at IIT Guwahati. The subjects are, at first, familiarized
with the experimental setup and protocol. They are instructed to
walk over a dynamic pedobarographic mat from Zebris Medical
GmbH (FDM-2) at a self-selected speed, as shown in Figure 2. This
mat captures the plantar pressure experienced by the subject during
walking, along with the spatiotemporal variables such as stride
length, step length, cadence, and speed.

The dynamic variables captured include the force and pressure
experienced in the three sections of the foot, namely, the forefoot,
midfoot, and heel. In addition, butterfly parameters such as gait line
length and velocity, single-stance line, anterior–posterior position,
and mediolateral position are reported. A representation of the
dynamic variables is shown in Figure 3. Thereafter, data are collected
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using the wearable sensor GWALK from BTS Bioengineering for
two activities: normal walking and TUG. In the normal walk test, the
wearable sensor is placed on the level of the subject’s sacrum
(Supplementary Material S1) and then asked to walk at a self-
selected speed for a distance of 20 m. Figure 4 shows the placement

of the wearable sensor and the representation of the pelvis motion in
the three planes. The variables captured during the normal walking
test are pelvis tilt right (PTR), pelvis tilt left (PTL), pelvis obliquity
right (POR), pelvis obliquity left (POL), pelvis rotation right (PRR),
and pelvis rotation left (PRL) with respect to gait cycle percent.

FIGURE 1
Flowchart of the methodology.
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During the measurement of plantar pressure and pelvis ROM, the
experimental condition is walking at a self-selected speed. However,
ROM was not measured while the participant was walking over the

foot pressure mat. It is because the GWALK requires the subject to
walk at least 7 m, while the foot pressure mat is 2 m in length.

In the TUG test, the wearable sensor was placed on the lumbar 2
(L2) vertebrae. The test starts with the subject in a seated posture,
getting up and walking for 3 m, then turning around, and returning
to the starting seated posture. A subject undergoing the test is shown
in Figure 5. The variables captured from this experiment are the
trunk flexion-extension (F/E) in the sagittal plane with respect to
normalized time and the TUG time.

3 Data analysis

3.1 Data description

The data analysis and classification were performed using
Python 3.11. Pelvis angles are obtained with respect to the gait
cycle percent, and the mean and standard deviation (SD) are
evaluated for each subject under six conditions (considering the
cardinal planes and the side of the body) using Eqs 1, 2. A total of
12 features, namely, the mean and SD of PTR, PTL, POR, POL, PRR,
and PRL, are evaluated, which represent the pelvis angles in three
planes during a normal walk. The mean and standard deviation (SD)
are also evaluated for the trunk F/E angles in sit-to-stand and stand-
to-sit conditions using Eqs 1, 2. Four trunk motion features, two
mean and two SD values, which represent the trunk F/E during sit-
to-stand and stand-to-sit activity, and TUG time are obtained from
the TUG test. The mean and SD of different gait variables are
considered as they have been successfully employed as a feature to
classify between healthy and neuromusculoskeletal disorders, which
result in gait deviation (Xia et al., 2015; Nandy, 2019). In addition,
this approach reduces the computational complexity of the analysis
due to the reduced dataset dimensionality.

Anglemean � ∑ Anglei( )/N, (1)
Anglestddev �

���������������������������∑ Anglei − Anglemean( )2/N − 1,
√

(2)

where Anglei is the angle (pelvis or trunk) at each interval and
N = 100 (gait cycle percentage).

TABLE 1 Summary of the subject characteristics in two categories.

Age Sex BMI

Healthy subjects 30.3 ± 7.8 14 male and 14 female subjects 24.1 ± 3.8

KOA subjects 53.8 ± 11.7 14 male and 14 female subjects 27.5 ± 4.3

FIGURE 2
Sample subject walking over the pedobarographic mat.

FIGURE 3
Representation of the dynamic variables obtained from the pedobarographic mat.
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In addition, 56 features are obtained from the
pedobarographic mat, which includes 19 spatiotemporal
features, 13 butterfly features, and 24 dynamic features. The
spatiotemporal variables include the mean and SD of the foot
progression angle (left and right side), step length (left and right
side), stride length, mean and SD of step width, stance phase
percent (left and right side), swing phase percent (left and right
side), double stance phase percent, step time (left and right side),
stride time, cadence, and velocity. The Foot progression angle is
considered because gait training with a specific foot progression
angle increases the lateral knee muscle co-activity, thereby
unloading the medial knee compartment (Gholami et al.,
2022). This implies that any change in knee joint loading will
be reflected in the foot progression angles. The butterfly
parameters consist of the mean and SD of the gait line length
(left and right side), single limb support line (left and right side),
anterior–posterior (A/P) position, and lateral symmetry and the
maximum gait line velocity. The dynamic parameters obtained
are the mean and SD of the forefoot, midfoot, and heel force and
pressure (left and right side).

3.2 Feature selection using point-biserial
correlation

Two personal features (age and BMI), 56 features from the
pedobarographic data (19 spatiotemporal features, 13 butterfly
features, and 24 dynamic features), 12 features from the Pelvis
motion during normal walk, four features from the trunk
movement during TUG, and TUG time are considered for
analysis. At first, point-biserial correlation is evaluated between
the 75 features and the health status of the subject by
considering healthy as 0 and KOA as 1. Point-biserial correlation
is performed when one of the variables is continuous and the other is
a dichotomous variable. It is performed to find the variables strongly
affected by KOA. The correlation coefficients obtained give us
variables that are most affected by KOA. A total of
24 statistically significant (p < 0.05) variables that relate the
variables to the health status of the subject are obtained from the
point-biserial correlation, which can then be employed for the
identification of subjects with KOA. The variables obtained after
point-biserial correlation are shown in Table 2 in descending order

FIGURE 4
Pelvis motion in three planes during normal walking.
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of correlation coefficient. A total of 10 of the features are positively
correlated with KOA, and 14 are negatively correlated. Age, SD of
trunk F/E (sit to stand), and mean of trunk F/E (stand to sit) are the
most positively correlated variables; and velocity, step length (left),
and stride length are the most negatively correlated variables
employed for classification.

3.3 Data preprocessing

The 24 statistically significant variables, obtained after point-
biserial correlation, include two personal features (age and BMI),
17 features from the pedobarographic data (11 spatiotemporal
features, 4 butterfly features, and 2 dynamic features), 2 features
from the pelvis motion during a normal walk, and 2 features from
the trunk movement during TUG and TUG time. The statistically
significant variables, sex, and pathological condition of the subject
are used to identify subjects with KOA.

Data preprocessing is to be conducted before it can be used for
identification. When applying a classification model, it is crucial to
convert the dataset into numerical form. The pathology of the
subject is already assigned in binary form. Binary data are then
extracted from the other categorical variables, which results in an
increase in the number of unique features such as sex, which gets
split into two independent features, female and male. The “sex”
column and one of the independent features are then dropped. In
this case, the “female” column was dropped. In the “male” column,
0 indicates female subjects and 1 indicates male subjects. This

method is called one-hot encoding. The “StandardScaler”
function from Python’s scikit-learn library is then employed to
normalize the data, ensuring a mean of 0 and a standard
deviation of 1.

The data sampling for training and testing uses three
approaches, namely, holdout method, stratified k-fold cross-
validation (SKCV) method, and leave-one-out cross-validation
(LOOCV) method. In the holdout method, the dataset is divided
into training and test sets, which are to be used for training and
testing, respectively. In this case, training and test sets comprise 75%
and 25% of the total data, respectively. Stratified k-fold splits the
dataset randomly into ‘k’ groups while ensuring that each fold has
the same proportion of the different classes as the entire dataset. The
models are then trained on the training set and analyzed on the
testing set. The process is repeated k-times until each set/fold has
been utilized as a test set. The data are divided into “5” folds or
groups in this case. In the leave-one-out approach, each observation
is considered the test set, and the remaining (N-1) observations are
considered the training set. The process is repeated N times until
each observation has been used as the testing set. Different types of
sampling are employed to make the trained and tested models
applicable to classify data from several different datasets, which
may be unbalanced. Different sampling methods are utilized for the
analysis to ensure the quality and reliability of the models. The
stratified k-fold approach provides more reliable performance
estimates and is crucial for imbalanced datasets. The leave-one-
out approach is suitable for small datasets and assesses the
model’s stability.

