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The rehabilitation robot can assist hemiplegic patients to complete the training
program effectively, but it only focuses on helping the patient’s training process
and requires the rehabilitation therapists to manually adjust the training
parameters according to the patient’s condition. Therefore, there is an urgent
need for intelligent training prescription research of rehabilitation robots to
promote the clinical applications. This study proposed a decision support
system for the training of upper limb rehabilitation robot based on hybrid
reasoning with rule-based reasoning (RBR) and case-based reasoning (CBR).
The expert knowledge base of this system is established base on 10 professional
rehabilitation therapists from three different rehabilitation departments in
Shanghai who are enriched with experiences in using desktop-based upper
limb rehabilitation robot. The rule-based reasoning is chosen to construct the
cycle plan inference model, which develops a 21-day training plan for the
patients. The case base consists of historical case data from 54 stroke patients
who underwent rehabilitation training with a desktop-based upper limb
rehabilitation robot. The case-based reasoning, combined with a Random
Forest optimized algorithm, was constructed to adjust the training parameters
for the patients in real-time. The system recommended a rehabilitation training
program with an average accuracy of 91.5%, an average AUC value of 0.924, an
average recall rate of 88.7%, and an average F1 score of 90.1%. The application of
this system in rehabilitation robot would be useful for therapists.
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1 Introduction

Stroke is a type of disease in which the blood circulation in the brain is impaired due to
cerebrovascular disease, resulting in pathological changes such as ischemia, hypoxia,
necrosis, or hemorrhage of brain tissue (Chao et al., 2021). Stroke is often accompanied
by limb motor dysfunction occurs, statistics show that stroke patients have a 55%–75%
chance of suffering from motor dysfunction (Chen et al., 2022), of which 80% of patients
with upper limb dysfunction (Dhiman et al., 2018). The lack of upper limb functionmakes it
difficult for patients to perform activities of daily living independently, which leads to
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serious family and social issues (Jiang et al., 2023), thus it is
necessary to cooperate with rehabilitation training to treat or
reduce the upper limb motor dysfunction caused by strokes
(Dunkelberger et al., 2020). An effective decision-making
prescription for rehabilitation training plays an important role in
improving the motor function of stroke patients (LI et al., 2020). The
current upper limb rehabilitation robot, which has been able to
effectively complete the training program for hemiplegic patients
according to the therapist’s rehabilitation decisions. but only focuses
on assisting the patient’s training process (Dunkelberger et al.,
2020). And the development of rehabilitation training
prescription still relies on the clinical experience and scale
evaluation results of therapists, which is subjective and has a low
degree of standardization. Therefore, decision support system (DSS)
has been introduced into stroke rehabilitation training to improve
the efficiency and accuracy of rehabilitation training programs.

Currently, the construction methods of decision-making model
include rule-based reasoning (RBR), case-based reasoning (CBR)
and machine learning generally. RBR is a rule base that summarizes
the knowledge of experts in a certain domain, including problem
descriptions and solutions, which simulates the reasoning and
thinking process of experts in solving professional problems
(Huang et al., 2020). Rule base is commonly used as the main
knowledge base construction method in the study of intelligent
decision-making systems in early upper limb rehabilitation training.
Pradeep Natarajan (Natarajan et al., 2011) employed RBR to craft an
expert system using CLIPS (C Language Integrated Production
System), conducting a survey involving over 100 clinicians and
establishing a knowledge repository for a specialized robotic
rehabilitation system. Their developed system assists therapists in
analyzing data gathered by the rehabilitation robot during training,
facilitating decision-making concerning the patient’s rehabilitation
process. Douglas D. Dankel (Dankel and Kristmundsdóttir, 2005)
developed a post-stroke rehabilitation expert system known as
REPS, which utilized the RBR method to create training plans
based on assessment scales. Yuan Wang (Yuan, 2015) established
an expert system for upper limb rehabilitation robot based on RBR.
The system constructed a knowledge base using symptoms and
Brunnstrom scales, aiding therapists in decision-making by
assessing the patient’s current stage of rehabilitation. Kaixuan Lu
(Lu, 2021) established a rule base that amalgamates five evaluation
metrics, including muscle tone. This assists in patient rehabilitation
by generating output regarding the angle and speed of movement for
the rehabilitation robot. The advantage of RBR is that it can
summarize a more scientific rehabilitation training plan by
referring to the treatment experiences and ideas of several
physicians, but it is overly dependent on the established rules,
which makes it difficult to formulate the most appropriate
training plan for different types of patients.