FIGURE 5
Sample subject during the TUG test.
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3.4 Hyperparameter optimization

Hyperparameters serve as crucial external configuration
variables in managing machine learning models and are set
before the model’s training. The process of finding the right set
of hyperparameters is known as hyperparameter tuning or
optimization. It involves experimenting with different
combinations to maximize or minimize a target variable, often
accuracy. Among the approaches employed, grid search stands
out, systematically exploring all possible hyperparameter
combinations from a predefined list to find the best fit. The
optimization process aims to enhance the model’s performance
on unseen data, thereby enhancing its overall predictive accuracy.
The grid search approach is employed for hyperparameter search in
all the models.

In logistic regression, different combinations of regularization
parameters (which control the bias-variance trade-off to develop
more generalized models), penalty terms, and the maximum
number of iterations are scrutinized to optimize the logistic
regression model’s performance. The tuning process optimizes

the logistic regression model and makes it more generalized and
resistant to overfitting. The optimized model is then trained and
tested on three differently sampled datasets and provides insight into
its effectiveness across various validation scenarios.

In the support vector machine (SVM), the different
combinations of regularization parameters, kernel types (linear,
polynomial, radial bias function, and sigmoid), degree (only for
polynomial kernels), and gamma (only for polynomial, radial bias
function, and sigmoid kernels) are explored. The choice of the
optimal kernel depends on the dataset’s characteristics, such as
linearity or non-linearity. The best kernel type selected might differ
between the sampling methods (holdout, stratified K-fold, and leave
one out) due to the distinct subsets they provide for training and
testing, influencing the hyperparameter selection.

In the case of the decision tree classifier, key hyperparameters
such as maximum depth (which is a limit to stop further splitting of
nodes when the specified tree depth is reached), criterion for data
splitting, cost complexity pruning (which addresses the problem of
overfitting by selectively removing certain parts of the decision tree),
minimum sample leaf (the minimum number of samples required

TABLE 2 Point-biserial correlation relating the variables with the health status of the subjects.

Sl. No. Variable Point-biserial correlation coefficient p-value

1 Age 0.708968 9.68E-10

2 Trunk F/E (sit-to-stand) SD 0.411328 0.001636

3 Trunk F/E (stand-to-sit) mean 0.343412 0.009564

4 TUG time 0.318584 0.016711

5 Double-stance phase % 0.314555 0.018221

6 Stance phase (right)% 0.29898 0.025197

7 BMI 0.281456 0.035606

8 Stance phase (left)% 0.27304 0.041748

9 Stride time (sec) 0.272102 0.042484

10 Gait line right SD 0.26594 0.047585

11 Swing phase (left) % −0.27304 0.041748

12 Cadence (steps/min) −0.28389 0.033977

13 Swing phase (right) % −0.29898 0.025197

14 Single-limb support line right (mm) −0.30409 0.022695

15 Heel left (pressure) −0.30774 0.021037

16 PRL SD −0.32316 0.015126

17 PRR SD −0.3259 0.014239

18 Heel right (pressure) −0.33572 0.011422

19 Single limb support line left (mm) −0.34601 0.008998

20 Gait line right −0.34897 0.008388

21 Step length right (cm) −0.41402 0.001514

22 Stride length (cm) −0.4395 0.000702

23 Step length left (cm) −0.44234 0.000641

24 Velocity (km/hr) −0.45057 0.000493
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for a leaf node or external node and hence do not have any further
splits), and minimum sample split (the minimum number of
samples required to split an internal split) are adjusted to find
the combination that maximizes the model’s performance. These
adjustments enhance the model’s performance by finding the right
combination that maximizes accuracy.

In a random forest, the key hyperparameters include the number
of estimators, which represents the number of trees in the random
forest, maximum depth, minimum sample leaf, and minimum
sample split. Collectively, these hyperparameters shape the
structure and complexity of each decision tree within the random
forest ensemble.

3.5 Classification

Eleven spatiotemporal variables, four butterfly features, and two
dynamic features from pedobarography, namely, double stance
phase %, right and left stance phase %, stride time, right and left
swing phase %, cadence, right and left step length, stride length,
velocity, mean and SD of right gait line, right and left single limb
support line, right and left heel pressure along with two features
from normal walking pelvis motion, namely, SD of PRL and PRR;
two trunk motion features, namely, mean of trunk F/E during the
stand-to-sit condition and SD of trunk F/E during the sit-to-stand
condition and TUG time during TUG test, and personal details
including BMI, age, sex, and the health status of the subject are used
to identify subjects with KOA. The models considered for
classification are logistic regression, SVM, decision tree, and
random forest. These models are trained and tested on the three
differently sampled datasets. Logistic regression explains the
relationship between the dependent variable, i.e., the pathology of
the subject, and the remaining independent input variables, i.e., the
pedobarographic data, pelvis and trunk motion, and personal
details, to classify subjects with KOA. The threshold for
classification is considered to be ≥ 0.5. The optimized
hyperparameter values for logistic regression are shown in Table 3.

SVM classifies the data points by finding a hyperplane in an
N-dimensional space. The “best” hyperplane is chosen among the

several hyperplanes developed. The optimized hyperparameters for
SVM are shown in Table 4. After determining the ‘optimal’
hyperplane, the data points situated on either side of it are assigned
to distinct classes. The classification of an unknown data point is then
based on its relative position to this established hyperplane. SVMwith a
linear kernel is used for the holdout- and stratified k-mean-sampled
data and SVM with a radial bias function (rbf) kernel is employed for
leave-one-out-sampled data.

A decision tree is constructed as a flowchart-like tree structure
and employs internal nodes to test different attributes; branches
represent the results of those tests, and each leaf node represents
the class the feature falls into. The decision tree is built through a
recursive process that involves dividing the training data into
subsets according to attribute values. This recursive splitting
continues until a predefined stopping criterion is satisfied, such
as reaching the maximum tree depth or fulfilling the minimum
number of samples needed to split a node. The decision tree is
constructed by recursively splitting training data into subsets based
on the values of the attributes until a stopping criterion is met, such
as the maximum depth of the tree or the minimum number of
samples required to split a node. During the training process, the
algorithm selects the optimal attribute for data splitting using
metrics such as entropy or gini impurity, aiming to maximize
information gain or minimize impurity after each split. To achieve
the best results, hyperparameters, namely, the maximum depth,
criterion, cost complexity pruning, minimum sample leaf, and
minimum sample split, are optimized. The hyperparameters
obtained for the different sampled data for the decision tree are
listed in Table 5.

A random forest classifier is an ensemble method where a
collection of decision trees is trained on different subsets of the
data. It employs the “bagging” approach for ensemble, in which each
tree trains a random subset of the dataset, sampled with
replacement. The final classification is determined by a majority
vote among the individual trees. The different hyperparameters
associated with the random forest classifier are the number of
trees, minimum sample leaf, and minimum sample split. The
hyperparameters obtained for the different sampled data for the
random forest are listed in Table 6.

TABLE 3 Hyperparameters obtained for logistic regression.

Hyperparameter Holdout-sampled data Stratified K-fold-sampled data (K = 5) Leave-one-out-sampled
data

Regularization parameter (C) 0.1 10 10

Penalty L2 L2 L2

Maximum number of iterations 100 100 100

TABLE 4 Hyperparameters obtained for SVM.

Hyperparameter Holdout-sampled data Stratified K-fold-sampled data (K = 5) Leave-one-out-sampled data

Regularization parameter (C) 1 1 10

Kernel Linear Linear rbf

Degree Not applicable Not applicable Not applicable

Gamma Not applicable Not applicable 0.01
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3.6 Performance assessment

Accuracy, sensitivity, and specificity metrics are used to assess the
performance of the classifiers. True positive (TP) signifies the correct
identification of KOA (positive) cases, while true negative (TN)
indicates the accurate exclusion of healthy (negative) cases. False
positive (FP) occurs when the classifier wrongly identifies a negative

(healthy) case as positive (KOA), and false negative (FN) arises when a
positive (KOA) case is incorrectly classified as negative (healthy). The
overall accuracy is computed by (TP + TN)/TCT, where TCT
represents the total number of classification tests. Sensitivity and
specificity are expressed by TP/(TP + FN) and TN/(TN + FP),
respectively. Accuracy provides an overall measure of model
performance, sensitivity gauges the model’s ability to detect positive

TABLE 5 Hyperparameters obtained for decision tree.