CBR involves searching historical cases for similarities based on
the target case information, wherein these resemblant cases offer
solutions to the problem posed by the target case (Slam et al., 2020;
Khan and Khan, 2021). At present, more and more studies on the
decision-making mechanism of training prescription are based on
the case data collected from hospitals, and the decision-making is
made through the way of CBR. Meng Lingwei (Lingwei, 2016)
searched the patient case information base using a similar patient
discovery algorithm based on a conceptual classification tree,

considered the patient’s past medical history, family history, and
medication use, obtained the weights of each evaluation criterion,
and ranked the rehabilitation programs. Chen Ming (Ming et al.,
2021) proposed a rehabilitation program recommendation system
based on a hybrid attention mechanism neural network model in
2021, which employs an attention mechanism to express the
semantic relationship between case text content, and case text.
The CBR approach can obtain training programs for new
patients from previous cases, which greatly utilizes the medical
resources, and does not adhere to the rules and regulations,
which makes the development of training programs more
flexibility. However, this approach is sensitive to noisy data, and
the error and redundant data will have a greater impact on the
retrieval efficiency and results, thus CBR method is appropriate for
domains characterized by ambiguous knowledge that is challenging
to represent through rules.

Therefore, more and more researches tend to combine the two
organically and establish a hybrid reasoning mechanism with CBR
as the main and RBR as the supplement. In the study of JiWen (Wen
et al., 2014). They designed a DSS that fused RBR and CBR to control
the robot to rehabilitate patients with different speeds and positions,
resulting in a functional value of 94 points or more (on a 100-point
scale) after rehabilitation treatment. However, their system
inadequately utilized and extracted data, posing a challenge in
handling large-scale data——a common flaw in training systems
integrating RBR and CBR.

Thus, in this study, through the fusion of RBR and CBR, we
integrated a machine learning approach into CBR, extensively
extracting valuable insights from clinical case data utilizing the
random forest algorithm. Ultimately, we created an intelligent
decision-making system that constructs a dual-driven hybrid
reasoning model, integrating rule-based reasoning and machine
learning-enhanced case-based reasoning. This system can adaptively
adjust the rehabilitation program based on the patient’s real-time
rehabilitation process, enabling the customization of personalized,
real-time, and dynamic training programs across multiple
rehabilitation stages.

In this study, based on the fusion of the RBR method and the
CBR method, we innovatively combined CBR and machine learning
algorithms to design a dual-driven hybrid inference model based on
RBR and machine learning-enhanced CBR, which achieves the
customization of personalized, real-time, and dynamic training
protocols covering multiple rehabilitation stages.

The rest of the article is presented as follows: Section 2 provides
an overview of the decision model components and the selection of
model parameters, Section 3 presents the RBR-based cycle plan
inference model construction, Section 4 presents the CBR-based
training parameter inference model construction, Section Section 5
presents validation and result, Section 6 and Section 7 discussions
and conclusion respectively.

2 Decision modeling base on RBR
and CBR

This section is presented in two pieces: the first being the
determination of the training program generation route and the
second presenting the determination of the model parameters.
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2.1 Training program generation route

This section introduces the specific process of combining CBR-
RBR fusion inference. Figure 1 illustrates the CBR-RBR fusion
technology route. As shown in Figure 1, the input of the system
the main modeling parameters of the target case, and the output is the
training plan. First, the input parameters are reasoned through the
RBR model to generate a preliminary cycle plan. Subsequently, the
patient starts training and the parameters of the patient’s relevant
training state are input into the CBR model for program update.
Finally, output the final training plan and add it to the case library.

2.2 Model parameterization

In order to determine the input parameters of the DSS, the
factors related to the patient’s training effect were analyzed in the
form of questionnaire, and the most compatible parameters were
selected through expert discussion. Ensuring questionnaire quality

involved designing it based on extensive literature review and expert
recommendations. Ten experts, comprising professional rehabilitation
therapists experienced in desktop-based upper limb rehabilitation robot
usage, were sourced from 3 rehabilitation hospitals and 7 general
hospitals featuring rehabilitation departments in Shanghai. This
study distributed a total of 10 questionnaires, achieving a 100%
response rate. The experts’ composition is detailed in Table 1.