Hyperparameter Holdout-sampled data Stratified K-fold-sampled data (K = 5) Leave-one-out-sampled data

Maximum depth 7 7 3

Criterion Entropy Gini Entropy

Cost complexity pruning 0.05 0 0.025

Minimum sample leaf 1 3 1

Minimum sample split 4 6 2

TABLE 6 Hyperparameters obtained for random forest.

Hyperparameter Holdout-sampled data Stratified K-fold-sampled data (K = 5) Leave-one-out-sampled data

Number of trees 100 100 50

Minimum sample leaf 1 1 1

Minimum sample split 2 5 2

FIGURE 6
Performance metric of logistic regression.
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cases, and specificity assesses the accuracy of identifying negative
outcomes. Evaluation is conducted across three datasets sampled
using holdout, SKCV, and leave-one-out LOOCV approaches.

3.7 Results

The performance metrics of the models, viz., logistic regression,
SVM, decision tree, and random forest, are shown in Figures 6–9,
respectively.

It is observed that in logistic regression, as shown in Figure 6,
accuracy remained the same when the sampling method was changed
from holdout to SKCV and increased by 2.1% from 85.7% to 87.5%
when it was changed to LOOCV. Sensitivity increased by 9.46% from
75% to 82.1%when the samplingmethod was changed from holdout to
SKCV or LOOCV. Specificity, however, decreased by 10.8% and 7.2%
from 100% to 89.8% and from 100% to 92.8%, respectively, when the
sampling method was changed from holdout to SKCV and LOOCV,
respectively. The specificity obtained by the LOOCV sample was 3.87%
higher than that obtained using the SKCV sample.

In the SVM, accuracy increased by 4.45%, from 78.6% to 82.1%,
when the sampling method was changed from holdout to SKCV, and
decreased by 2.41%, from 78.6% to 76.7%, when the sampling method
was changed from holdout to LOOCV. Sensitivity remained the same
for holdout- and SKCV-sampled data, while it increased by 4.6%, from
75% to 78.5%, when LOOCV sampled data were employed. Specificity
for the SKCV sampled data increased by 6.7% and 16.01% in

comparison to that of the data sampled by the holdout and
LOOCV methods, respectively, as shown in Figure 7.

In the decision tree model, accuracy was highest for the data
sampled using SKCV, with a decrease of 4%, from 89.3% to 85.7%,
for data sampled by holdout and a larger decrease of 18%, from
89.3% to 73.2%, for data sampled by LOOCV, as shown in Figure 8.
The trend was also similar for sensitivity, which peaked at 85.7% for
data sampled by SKCV but decreased by 12.48% for data sampled by
holdout and LOOCV. Specificity is the highest for data sampled by
the Holdout method but decreased by 7.2% and 17.9% for data
sampled by SKCV and LOOCV, respectively.

In the random forest, accuracy was highest for the holdout-
sampled data, with a decrease of 4.2%, from 85.7% to 78.5%, and
8.4%, from 85.7% to 82.1%, for data sampled by LOOCV and SKCV,
respectively. Sensitivity is highest for the LOOCV-sampled data but
decreased by 8.64%, from 82.1% to 75%, for both holdout- and
SKCV-sampled data, as shown in Figure 9. Sensitivity is highest for
the holdout-sampled data but decreased by 17.9%, from 100% to
82.1%, for both SKCV- and LOOCV-sampled data.

4 Muscular activity of the periarticular
muscles in KOA and healthy subjects

The identification of KOA through pedobarographic variables
and pelvis and trunk motion variables can be inferred from the
above section. Effectively monitoring rehabilitation therapies for

FIGURE 7
Performance metric of SVM.
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KOA using these variables necessitates establishing the impact of
KOA on the strength of the periarticular muscles around the knee,
which are part of the prime movers of knee flexion and extension
(Levangie et al., 2011), and the rectus femoris and biceps femoris are
part of the muscle group. Increased muscle force in the rectus
femoris (Yagi et al., 2022) and increased muscle activation in the
biceps femoris (Hortobágyi et al., 2005) for KOA subjects make it
suitable for sEMG studies to differentiate between KOA and healthy
subjects. In addition, sEMG features from the rectus femoris
(Khader et al., 2024) and biceps femoris (Chen et al., 2019;
Khader et al., 2024) have been previously employed in the
identification of KOA. Thus, rectus femoris and biceps femoris
are employed for the collection of sEMG data from healthy and
KOA subjects, using them for the identification of KOA subjects. It is
conducted by clustering analysis utilizing sEMG signals collected
from the rectus femoris and biceps femoris caput longus bilaterally
from two healthy subjects and six KOA subjects from the dataset.
Prior to clustering, sEMG signals are filtered and analyzed to extract
features in time, frequency, and time–frequency domains. The
number of features is reduced using principal component
analysis (PCA), which is then used for clustering analysis.

4.1 sEMG data collection

sEMG data of six subjects with varying degrees of KOA and two
healthy subjects are collected to assess themuscle activity of the subjects

during different activities. The various activities considered are standing
under four different conditions for 60 s and walking. The standing
conditions include walking at a self-selected speed and standing on firm
ground with eyes open (Firm EO), firm ground with eyes closed (Firm
EC), foamwith eyes open (FoamEO), and foamwith eyes closed (Foam
EC). Table 7 provides us with a summary of the condition of the
subjects along with the activities undertaken by each subject.

Data collection is done using wireless sEMG sensors from BTS
Bioengineering, as shown in Figure 10. The muscles considered are
the bilateral rectus femoris and biceps femoris caput longus, which
are part of the quadriceps and hamstring group of muscles.

4.2 Feature selection using time-series,
frequency, and time–frequency analysis

Along with sEMG signals, various noises and movement
artifacts are also detected, so the required information remains
together with the raw sEMG signal. It is thus difficult to assess
the subjects using raw signals. Thus, sEMG features from different
domains, which include time, frequency, and time–frequency
domain features, are to be employed for the assessment
(Chowdhury et al., 2013). Time domain features are considered
as they have been reported to successfully classify healthy and knee-
pathological subjects (Naik et al., 2018). The time domain features
extracted here include “the Hudgins’ features,” i.e., the mean
absolute value (MAV), MAV slope, slope sign changes (SSC),

FIGURE 8
Performance metric of decision tree.
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waveform length (WL), and zero crossings (ZCs) (Hudgins et al.,
1993). In addition to that, average amplitude change (AAC),
difference absolute standard deviation value (DASDV), integrated
EMG (iEMG), kurtosis, log, root mean square (RMS) value, variance
(var), and skewness are also evaluated in the time domain. Thus,
13 features are considered in the time domain. Frequency domain
features have been established to be the best for assessing muscle
fatigue (Cifrek et al., 2009). A time-domain EMG signal is
transformed to the frequency domain using periodogram
analysis, where the square of the absolute value of the Fourier
transform of the EMG signal is divided by the signal length

(Phinyomark et al., 2012). Thus, five frequency features, namely,
the mean frequency (MNF), median frequency (MDF), mean power
(MNP), and total power (TTP), are extracted from the EMG signal.
MNF is the average frequency of the power spectrum of the EMG
signal. MDF is the frequency at which the EMG power spectrum is
divided into two regions with equal amplitudes. TTP is the aggregate
of the EMG power spectrum and is also known as energy and the
zero spectral moment. TTP and MNP are the frequency domain
features that extract the same information as time domain features
such as iEMG, RMS, and MAV based on the energy information as
muscle fatigue results in an increase in EMG signal amplitude

FIGURE 9
Performance metric of random forest.

TABLE 7 Summary of the subjects’ condition during sEMG analysis.