After examining the collected questionnaires, results indicated
unanimous selection by experts of the Brunnstrom stage and muscle
tone for determining the robot’s training mode. As for determining
the robot’s strength level, nine experts recognized engagement and
the fitness, while seven experts supported the speed and force of the
affected limb’s movement (several experts endorsed all four
parameters simultaneously). Consequently, the Brunnstrom stage
and muscle tone will serve as input parameters for determining the
robot’s training mode in this study. Meanwhile, engagement, fitness,
affected limb movement speed, and force during training will be
pivotal input parameters for determining the robot’s strength level.
Since training speed and training duration often assume fixed values,

FIGURE 1
Training program generation route based on CBR-RBR fusion. (1) Determined input parameters through expert research. (2) Constructed the expert
knowledge base. (3) Built an RBR cycle plan inferencemodel. (4) Outputted a preliminary cycle training plan. (5) The patient starts training and parameters
is generated. (6) Retrieved similar cases from the case base based on the patient’s training data. (7) Performed feature extraction on the retrieved similar
cases. (8) Perform case-based reasoning based on extracted features and solutions for similar cases. (9) Strength level update. (10) Training mode
update. (11) Outputted the final solution and entered it into the case base reasoning.
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our DSS integrated values commonly practiced by therapists in
clinical settings.

Engagement reflects the degree of subject’s engagement in the
training process. In order to quantify the degree of engagement in
the collaborative process, this paper define engagement as the
percentage of the actual work done by the subject to complete
one training task arm versus its required work:

Engagement � Wuser

Warm
× 100% � Wtotal −Wmotor

Wtotal −Wrobot
× 100% (1)

WhereWuser is the work by subject’s arm during the actual training
process, Warm is the work required to complete the training task
subject’s arm alone, Wtotal is the sum of the work by the robot and
the subject’s arm without exerting force when completing a training
task,Wmotor is the work by robot during the actual training process,
Wrobot is the work by the robot running unloaded.

The fitness of the training trajectory is the degree of consistency
between the actual movement trajectory and the preset trajectory,
and the higher fitness represents the better subject’s upper limb
motor coordination and control ability. The formula for calculating
fitness is as follows:

R2 � 1 − ∑n
i�1 yi − ŷi( )2

∑n
i�1 yi − �y( )2

(2)

Fitness � R2 × 100% (3)
Where yi represents the actual values, ŷi represents the preset values, �y
is the mean of the observed values, n is the number of observations.

3 Cycle plan inference model
construction based on RBR

Firstly, suitable experts are selected to generate the previous
questionnaire and organize the entries into entries with professional
knowledge, thus constructing a rule base for cycle plan reasoning (expert
knowledge base). Then, based on the expert knowledge base, the
reasoning relationship between the patient’s condition and the
training plan is analyzed, so as to establish a cycle plan reasoning
model based on RBR. This model will outline the overall approximate
training plan for the patient over a 21-day period, with each day’s training
plan further divided into four phases, and then establish a DSS for
rehabilitation training that combines the long and short periods. The

TABLE 1 Composition of experts group.

Category Experts Composition ratio (n = 10) (%)

Years in the field ≤ 5 years 4 40

>5 years 6 60

Hospital level II 2 20

III 8 80

Using frequency (per week) ≤ 5 times 3 30

>5 times 7 70

FIGURE 2
Construction process for cycle plan inference model.
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flowchart illustrates as Figure 2: 1. Selection of experts for research; 2.
Acquisition of questionnaires and relevant professional knowledge; 3.
Organization into an expert knowledge database; 4. Attainment of a
multi-stage training plan; 5. Formation of a cycle training plan from the
multi-stage plan.

3.1 Expert knowledge base

In order to support long-term tracking of patient training
decisions, this study employed a previous questionnaire to
establish an expert knowledge base, which served as an input
database for the cycle plan inference model. The approach aimed
to incorporate various stages of the patient’s rehabilitation process
into the training plan.

As the rehabilitation robot primarily caters to patients with
Brunnstrom stages ranging from II to V, this study aimed to collect
and analyze case data for them. The cycle plan of this study
encapsulates: training mode, training strength level, training
weeks, training speed, and training duration. The analysis of the
previous questionnaire indicates that Brunnstrom stages and muscle
tone can serve as input parameters for determining the training
mode. The joint range of motion, muscle tone status, training
strength level (as the scale progresses from F1 to F5, the strength
level increases), as well as muscle tone grading and training mode
that may correspond to patients in different Brunnstrom stages were
obtained based on relevant literature research and expert interview
discussions, as shown in Table 2.

Studies have shown that 1–2 weeks after the onset of stroke
represent the acute phase, equivalent to Brunnstrom stages I and II;
3–4 weeks post-stroke indicate the early recovery stage, equivalent to

Brunnstrom stages II and III; 4–12 weeks post-stroke signify the
mid-recovery stage, equivalent to Brunnstrom stages III and IV; and
4–6 months post-stroke denote the late recovery stage, equivalent to
Brunnstrom stages V and VI for patients (Li et al., 2023). Based on
this medical knowledge the number of training weeks under
different Brunnstrom stage of the patients was prescribed.
Table 3 shows the training weeks rule.