Subject Health condition Activities undertaken

Subject 1 Healthy (H1) Firm EO, Firm EC, Foam EO, Foam EC, and walking

Subject 2 Healthy (H2) Firm EO, Firm EC, Foam EO, Foam EC, and walking

Subject 3 KOA Grade 3 (OA1_G3) Firm EO, Firm EC, and Foam EO.

Subject 4 KOA Grade 1 (OA2_G1) Firm EO, Foam EO, and Foam EC.

Subject 5 KOA Grade 2 (OA3_G2) Firm EO, Firm EC, Foam EO, Foam EC, and walking

Subject 6 KOA Grade 1 (OA4_G1) Firm EO, Firm EC, and walking

Subject 7 KOA Grade 1 (OA5_G1) Walking

Subject 8 KOA Grade 1 (OA6_G1) Walking
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(Phinyomark et al., 2012). In addition to time and frequency
analyses, time–frequency analysis is performed using the
continuous wavelet transform (CWT) as it has been reported to
effectively document quadriceps fatigue during knee extension
exercise (So et al., 2009). In addition, wavelet neural network
models using sEMG have been employed to estimate knee joint
angles (Li et al., 2020). In CWT, one of the crucial steps is the
selection of the “mother wavelet,” which depends on the study
application. The 5th order of coiflet is reported to provide the perfect
reconstruction of the sEMG signal. Furthermore, symlet4 and
symlet5 have been employed to determine muscle failure.
Daubechies’s functions (db2, db4, db6, db44, and db45) have
been reported to be successfully applied for analyzing sEMG
signals (Chowdhury et al., 2013). Thus, we have employed
coiflet5, symlet4, symlet5, db2, and db4 as mother wavelets for
the analysis of the sEMG signals and obtained five features, namely,
the zero crossing rate (ZRC), root mean square (RMS), maximum
amplitude, phase duration, and number of peaks for each signal.

4.3 Cluster analysis

Using the features obtained from each analysis, cluster analysis
is performed in each experimental condition, namely, Firm EO,
Firm EC, Foam EO, Foam EC, and walking. Using the time-series
analysis, each muscle is found to have 13 features. As data are
collected from four muscles, a total of 13 × 4, i.e., 52 features for
each subject, are obtained in each experimental condition. The
large number of features is reduced by employing PCA. The
number of principal components (PCs) extracted is based on
the condition that the maximum variance is explained by the
least number of PCs. The 52 features are reduced to 5, 4, 4, 3, and
5 PCs for Firm EO, Firm EC, Foam EO, Foam EC, and walking
condition, respectively. Using PCs, the K-nearest neighbor (KNN)
algorithm is employed unsupervised to divide the subjects into
clusters. Table 8 shows the clustering pattern obtained under the
different experimental conditions for time-series features. It can be
seen that PCs from time-series features were able to cluster the
subjects accurately only for the Foam EC condition, with two
healthy subjects and two OA subjects, one with Grade 1 and the
Grade 2 severity. In the Firm EC condition, which contains five
subjects, the OA subjects with Grade 1 and Grade 2 severity were

clustered together with healthy subjects, while the OA subjects
with Grade 3 severity were clustered separately. In the Firm EO
condition, six subjects (two healthy and four OA) are considered.
Two healthy subjects and two OA subjects with Grade 1 and Grade
2 severity are clustered together, and two OA subjects with Grade
1 and Grade 3 severity are then clustered separately. In the FOAM
EO condition, five subjects (two healthy and three OA) are
considered. One healthy and one OA Grade 2 subject are
clustered together, and one healthy subject and two OA subjects
with Grade 1 and Grade 3 are clustered together separately. In the
walking condition, six subjects (two healthy and four OA subjects)
are considered. Two healthy and two OA subjects with Grade 1 are
clustered together, and two OA subjects, one with Grade 1 and one
with Grade 2, are clustered together separately.

Frequency analysis provides five features for each muscle.
Thus, a total of 5 × 4, i.e., 20 features for each subject, is obtained
in each experimental condition. In each case, PCA is conducted
to reduce the number of features. PCA reduces the 20 features to
4, 4, 4, 3, and 4 PCs for Firm EO, Firm EC, Foam EO, Foam EC,
and walking condition, respectively. Using the PCs, the KNN
algorithm is employed unsupervised to divide the subjects into
clusters. Table 9 shows the clustering pattern obtained under the
different experimental conditions for the frequency features. The
PCs from the frequency features also cluster the subjects
similarly, with the accurate cluster available with Foam EC
condition. The clustering behavior for the other experimental
conditions is similar to that of the time-series features except for
the Foam EO condition, where the healthy subjects and the OA
subject with Grade 1 severity are clustered together, and the OA
subjects with Grade 2 and Grade 3 severity are clustered together
separately.

Similarly, wavelet analysis, i.e., time–frequency analysis, also
provides us with five features for each muscle. Thus, we have a total
of 5 × 4, i.e., 20 features for each subject in each experimental
condition. In each case, at first, PCA is conducted to reduce the
number of features. PCA reduces the 20 features to 5, 4, 3, 3, and
5 PCs for Firm EO, Firm EC, Foam EO, Foam EC, and walking
condition, respectively, with coif5 as the mother wavelet. In the case
of the db2 mother wavelet, PCA reduces the 20 features to 5, 4, 4, 3,
and 5 PCs for Firm EO, Firm EC, Foam EO, Foam EC, and walking
condition, respectively. Considering the db4 mother wavelet, PCA
reduces the 20 features to 5, 4, 4, 3, and 5 PCs for Firm EO, Firm EC,

FIGURE 10
sEMG electrodes placed on (A) rectus femoris and (B) bicep femoris caput longus.
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Foam EO, Foam EC, and walking condition, respectively. With the
sym4 mother wavelet, PCA reduces the 20 features to 5, 4, 4, 3, and
5 PCs for Firm EO, Firm EC, Foam EO, Foam EC, and walking
condition, respectively. With the sym5mother wavelet, PCA reduces
the 20 features to 5, 4, 4, 3, and 5 PCs for Firm EO, Firm EC, Foam
EO, Foam EC, and walking condition, respectively. Using PCs, the
KNN algorithm is employed unsupervised to divide the subjects into
clusters. Table 10 shows the clustering pattern obtained under the
different experimental conditions using wavelet features. The
clustering behavior of the PCs obtained from wavelet features is
the same, irrespective of the choice of the mother wavelet. Accurate
clustering is obtained for Firm EO, Foam EO, and Foam EC
conditions. In the Firm EO condition, six subjects (two healthy
and four OA) are considered. The healthy subjects are clustered
together, and the four OA subjects with varying severity are
clustered together separately. In the Firm EO condition, five
subjects (two healthy and three OA) are considered. The healthy
subjects are clustered together, and the three OA subjects with
varying severity are clustered together separately. In the Foam EC
condition, four subjects (two healthy and two OA) are considered.
The healthy subjects are clustered together, and two OA subjects
with varying severity are clustered together separately. In the case of
Firm EC condition, five subjects (two healthy and three OA) are
considered. One healthy subject is clustered together, and the other
subjects (one healthy and three OA) are clustered together
separately. In the walking condition, six subjects (two healthy
and four OA) are considered. Two healthy subjects, one OA
subject with Grade 2 severity and one OA subject with Grade

1 severity, are clustered together; and two OA subjects with
Grade 1 are clustered together separately.

5 Discussion

With a worldwide high prevalence, KOA has significantly
affected the quality of life of a large population. Because of its
degenerative nature, early identification and, thus, early intervention
greatly affect the management of KOA. The current gold standard to
identify KOA is X-ray imaging, which is best suited for assessing the
progression of the disorder, and MRI is more effective in ruling out
OA but is expensive. In addition, there is a risk of radiation exposure
in the case of X-rays. Hence, it is not effective for continuous
monitoring of any rehabilitation regimens. The interdependency
of the kinetic and kinematic variables of human movement with the
muscle activity of the associated joints provides an alternate, non-
invasive knee health monitoring technique. It is conducted by
monitoring the pedobarographic data and pelvis and trunk
motion as they are reported to be affected by the condition of
the muscles around the knee (Gajdosik et al., 1994; Harty et al., 2005;
Lee et al., 2020), which are in turn reported to be provided as
physical therapy for the management of KOA (Bhatia et al., 2013).