Questionnaire shows that experts are used to setting fixed values
for training speed and training duration, 6 of them are used to using
level 1 training speed, and 8 of them are used to setting the training
duration to 10 min, so the therapist’s commonly used values in the
clinic are also used in the DSS. Analyzing and summarizing the above
knowledge can get the expert knowledge base as shown in Table 4.

3.2 Construction of cycle plan
inference mode

In Section 3.1, the expert knowledge base for the cycle plan
reasoning model was established, and the expert knowledge about
the reasoning training mode, training strength, training weeks,
training speed, and training duration has been collected. To
simulate therapists’ cognitive processes in resolving rehabilitation
decision-making dilemmas, the RBR method was selected to
construct a cycle plan inference model aimed at formulating a
multi-stage training program for patients.

According to literature research andhospital visits, therapists develop
a two-stage training program in order to enhance the patient’smotivation
andmultidimensional capability (RosenbaumandHennig, 1995). Hence,
the system develops a multi-stage training plan for patients that follows
the rule of “Warm-up - Stage 1 - Stage 2 - Relaxation”.

TABLE 2 Patient assessment results Corresponding to training modes.

Br stage Joint range of motion Muscle tone status Muscle tone grading Training Mode (Training strength level)

II Mild restriction,<50% Mild Spasm 0 Passive (F2)

1/1+/2 Passive (F3)

III Restricted range of motion Spasm Exacerbation 3/4 Assist (F5)

1/1+/2 Assist (F2)

IV Partial separation,>50% Spasm Weakening 1/1+/2 Resistance (F2)

V Separation Spasm Weakening 1/1+/2 Resistance (F3)

TABLE 3 Training weeks rule.

Brunnstrom stage Muscle tone grading Training weeks

II 0 1

II 1/1+/2 1

III 3/4 2

III 1/1+/2 2

IV 1/1+/2 5

V 1/1+/2 8
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The specific rules of the multi-stage training program are as follows:
the initial stage employs a 2-min warm-up period, allowing the patient to
transition into the training state; the second and third stages utilize
identical trainingmodes and strength, targeting diverse joint mobility and
muscles with varied training trajectories, each episodelasting 10min based
on clinical expertise. The fourth stage implements a 2-min relaxation
mode to alleviate muscle tension and restore them to their baseline.
During warm-up and relaxation, the passive mode’s lowest difficulty level
(level 1) was chosen to facilitate without increasing muscle training stress.

Per medical insurance regulations, the number of training days
for a patient within a single rehabilitation hospital is limited to
21 days. Upon reaching this number, patients may be transferred to
another facility. Hence, the cycle plan inference model of this system
devises a training plan for the patient spanning 21 days.

The cycle plan inference rule base, derived from the
aforementioned rule summary analysis, is presented in Table 5,
where the ‘Rehabilitation stages’ include ‘Brunnstrom stage and
Muscle tone grading’. After the patient completes the Brunnstrom
stages and muscle tone assessment, this rule base selection aligns with
the rehabilitation stage of the training program. It integrates with the
training parameter inference model during the training process,
adapting the program according to the patient’s training status.

4 Training parametric inference model
construction based on CBR

As shown in Figure 3, construction process for training
parametric inference models, which consists of the following six
main steps: 1. Conduct clinical interviews to research patient
conditions; 2. Generate training case bases on patient conditions;
3. Develop the training case base; 4. Feature extraction; 5. Develop
the training case library; 6. Build the training parametric inference
model with two submodels: level improvement submodel and
pattern advancement submodel, which are built by different
methods, where ML is machine learning, TC is threshold control.

4.1 Training case feature library

Based on the analysis in Section 2.2, the clinical case data
including engagement, fitness, movement speed of the affected
limb, and force of the affected limb during training can be used
as inputs to the training parameter inference model. We established
the input database for the training parameter inference model based
on the clinical case data collected in the hospital, enabling the system

TABLE 4 Expert knowledge base.

Project Judgment (IF) Conclude (Then)

Training week Brunnstrom stage PhaseIII 2 weeks

PhaseIII 4 weeks

PhaseIV 5 weeks

PhaseV 8 weeks

Training duration Patient requirements Warm-up 2min

Stage 1 10 min

Stage 2 10 min

Relaxation 2 min

Training mode (Training strength level) Brunnstrom stage (Muscle tone grading) PhaseII(0) Passive (F2)

PhaseII(1/1+/2) Passive (F3)

PhaseIII(3/4) Assist (F5)

PhaseIII(1/1+/2) Assist (F2)

PhaseIV Resistance (F2)

PhaseV Resistance (F2)

TABLE 5 Cycle plan inference rule base.

Rehabilitation stage Weeks Warm-up (2min) Stage 1 (10min) Stage 2 (10min) Relaxation (2min)

PhaseII(0) 1 Passive (F1) Passive (F2) Passive (F2) Passive (F1)

PhaseII(1/1+/2) 1 Passive (F1) Passive (F3) Passive (F3) Passive (F1)

PhaseIII(3/4) 2 Passive (F1) Assist (F5) Assist (F5) Passive (F1)

PhaseIII(1/1+/2) 2 Passive (F1) Assist (F2) Assist (F2) Passive (F1)

PhaseIV 5 Passive (F1) Resistance (F2) Resistance (F2) Passive (F1)

PhaseV 8 Passive (F1) Resistance (F3) Resistance (F3) Passive (F1)
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to dynamically adjust training parameters according to the patient’s
rehabilitation progress.

Training cases involving patients using the desktop-based upper
limb rehabilitation robot were gathered from hospitals that
integrated it into their routine training regimens. The patient’s
condition was examined in the preliminary stage, and a case
collection form was devised to gather fundamental patient
information. The case collection form is shown in Table 6.

This study collected basic information and training case data
from 54 stroke patients, comprising 24 females and 30 males, with a

mean age of 60.2 ± 29.2 years. All cases met specific criteria: 1)
Upper limb motor dysfunction due to stroke; 2) Brunnstrom stages
assessed between phases II to V; 3) Training within a 2-year period;
4) Absence of visual or auditory impairment; 5) No comprehension
deficits. Table 7 presents information on these 54 cases. It is worth
noting that the same person may have undergone training using
multiple modes, and where ‘Left’ is the affected left side, and ‘Right’
is the affected right side.

The training case data comprised four parameters: the patient’s
engagement, fitness, movement speed of the affected limb, and force

FIGURE 3
Construction process for training parametric inference models.

TABLE 6 Case collection form.

Attribute Value Example

Name - Zhang san

Age - 50

Gender Male/Female male

Disease Ischemic stroke/Hemorrhagic stroke Ischemic stroke

Affected side Left/Right Left side

Brunnstrom stages Phase II/III/IV/V Phase III

Muscle strength Level 0/1/2/3/4/5 Level 1

Muscle tone Level 0/1/1+/2/3/4 Level 1

Range of motion Small/Medium/Large Medium

Date of joining (machine use) - 2022.9.1

Total usage days - 210 days

Passive mode usage duration - 870min

Assistance mode usage duration - 3100min

Resistance mode usage duration - 0min
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of the affected limb in passive, assistance, and resistance modes.
MATLAB was used to extract features such as mean, median,
maximum, minimum, and standard deviation from the training
case data in passive, assisted, and resistance modes. This process
resulted in a total of 20 features.

For each training session, the raw data amounts to 120,00 × 4,
resulting in a total of 14,782 training sessions. Post feature processing,
2,676 sets of sample data were derived, including 1,020 sets for passive
mode, 1,162 sets for assisted mode, and 494 sets for resistance mode.
Table 8 displays the creation of the case feature library.

4.2 Training parametric inference model
construction

We established a case feature library for the training parameter
inference model in the previous section. In order to fully explore the

potential value information in the clinical case data and improve the
decision-making accuracy, a combination of machine learning and
CBR was used to construct the training parameter inference model,
thus realize the system adaptive adjustment scheme to fit the
rehabilitation process.

According to literature research and expert interviews,
therapists tend to gradually increase the training difficulty for
patients when their abilities increase (Waeber et al., 2015), so as
to ensure that patients can progressively enter the next rehabilitation
process. We divided the model into two modules: the strength level
improvement submodel and the pattern advancement submodel.
The strength level improvement submodel learns the case feature
library through machine learning algorithms, analyzes whether the
patient’s current training status is able to enter the next
rehabilitation strength level stage, and controls the progress of
the patient’s training strength level promotion. The pattern
advancement submodel assesses the specific parameters of the

TABLE 7 Case information situation.

Mode Patients Male Female Left Right

Passive 26 13 13 9 17

Assisted 38 20 18 13 25

Resisted 21 13 8 7 14

TABLE 8 Case feature library.

Data category Project content Example

Average value Average force 1.033

Average velocity 0.073

Average fit rate 77.631

Average engagement 37.316

Maximum value Maximum force 4.695

Maximum velocity 0.141

Maximum fit rate 99.684

Maximum engagement 100.000

Minimum value Minimum force 0.000

Minimum velocity 0.003

Minimum fit rate 0.000

Minimum engagement 0.000

Standard deviation Standard deviation force 1.053

Standard deviation velocity 0.026

Standard deviation fit rate 15.950

Standard deviation engagement 22.505

Median Median force 0.656

Median velocity 0.074

Median fit rate 81.485

Median engagement 32.921
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patient’s ongoing training using a threshold control method,
regulating the patient’s progression into the subsequent training
mode once the parameter reaches a specified threshold.