Point-biserial correlation gives us 24 statistically significant
features that are affected by KOA. Age is the most positively
correlated variable, which is because of the nature of the disease,
i.e., a chronic degenerative disorder (Anderson and Loeser, 2010).
The TUG variables, which include one feature from the trunk F/E

TABLE 8 Cluster analysis on the time-series features.

Subject
name

Subject
1

Subject
2

Subject
3

Subject
4

Subject
5

Subject
6

Subject
7

Subject
8

Actual
condition

H1 H2 OA1_G3 OA2_G1 OA3_G2 OA4_G1 OA5_G1 OA6_G1

Cluster assigned with
data from different

experimental conditions

Firm EO 1 1 0 0 1 1 - -

Firm EC 1 1 0 — 1 1 - -

Foam EO 1 0 0 0 1 - - -

Foam EC 0 0 — 1 1 - - -

Walking 1 1 — — 0 1 1 0

TABLE 9 Cluster analysis on the frequency features.

Subject
name

Subject
1

Subject
2

Subject
3

Subject
4

Subject
5

Subject
6

Subject
7

Subject
8

Actual
condition

H1 H2 OA1_G3 OA2_G1 OA3_G2 OA4_G1 OA5_G1 OA6_G1

Cluster assigned with
data from different

experimental conditions

Firm EO 1 1 0 0 1 1 — —

Firm EC 1 1 0 — 1 1 — —

Foam EO 1 1 0 1 0 — — —

Foam EC 0 0 — 1 1 — — —

Walking 1 1 — — 0 1 1 0
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during sit-to-stand and stand-to-sit conditions, and the TUG time
are the next most positively correlated variables. This is because
KOA has been reported to affect both gait and gaze during TUG
(Rossignol et al., 2023). The positive correlation between the double-
stance phase % and the stance phase (right and left) % is probably
because of the impaired balance control due to KOA (Kim et al.,
2011). The increased double-stance phase also results in a reduction
of the swing phase and single-limb support line. BMI is found to be
positively correlated with KOA because obesity has been associated
with high risks of KOA (Zheng and Chen, 2015). Heel pressure is
negatively correlated with KOA, thus inferring low heel pressure in
KOA subjects. It is because of the insufficient knee extension during
the heel-contact phase (Saito et al., 2013). A negative correlation is
also observed for the spatiotemporal variables such as step length,
stride length, and effective velocity, which are indicative of the

abnormal knee joint loading adaptations due to the KOA (Chen
et al., 2003). The SD of pelvis rotation on both the right and left sides
is found to be negatively correlated with KOA, which suggests
reduced variation in the pelvis rotation due to KOA. This is
because there is reduced pelvic rotation in KOA subjects (Tanaka
et al., 2007; Van Der Esch et al., 2011), which is a compensatory
change adapted to minimize the load on the affected knee (Van Der
Esch et al., 2011). Thus, pelvic rotation exercises can be part of the
rehabilitation regimen targeted to address KOA (Tanaka et al.,
2007). Age and SD of trunk F/E (sit to stand) are the most
positively affected variables due to KOA, and velocity is the most
negatively affected variable due to KOA.

ML models, namely, logistic regression, SVM, decision tree, and
random forest, have been successful in classifying KOA with the
highest accuracy of 89.3% and the highest sensitivity of 85.7% with

TABLE 10 Cluster analysis on the wavelet features.

Subject
name

Subject
1

Subject
2

Subject
3

Subject
4

Subject
5

Subject
6

Subject
7

Subject
8

Actual
condition

H1 H2 OA1_G3 OA2_G1 OA3_G2 OA4_G1 OA5_G1 OA6_G1

Cluster assigned
with data from

different
experimental
conditions

Firm EO coif5 1 1 0 0 0 0 — -

db2 1 1 0 0 0 0 — -

db4 1 1 0 0 0 0 — -

sym4 1 1 0 0 0 0 — -

sym5 1 1 0 0 0 0 — -

Firm EC coif5 0 1 1 — 1 1 — -

db2 0 1 1 — 1 1 — -

db4 0 1 1 — 1 1 — -

sym4 0 1 1 — 1 1 — -

sym5 0 1 1 — 1 1 — -

Foam EO coif5 1 1 0 0 0 — — -

db2 1 1 0 0 0 — — -

db4 1 1 0 0 0 — — -

sym4 1 1 0 0 0 — — -

sym5 1 1 0 0 0 — — -

Foam EC coif5 0 0 — 1 1 — — -

db2 0 0 — 1 1 — — -

db4 0 0 — 1 1 — — -

sym4 0 0 — 1 1 — — -

sym5 0 0 — 1 1 — — -

Walking coif5 1 1 — — 1 0 1 0

db2 1 1 — — 1 0 1 0

db4 1 1 — — 1 0 1 0

sym4 1 1 — — 1 0 1 0

sym5 1 1 — — 1 0 1 0
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decision tree as a classifier and SKCV as the data sampling method.
A specificity of 100% is obtained for three classifiers, namely, logistic
regression, decision tree, and random forest with holdout as the
sampling method. However, SKCV or LOOCV data sampling
methods provide more robust results and are more adaptive to
overfitting problems. Not considering the holdout sampling method,
the specificity is the highest at 92.8% using decision tree as a classifier
and SKCV as the data sampling method. The best performance is
obtained with SKCV-sampled data because it ensures that each fold
maintains the same distribution as the original dataset. This helps
the model learn equally in all the folds and makes it sensitive to
imbalances in the dataset. In addition, decision tree excels at
extracting meaningful interactions between features, especially if
they are non-linear in nature, compared to logistic regression and
SVM. The better performance of decision tree in comparison to
random forest may seem counterintuitive as random forest is an
ensemble method that builds multiple decision trees; however, it
may be because decision trees can capture interactions between
features at a finer level compared to random forest and in the
absence of excessive noise in the data, it may lead to better-
performing decision trees. Thus, decision tree is the best-
performing algorithm for the identification of subjects with KOA
using pedobarographic data and pelvis and trunk motion. This
reaffirms the possibility of the identification of KOA using
variables from joints other than the knee, which was also
reported by Kobsar et al. (2017), in which KOA rehabilitation
responses were classified according to their effectiveness using
wearable sensors in the back, thigh, and shank.

KOA greatly affects the muscle activity of the rectus femoris and
biceps femoris caput longus. PCs from time-series features can
distinguish between Grades 1 and 2 of KOA and healthy subjects
during the Foam EC standing condition. They can also distinguish
between Grade 3 KOA and other grades of KOA and healthy subjects
during the Firm EC condition. They, thus, can distinguish between the
early stages of KOA and healthy subjects. PCs from time-series features
are not effective in distinguishing between KOA subjects and healthy
subjects during FirmEOandFoamEO standing conditions andwalking.
In addition to Foam EC and Firm EC conditions, PCs from the
frequency features are also able to distinguish between KOA with
Grade 2 or higher severity and healthy subjects. It may be due to the
fact that frequency domain features are sensitive to the effect of muscle
fatigue (Cifrek et al., 2009) during any activity and hence are able to
detect the strain on muscles due to KOA of Grade 2. However, Grade
1 KOA and healthy subjects are indistinguishable by this feature. PCs
from the wavelet features performed the best in distinguishing between
KOAsubjects of different grades and healthy subjects for FirmEO, Foam
EO, and Foam EC, by perfect distinction. It may be because
time–frequency domain analysis provides a deeper understanding of
the electrophysiological processes behind the neuromuscular activations
(Di Nardo et al., 2022), and continuous wavelet transforms have also
been reported to outperform other time–frequency analyses for both
simulated and real EMG recordings (Karlsson and Gerdle, 2001).
However, muscle activity from the rectus femoris and biceps femoris
caput longus during walking is not found to distinguish between KOA
subjects and healthy subjects. This is because during walking, balance,
support, and progression are mostly contributed by five muscle groups,
namely, the gluteus maximus, gluteus medius, vasti, gastrocnemius, and
soleus (Lim et al., 2022).