4.2.1 Strength level improvement submodel
During the actual training process, the expert will decide

whether to upgrade the level for the patient based on the
patient’s completion of the current level of training, which
influenced by subjective factors. To quantitatively analyze the
potential logical relationship between training difficulty and the
patient’s training status, we apply machine learning algorithms as a
research method for level improvement submodel. Diverse
machine learning models are established for various training
modes (passive mode, assisted mode and resisted mode), and
comparative analyses the values of recall rate, accuracy rate,
F1 score, and AUC. (This part is detailed in Section 5.1). The
final optimal construction process involves initially constructing
the machine learning model using Scikit-learn, followed by data
normalization, feature selection using Chi-square filtering, and
finally integrating with the random forest algorithm to build the
strength level improvement submodel.

4.2.2 Pattern advancement submodel
The threshold ranges of the training parameters vary across

modes. In passive mode, the affected limb mainly follows the
machine movement, so the affected limb has less force and
higher fitness; in assisted and resistance modes, the affected limb
has more force and higher engagement, but inadequate patient
activity accuracy might reduce the fitness level. Therefore, it

needs to be modeled separately for different training modes. As
machine learning methods are inapplicable for transitioning to the
next mode during patient training, the threshold control method
was adopted. This method entailed establishing the threshold values
of the training parameters by analyzing reference values associated
with the patient’s exertion state during training, aiming to facilitate
the patient’s progression to the next training mode.

Experimentally verifying the training parameters that are
more correlated with the state of exertion, gradually increasing
the amount of force exerted by the upper limb on the handle in
the passive and assisted modes, and plotting the line graphs to
obtain the changes in the four training parameters of
engagement, fitness, movement speed of the affected limb, and
force of the affected limb. As shown in Figure 4, where ‘Force’ is
force of the affected limb, ‘Speed’ is movement speed of the
affected limb.

According to Figure 4, it can be obtained that a significant
positive correlation trend between robot’s strength level and
engagement, while force of the affected limb shows a smaller
positive correlation trend, with no significant correlation trend in
the fitness and engagement; in the assistance mode, there is a
positive correlation between the force and speed, while the force
shows a relatively small positive correlation, with no significant
correlation trend in the fitness and engagement. As a result, the
selection of engagement as input parameter in the passive mode, and
progression to the assisted mode when the patient’s average
engagement in training was greater than or equal to 70%; choose
the movement speed as the input parameter in the assisted mode, by
analyzing the speed curve in the figure, when the time is 50–80 s, the

FIGURE 4
Relationship between exertion state and each training parameter in the passive mode (A) and assisted mode (B).
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speed is stable at 15 cm/s, when the time is 80–120 s, the speed rises
sharply and stabilizes at about 35 cm/s, so take the intermediate
value of 25 cm/s as the critical value, i.e., when the patient’s average
movement speed in training is greater than or equal to 25 cm/s, the
progression to resistance mode.

5 Validation and results

We validate our DSS in two parts: strength level improvement
submodel validation and rehabilitation program decision-making
experiment. To validate the strength level improvement submodel,
we choose recall, accuracy, F1 score and AUC for comparative
evaluation. As shown in Section5.1. In order to test the decision-
making effect of the system in the clinic, we selected subjects who
met the requirements for clinical testing, recorded the intelligent
decision-making results, and then compared the intelligent
decision-making results with the expert decision-making results
for a comparative study. As shown in Section5.2.

5.1 Strength level improvement submodel
validation

The establishment of the training parameter inference model
has been concluded in Section 4.2. This model delineates two
modules: the strength level improvement submodel and the
pattern advancement submodel. The latter heavily relies on
threshold control, previously analyzed in Section 4.2.2. Hence,
Section 4.1 is dedicated to validating the strength level
improvement submodel.

In this study is mainly the strength level improvement submodel
constructed based on the machine learning method of data
normalization-chi-square filtering-random forest, and in order to
verify the superiority of this submodel, this part designs the
algorithm fusion comparison experiment. Upon evaluating the
data type and volume within the case base constructed in Section
4.1, logistic regression (LR), random forest (RF), support vector
machine (SVM), AdaBoost (ADA), and XGBoost (XG) were
selected. These machine learning algorithms combined with

various data preprocessing and Feature dimensionality reduction
methods to comparatively analyze their effects. The specific process
is shown in Figure 5: After obtaining the data from the training case
feature library, data preprocessing is performed, followed by feature
dimensionality reduction, and finally different machine learning
algorithms are performed to obtain different algorithmic
fusion schemes.

Tuning hyperparameters in algorithms to optimize model
parameters by considering generalization error and model
complexity is crucial in machine learning. Generalization error, a
key metric, gauges model accuracy; higher generalization error
indicates reduced model effectiveness. There exists a strong
correlation between generalization error and model complexity.
When the model is overly simplistic, generalization error increases
due to underfitting, and when excessively complex, it rises due to
overfitting. Optimal performance occurs when the model complexity
is appropriately balanced. Thus, this study refines hyperparameter
values by analyzing the interplay between generalization error and
model complexity. Individual algorithms undergo hyperparameter
tuning, and the specific values are detailed in Table 9.

Following the selection of optimal hyperparameter values for
each algorithm, a fusion of various data preprocessing methods,
feature dimensionality reduction techniques, and hyperparameter-
optimized algorithms is employed to determine the algorithm
combination yielding the most effective classification. Raw data
typically contains varying data specifications, and numerical
differences between features may compromise classification
accuracy. The process of transforming diverse data specifications
into a standardized or specific distribution in machine learning is
known as “dimensionless scaling”. Common dimensionless
methods encompass data normalization and standardization,
ensuring uniformity across all data specifications (Nan et al., 2022).

The process of data normalization is to center the minimum
value and then scaling it based on the extreme deviation (Pua et al.,
2020). The formula for data normalization is as follows, where x is
the original data, min(x)is the minimum value of the original data,
max(x) is the maximum value of the original data, and x′ is the
normalized data:

x′ � x −min x( )
max x( ) −min x( ) (4)

FIGURE 5
Algorithm fusion comparison experimental design.
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The process of data standardization is to center the data based on the
mean, and then scale it based on the standard deviation (Ji et al.,
2021). The formula for data standardization is as follows, wherexis
the raw data, μ is the mean, σ is the standard deviation, and x′ is the
normalized data:

x′ � x − μ

σ
(5)

Feature selection is an important task in machine learning,
where irrelevant and redundant features are eliminated by feature
selection to improve the learning performance (Wang et al., 2020).
In this study, 20 features were selected as inputs to the model in the
preliminary stage, and further feature selection is needed for them.
The commonly used feature selection methods are filter method,
wrapper method, embedded method and dimensionality reduction.
Filter method and dimensionality reduction are selected for in-depth
algorithmic comparisons based on the data features, so that the
optimal combination of features can be selected.

Filtering methods can be further categorized into variance filtering
and relevant filtering. Variance filtering (VAR) is a method of filtering
by the variance of the features themselves (Zhou et al., 2020). Its
variance is calculated as follows, where X is the feature matrix and p is
the probability of one of the classes in that feature:

Var X[ ] � p 1 − p( ) (6)
Relevant filtering can filter out features that are more relevant and
meaningful to labels (KIYAK et al., 2021). This article selects chi
square filtering as one of the alternative feature selection methods.

The calculation formula is as follows, where Oi is the observation
frequency, Ei is the expected frequency:

x2 � ∑
k

i�1

Oi − Ei( )2
Ei

(7)

The essence of feature selection in dimensionality reductionmethod
is matrix decomposition (Taherkhani et al., 2020). In this paper,
principal component analysis (PCA) is chosen as one of the feature
selectionmethods. The sample variance formula is as follows, where n is
the number of samples,xi is the sample value,�x is sample mean:

Var � 1
n − 1

∑
n

i�1
xi − �x( )2 (8)

Evaluate the algorithm’s classification performance based on
classification accuracy and AUC value. In classification, the accuracy
rate (the proportion of results predicted correctly by the model),
characterizes the overall correctness of the classifier (Zhang et al.,
2020). The AUC value (area under the ROC curve) characterizes the
performance of the classification model, while the ROC curve shows the
threshold effect of the model under all classification categories (Agrawal
et al., 2022). The combined step of data preprocessing and feature
selection methods (Remeseiro and Bolon-Canedo, 2019), which can
also be referred to as feature processing methods. The algorithms with
outstanding classification performance were first filtered on each feature
processing method and then further filtered using AUC values. Apply a
feature processingmethod to eachmachine learning algorithm, according
to different training modes for model training, respectively, and plot the
bar graph to get the classification accuracy as shown in Figure 6.

TABLE 9 Hyperparameter values.