Thus, KOA is diagnosed using gait variables for joints other than
the knee, such as pedobarographic data and pelvis and trunkmotion,
along with the comparison of muscular activity in the bilateral rectus
femoris and biceps femoris caput longus muscles for a section of the
KOA and healthy subjects. Data are collected using wearable
sensors, except for pedobarographic data, which can also be
collected using wearable flexible insoles (Stassi et al., 2013). This
allows for the identification of KOA through variables that can be
captured using wearable sensors in real-world scenarios. Moreover,
the establishment of the effect on muscular activity of knee
periarticular muscles due to KOA through clustering analysis
shows the complementary relationship between the gait variables
and sEMG data. This opens up the possibility of monitoring
hamstring and quadriceps strengthening as part of rehabilitation
therapy to address KOA. The effect of KOA on the periarticular
muscles of the knee is also reported by Ghazwan et al. (2022).

6 Limitations

A limitation of this study is that the EMG analysis was performed
on only a few subjects and sEMGdata were collected only for twomajor
muscles responsible for knee joint movement. The periarticular muscles
surrounding the knees contribute majorly during standing; however,
the major muscles contributing during other activities of daily life are
from different groups. Thus, the inclusion of at least one muscle from
each of the major muscle groups in the lower limb will encompass and
translate the study into more activities and also help us consider the
synergistic behavior of the muscles.

7 Conclusion

This study establishes the capability of detecting KOA using gait
variables from joints other than the knee. It employs pedobarographic
data and pelvis and trunk ROM for the analysis. This offers a non-
invasive and accessible method for the detection of KOA. The variables
most affected byKOAare the SDof trunk F/E (sit to stand) and velocity.
In addition, the study associated KOA with reduced pelvic rotation and
thus suggests pelvis rotation exercises as part of a rehabilitation regimen
targeted to address the effects of KOA. Furthermore, evidence of altered
muscle activity in the rectus femoris and biceps femoris caput longus,
which are part of the quadriceps and hamstring group of muscles, is
found in subjects affected by KOA through cluster analysis. Thus, it can
be inferred that KOA affects both mobility and muscle condition
simultaneously, and both datasets complement each other. Hence,
gait data can be employed to identify KOA subjects and perform a
preliminary assessment and monitoring approach to gauge the
effectiveness of rehabilitation therapies aimed at addressing KOA
through muscle strengthening. Given the feasibility of collecting
pedobarographic data and pelvis and trunk motion using wearable
sensors with minimal sample preparation and its non-radiographic
nature, the proposed method can be seamlessly integrated not only in a
laboratory setting but also in real-world environments. Different
combinations of machine learning models and data sampling
methods have been employed to understand this behavior, and the
decision tree with data sampled using SKCV is found to be the best
classifier of KOA using gait data. The activities to be considered for
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monitoring the assessment include walking and standing under
different conditions, such as Firm EO, Foam EO, and Foam EC.

Data availability statement

The original contributions presented in the study and the data
used for classification in the study are included in the article/
Supplementary Material; further inquiries can be directed to the
corresponding author.

Ethics statement

The studies involving humans were approved by the Institute
Human Ethics Committee of Indian Institute of Technology,
Guwahati. The studies were conducted in accordance with the
local legislation and institutional requirements. The participants
provided their written informed consent to participate in this study.

Author contributions

AS: writing–review and editing, writing–original draft,
visualization, software, methodology, investigation, formal
analysis, data curation, and conceptualization. LB: writing–review
and editing, writing–original draft, methodology, investigation, and
data curation. SI: funding acquisition, writing–review and editing,
writing–original draft, and supervision. SK: writing–review and
editing, writing–original draft, supervision, and funding acquisition.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. The authors
acknowledge the support provided byNECBH through theDBTproject
(BT/NER/143/SP44675/2023), IIT Guwahati, for the establishment of
Gait and Motion Analysis Laboratory, IIT Guwahati.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors, and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fbioe.2024.1401153/
full#supplementary-material

References

Anderson, A. S., and Loeser, R. F. (2010). Why is OA an age-related disease. Best. P. R.
Res. Clin. Rheumatol. 24 (1), 1–18.

Beckwée, D., Vaes, P., Cnudde, M., Swinnen, E., and Bautmans, I. (2013).
Osteoarthritis of the knee: why does exercise work? A qualitative study of the
literature. Ageing Res. Rev. 12 (1), 226–236. doi:10.1016/j.arr.2012.09.005

Bhatia, D., Bejarano, T., and Novo, M. (2013). Current interventions in the
management of knee osteoarthritis. J. Pharm. Bioallied Sci. 5 (1), 30–38. doi:10.
4103/0975-7406.106561

Brouwer, W. B. F., Koopmanschap, M. A., and Rutten, F. F. H. (1999). Productivity
losses without absence: measurement validation and empirical evidence. Health Policy
(New York) 48 (1), 13–27. doi:10.1016/s0168-8510(99)00028-7

Chen, C. P. C., Chen, M. J. L., Pei, Y.-C., Lew, H. L., Wong, P.-Y., and Tang, S. F. T.
(2003). Sagittal plane loading response during gait in different age groups and in people
with knee osteoarthritis. Am. J. Phys. Med. Rehabil. 82, 307–312. doi:10.1097/01.phm.
0000056987.33630.56

Chen, X., Chen, J., Liang, J., Li, Y., Courtney, C. A., and Yang, Y. (2019). Entropy-
based surface electromyogram feature extraction for knee osteoarthritis classification.
IEEE Access 7, 164144–164151. doi:10.1109/access.2019.2950665

Chowdhury, R. H., Reaz, M. B. I., Bin Mohd Ali, M. A., Bakar, A. A. A., Chellappan,
K., and Chang, T. G. (2013). Surface electromyography signal processing and
classification techniques. Sensors Switz. 13 (9), 12431–12466. doi:10.3390/
s130912431

Cifrek, M., Medved, V., Tonković, S., and Ostojić, S. (2009). Surface EMG based
muscle fatigue evaluation in biomechanics. Clin. Biomech. 24 (4), 327–340. doi:10.1016/
j.clinbiomech.2009.01.010

Cui, A., Li, H., Wang, D., Zhong, J., Chen, Y., and Lu, H. (2020). Global, regional
prevalence, incidence and risk factors of knee osteoarthritis in population-based studies.
EClinicalMedicine. 29–30, 100587. doi:10.1016/j.eclinm.2020.100587

de Leeuwerk, M. E., Bor, P., van der Ploeg, H. P., de Groot, V., van der Schaaf, M., van
der Leeden, M., et al. (2022). The effectiveness of physical activity interventions using
activity trackers during or after inpatient care: a systematic review and meta-analysis of

randomized controlled trials. Int. J. Behav. Nutr. Phys. Act. 19 (1), 59–19. doi:10.1186/
s12966-022-01261-9

Di Nardo, F., Basili, T., Meletani, S., and Scaradozzi, D. (2022). Wavelet-based
assessment of the muscle-activation frequency range by EMG analysis. IEEE Access 10,
9793–9805. doi:10.1109/access.2022.3141162

Dobson, F., Hinman, R. S., Roos, E. M., Abbott, J. H., Stratford, P., Davis, A. M., et al.
(2013). OARSI recommended performance-based tests to assess physical function in
people diagnosed with hip or knee osteoarthritis. Osteoarthr. Cartil. 21 (8), 1042–1052.
doi:10.1016/j.joca.2013.05.002

Duffell, L. D., Southgate, D. F. L., Gulati, V., andMcGregor, A. H. (2014). Balance and
gait adaptations in patients with early knee osteoarthritis. Gait Posture 39 (4),
1057–1061. doi:10.1016/j.gaitpost.2014.01.005

Gajdosik, R. L., Albert, C. R., and Mitman, J. J. (1994). Influence of hamstring length
on the standing position and flexion range of motion of the pelvic angle, lumbar angle,
and thoracic angle. J. Orthop. Sports Phys. Ther. 20 (4), 213–219. doi:10.2519/jospt.1994.
20.4.213

Ghazwan, A., Wilson, C., Holt, C. A., andWhatling, G. M. (2022). Knee osteoarthritis
alters peri-articular knee muscle strategies during gait. PLoS One 17, e262816. doi:10.
1371/journal.pone.0262798

Gholami, S., Torkaman, G., Bahrami, F., and Bayat, N. (2022). Gait modification with
subject-specific foot progression angle in people with moderate knee osteoarthritis:
Investigation of knee adduction moment and muscle activity. Knee 35, 124–132. doi:10.
1016/j.knee.2022.03.001

Harty, J., Soffe, K., O’Toole, G., and Stephens, M. M. (2005). The role of hamstring
tightness in plantar fasciitis. Foot and Ankle Int. 26 (12), 1089–1092. doi:10.1177/
107110070502601215

Hortobágyi, T., Westerkamp, L., Beam, S., Moody, J., Garry, J., Holbert, D., et al.
(2005). Altered hamstring-quadriceps muscle balance in patients with knee
osteoarthritis. Clin. Biomech. 20 (1), 97–104. doi:10.1016/j.clinbiomech.2004.08.004

Hudgins, B., Parker, P., and Scott, R. N. (1993). A new strategy for multifunction
myoelectric control. IEEE Trans. Biomed. Eng. 40 (1), 82–94. doi:10.1109/10.204774

Frontiers in Bioengineering and Biotechnology frontiersin.org18

Sarmah et al. 10.3389/fbioe.2024.1401153

https://www.frontiersin.org/articles/10.3389/fbioe.2024.1401153/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1401153/full#supplementary-material
https://doi.org/10.1016/j.arr.2012.09.005
https://doi.org/10.4103/0975-7406.106561
https://doi.org/10.4103/0975-7406.106561
https://doi.org/10.1016/s0168-8510(99)00028-7
https://doi.org/10.1097/01.phm.0000056987.33630.56
https://doi.org/10.1097/01.phm.0000056987.33630.56
https://doi.org/10.1109/access.2019.2950665
https://doi.org/10.3390/s130912431
https://doi.org/10.3390/s130912431
https://doi.org/10.1016/j.clinbiomech.2009.01.010
https://doi.org/10.1016/j.clinbiomech.2009.01.010
https://doi.org/10.1016/j.eclinm.2020.100587
https://doi.org/10.1186/s12966-022-01261-9
https://doi.org/10.1186/s12966-022-01261-9
https://doi.org/10.1109/access.2022.3141162
https://doi.org/10.1016/j.joca.2013.05.002
https://doi.org/10.1016/j.gaitpost.2014.01.005
https://doi.org/10.2519/jospt.1994.20.4.213
https://doi.org/10.2519/jospt.1994.20.4.213
https://doi.org/10.1371/journal.pone.0262798
https://doi.org/10.1371/journal.pone.0262798
https://doi.org/10.1016/j.knee.2022.03.001
https://doi.org/10.1016/j.knee.2022.03.001
https://doi.org/10.1177/107110070502601215
https://doi.org/10.1177/107110070502601215
https://doi.org/10.1016/j.clinbiomech.2004.08.004
https://doi.org/10.1109/10.204774
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1401153


Karlsson, S., and Gerdle, B. (2001). Mean frequency and signal amplitude of the
surface EMG of the quadriceps muscles increase with increasing torque - a study using
the continuous wavelet transform. J. Electromyogr. Kinesiol 11 (2), 131–140. doi:10.
1016/s1050-6411(00)00046-8

Khader, A., Zyout, A., and Al Fahoum, A. (2024). Combining enhanced spectral
resolution of EMG and a deep learning approach for knee pathology diagnosis. PLoS
One. 19 (5 May), e0302707–e0302715. doi:10.1371/journal.pone.0302707

Kim, H.-S., Yun, D. H., Yoo, S. D., Kim, D. H., Jeong, Y. S., Yun, J.-S., et al. (2011).
Balance control and knee osteoarthritis severity. Ann. Rehabil. Med. 35 (5), 701. doi:10.
5535/arm.2011.35.5.701

Kobsar, D., Osis, S. T., Boyd, J. E., Hettinga, B. A., and Ferber, R. (2017). Wearable
sensors to predict improvement following an exercise intervention in patients with
knee osteoarthritis. J. Neuroeng Rehabil. 14 (1), 94–10. doi:10.1186/s12984-017-
0309-z

Kwon, S. B., Han, H. S., Lee, M. C., Kim, H. C., Ku, Y., and Ro, D. H. (2020). Machine
learning-based automatic classification of knee osteoarthritis severity using gait data
and radiographic images. IEEE Access 8, 120597–120603. doi:10.1109/access.2020.
3006335

Kwon, S. B., Ro, D. H., Song, M. K., Han, H. S., Lee, M. C., and Kim, H. C. (2019).
Identifying key gait features associated with the radiological grade of knee osteoarthritis.
Osteoarthr. Cartil. 27 (12), 1755–1760. doi:10.1016/j.joca.2019.07.014

Lee, J. H., Jung, H. W., and Jang, W. Y. (2020). A prospective study of the muscle
strength and reaction time of the quadriceps, hamstring, and gastrocnemius muscles in
patients with plantar fasciitis. BMCMusculoskelet. Disord. 21 (1), 722–727. doi:10.1186/
s12891-020-03740-1

Levangie, P. K., Norkin, C. C., and Levangie, P. K. (2011). Joint structure and function:
a comprehensive analysis. Philadelphia: F.A. Davis Co.

Li, W., Liu, K., Sun, Z., Wang, G., Li, F., Zhang, X., et al. (2020). “Continuous
estimation of human knee-joint angles from SEMG using wavelet neural network,” in
Proc 2020 IEEE 9th data driven control learn syst conf DDCLS 2020, 606–611.

Liang, J., Lang, S., Zheng, Y., Wang, Y., Chen, H., Yang, J., et al. (2019). The effect of
anti-gravity treadmill training for knee osteoarthritis rehabilitation on joint pain, gait,
and EMG: case report. Med. Baltim. 98 (18), e15386. doi:10.1097/md.
0000000000015386

Lim, Y. P., Lin, Y. C., and Pandy, M. G. (2022). Lower-limbmuscle function in healthy
young and older adults across a range of walking speeds. Gait Posture 94, 124–130.
doi:10.1016/j.gaitpost.2022.03.003

Menashe, L., Hirko, K., Losina, E., Kloppenburg, M., Zhang, W., Li, L., et al. (2012).
The diagnostic performance of MRI in osteoarthritis: a systematic review and meta-
analysis. Osteoarthr. Cartil. 20 (1), 13–21. doi:10.1016/j.joca.2011.10.003

Mills, K., Hunt, M. A., and Ferber, R. (2013). Biomechanical deviations during level
walking associated with knee osteoarthritis: a systematic review and meta-analysis.
Arthritis Care Res. Hob. 65 (10), 1643–1665. doi:10.1002/acr.22015

Naik, G. R., Selvan, S. E., Arjunan, S. P., Acharyya, A., Kumar, D. K., Ramanujam, A.,
et al. (2018). An ICA-EBM-based sEMG classifier for recognizing lower limb
movements in individuals with and without knee pathology. IEEE Trans. Neural
Syst. Rehabil. Eng. 26 (3), 675–686. doi:10.1109/tnsre.2018.2796070

Nandy, A. (2019). Statistical methods for analysis of Parkinson’s disease gait pattern
and classification. Multimed. Tools Appl. 78 (14), 19697–19734. doi:10.1007/s11042-
019-7310-4

Pal, C. P., Singh, P., Chaturvedi, S., Pruthi, K. K., and Vij, A. (2016). Epidemiology of
knee osteoarthritis in India and related factors. Indian J. Orthop. 50 (5), 518–522. doi:10.
4103/0019-5413.189608

Phinyomark, A., Thongpanja, S., Hu, H., Phukpattaranont, P., and Limsakul, C.
(2012). The usefulness of mean and median frequencies in electromyography analysis.
Comput Intell Electromyogr Anal - A Perspect Curr Appl Futur Challenges.

Reijonsaari, K., Vehtari, A., Kahilakoski, O. P., van Mechelen, W., Aro, T., and
Taimela, S. (2012). The effectiveness of physical activity monitoring and distance
counseling in an occupational setting - results from a randomized controlled trial
(CoAct). BMC Public Health 12 (1), 344. doi:10.1186/1471-2458-12-344

Rossignol, S. Le, Fraser, E., Grant, A., Doma, K., Wilkinson, M., Morse, L., et al.
(2023). Patients with knee osteoarthritis have altered gait and gaze patterns compared to
age-matched controls: a pilot study. PLoS One. 18 (11 November), 1–14. doi:10.1371/
journal.pone.0283451

Saito, I., Okada, K., Nishi, T., Wakasa, M., Saito, A., Sugawara, K., et al. (2013). Foot
pressure pattern and its correlation with knee range of motion limitations for
individuals with medial knee osteoarthritis. Arch. Phys. Med. Rehabil. 94 (12),
2502–2508. doi:10.1016/j.apmr.2013.07.017

Saraee, E., Singh, S., Hendron, K., Zheng, M., Joshi, A., Ellis, T., et al. ExerciseCheck:
remote monitoring and evaluation platform for home based physical therapy. ACM Int.
Conf. Proceeding Ser. 2017;Part F1285:87–90.

Sarmah, A., Aggarwal, R., Vitekar, S. S., Katao, S., Boruah, L., Ito, S., et al. (2024).
Framework for early detection and classification of balance pathologies using
posturography and anthropometric variables. Clin. Biomech. 113, 106214. doi:10.
1016/j.clinbiomech.2024.10621

Singh, A., Das, S., Chopra, A., Danda, D., Paul, B. J., March, L., et al. (2022). Burden of
osteoarthritis in India and its states, 1990–2019: findings from the Global Burden of
disease study 2019.Osteoarthr. Cartil. 30 (8), 1070–1078. doi:10.1016/j.joca.2022.05.004

So, R. C. H., Ng, J. K. F., Lam, R. W. K., Lo, C. K. K., and Ng, G. Y. F. (2009). EMG
wavelet analysis of quadriceps muscle during repeated knee extension movement.Med.
Sci. Sports Exerc 41 (4), 788–796. doi:10.1249/mss.0b013e31818cb4d0

Stassi, S., Canavese, G., Cauda, V., Fallauto, C., Corbellini, S., Motto, P., et al. (2013).
Wearable and flexible pedobarographic insole for continuous pressure monitoring.
Proc. IEEE Sensors., 1–4.

Tanaka, K., Miyashita, K., Urabe, Y., Koshida, S., Takemoto, Y., and Ijiri, T. (2007).
Relationship between pelvic rotation and trunk lean motion during walking in patients
with symptomatic knee osteoarthritis. J. Biomech. 40, S508. doi:10.1016/s0021-9290(07)
70498-0

Tiulpin, A., Thevenot, J., Rahtu, E., Lehenkari, P., and Saarakkala, S. (2018).
Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-
based approach. Sci. Rep. 8 (1), 1727–1810. doi:10.1038/s41598-018-20132-7

Vaish, A., Ahmed, S., and Shetty, A. (2017). Remote physiotherapy monitoring using
the novel D+R Therapy iPhone application. J. Clin. Orthop. Trauma 8 (1), 21–24. doi:10.
1016/j.jcot.2016.08.008

Van Der Esch, M., Steultjens, M. P., Harlaar, J., Van Den Noort, J. C., Knol, D. L., and
Dekker, J. (2011). Lateral trunk motion and knee pain in osteoarthritis of the knee: a
cross-sectional study. BMCMusculoskelet. Disord. 12, 141–147. doi:10.1186/1471-2474-
12-141

Xia, Y., Gao, Q., and Ye, Q. (2015). Classification of gait rhythm signals between
patients with neuro-degenerative diseases and normal subjects: experiments with
statistical features and different classification models. Biomed. Signal Process Control
18, 254–262. doi:10.1016/j.bspc.2015.02.002

Yagi, M., Taniguchi, M., Tateuchi, H., Hirono, T., Yamagata, M., Umehara, J., et al.
(2022). Relationship between individual forces of each quadriceps head during low-load
knee extension and cartilage thickness and knee pain in women with knee osteoarthritis.
Clin. Biomech. 91, 105546. doi:10.1016/j.clinbiomech.2021.105546

Yang, J. H., Park, J. H., Jang, S. H., and Cho, J. (2020). Novel method of classification
in knee osteoarthritis: machine learning application versus logistic regression model.
Ann. Rehabil. Med. 44 (6), 415–427. doi:10.5535/arm.20071

Zheng, H., and Chen, C. (2015). Body mass index and risk of knee osteoarthritis:
systematic review and meta-analysis of prospective studies. BMJ open. 5 (12), e007568.
doi:10.1136/bmjopen-2014-007568

Frontiers in Bioengineering and Biotechnology frontiersin.org19

Sarmah et al. 10.3389/fbioe.2024.1401153

https://doi.org/10.1016/s1050-6411(00)00046-8
https://doi.org/10.1016/s1050-6411(00)00046-8
https://doi.org/10.1371/journal.pone.0302707
https://doi.org/10.5535/arm.2011.35.5.701
https://doi.org/10.5535/arm.2011.35.5.701
https://doi.org/10.1186/s12984-017-0309-z
https://doi.org/10.1186/s12984-017-0309-z
https://doi.org/10.1109/access.2020.3006335
https://doi.org/10.1109/access.2020.3006335
https://doi.org/10.1016/j.joca.2019.07.014
https://doi.org/10.1186/s12891-020-03740-1
https://doi.org/10.1186/s12891-020-03740-1
https://doi.org/10.1097/md.0000000000015386
https://doi.org/10.1097/md.0000000000015386
https://doi.org/10.1016/j.gaitpost.2022.03.003
https://doi.org/10.1016/j.joca.2011.10.003
https://doi.org/10.1002/acr.22015
https://doi.org/10.1109/tnsre.2018.2796070
https://doi.org/10.1007/s11042-019-7310-4
https://doi.org/10.1007/s11042-019-7310-4
https://doi.org/10.4103/0019-5413.189608
https://doi.org/10.4103/0019-5413.189608
https://doi.org/10.1186/1471-2458-12-344
https://doi.org/10.1371/journal.pone.0283451
https://doi.org/10.1371/journal.pone.0283451
https://doi.org/10.1016/j.apmr.2013.07.017
https://doi.org/10.1016/j.clinbiomech.2024.10621
https://doi.org/10.1016/j.clinbiomech.2024.10621
https://doi.org/10.1016/j.joca.2022.05.004
https://doi.org/10.1249/mss.0b013e31818cb4d0
https://doi.org/10.1016/s0021-9290(07)70498-0
https://doi.org/10.1016/s0021-9290(07)70498-0
https://doi.org/10.1038/s41598-018-20132-7
https://doi.org/10.1016/j.jcot.2016.08.008
https://doi.org/10.1016/j.jcot.2016.08.008
https://doi.org/10.1186/1471-2474-12-141
https://doi.org/10.1186/1471-2474-12-141
https://doi.org/10.1016/j.bspc.2015.02.002
https://doi.org/10.1016/j.clinbiomech.2021.105546
https://doi.org/10.5535/arm.20071
https://doi.org/10.1136/bmjopen-2014-007568
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1401153

	Integrative approach to pedobarography and pelvis-trunk motion for knee osteoarthritis detection and exploration of non-rad ...
	1 Introduction
	2 Methodology
	2.1 Participants
	2.2 Gait data collection

	3 Data analysis
	3.1 Data description
	3.2 Feature selection using point-biserial correlation
	3.3 Data preprocessing
	3.4 Hyperparameter optimization
	3.5 Classification
	3.6 Performance assessment
	3.7 Results

	4 Muscular activity of the periarticular muscles in KOA and healthy subjects
	4.1 sEMG data collection
	4.2 Feature selection using time-series, frequency, and time–frequency analysis
	4.3 Cluster analysis

	5 Discussion
	6 Limitations
	7 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