Filtering Hyper-parameters Values

Logistic regression Penalty Parameter l2

Solver for Optimization liblinear

Regularization Parameter 0.1

Max Iterations 1,000.0

Random forest Number of Trees 54.0

Random Number Generator Seed 70.0

Maximum Depth of Trees 16.0

SVM Kernel Type rbf

Kernel Parameters auto

Cache Size 5000.0

AdaBoost Maximum Depth of Trees 16.0

Number of estimators 1,000.0

Learning Rate 3.0

XGBoost Number of Estimators 340.0

Column Subsampling Ratio for Trees 0.6

Learning Rate 0.3

Maximum Depth of Trees 3.0

Subsample 0.7
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Based on the bar charts, the top three feature processing and
algorithm fusionmethods in terms of accuracy in eachmode are found,
as shown in. It can be obtained that both Random Forest and XGBoost
achieve the training effect of ranking the top three in three modes, and
their average accuracy in various data processing methods remains
above 75%, and then further screening is carried out in these two
algorithms. Table 10 shows top 3 fusion algorithm accuracy
comparisons for different training modes.

The different feature processing methods are applied to
Random Forest and XGBoost, respectively, for the computation

of AUC values, as shown in Figure 7. Where the radar scale of the
radargram corresponds to the AUC value, the radargram has a
total of six radar axes, which represent six different algorithm
fusion methods.

Based on the radargrams, the top three feature processing and
algorithm fusion methods for AUC values in each mode are found,
as shown in Table 11. Where ‘RF’ is the random forest classifier and
‘XG’ is the XGBoost classifier. It can be obtained that RF [NOR +
CHI] (Data normalization and chi-square filtering as feature
processing, combined with random forest algorithm) achieves the

FIGURE 6
Fusion algorithm accuracy in the passive mode (A), assisted mode (B), and resisted mode (C). where ‘RAW + VAR’ is ‘raw data + variance filtering’,
‘NOR + VAR’ is ‘normalization + variance filtering’, ‘NOR + CHI’ is ‘normalized + chi-square filtering’, ‘RAW + PCA’ is ‘raw data + principal component
analysis’, ‘NOR + PCA’ is ‘normalization + principal component analysis’, ‘STA + PCA’ is ‘standardization + principal component analysis’, ‘LR’ is ‘logistic
regression’, ‘RF’ is ‘random forest’, ‘ADA’ is ‘AdaBoost’, ‘XG’ is ‘XGBoost’.

TABLE 10 Comparison of fusion algorithm accuracy under different training modes.

Mode Algorithm Accuracy (%)

Passive XGBoost 89.5

Random Forest 89.4

Logistic regression 82.9

Assisted Random Forest 79.2

XGBoost 77.0

AdaBoost 68.2

Resisted Random Forest 86.1

XGBoost 79.2

Logistic regression 78.0
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training effect of ranking the top three in all three modes, and all of
their AUC value remain above 0.9.

According to the above analysis, the data preprocessing method
adopts normalization, the feature selection method adopts chi-
square filtering, and finally combines with the random forest

algorithm to establish the training parameter inference model.
After chi-square filtering, feature selection is completed. When
the hyper-parameter k is 19, the number of sub classifiers in the
random forest reaches 54, and the maximum depth of the model
reaches 16, the model can achieve the optimal classification effect.

FIGURE 7
AUC values of fusion algorithms in the passive mode (A), assisted mode (B), and resisted mode (C).

TABLE 11 Comparison of AUC values of fusion algorithms under different training modes.

Mode Algorithm AUC

Passive RF[NOR + CHI] 0.942

RF [RAW + PCA] 0.931

XG [NOR + CHI] 0.930

Assisted XG [RAW + VAR] 0.915

XG [NOR + CHI] 0.909

RF[NOR + CHI] 0.907

Resisted RF[NOR + CHI] 0.923

RF [RAW + PCA] 0.903

RF [NOR + PCA] 0.889

Bold implies that the RF [NOR + CHI], AUC values in different modes are in the top three.
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The metrics of each model are shown in Table 12, and the average
accuracy of the system is 91.5%, the average AUC value is 0.924, the
average recall is 88.7%, and the average F1 score is 90.1%.

5.2 Rehabilitation program decision-making
experiment

In order to test the effectiveness of the system in clinical decision
making, 15 stroke subjects were convened to train with the desktop-
based upper limb rehabilitation robot for 30 sessions, including 7 females
and 8 males, with a mean age of 57.5 ± 25.5 years. The desktop-based
upper limb rehabilitation robot in our study called Armguider produced
by Shanghai ZhuoDao Medical Technology Co. All subjects met the
following criteria: 1) Upper limb motor dysfunction caused by stroke; 2)
The Brunnstrom stages evaluation results are from II to IV; 3) No visual
or auditory impairment; 4) No comprehension barriers, able to
understand experimental requirements. The training information of
15 subjects is shown in Table 13, where types 1 to 3 represent
separately passive mode, assistance mode, and resistance mode.

Before the experiment began, all subjects were aware of the
process and precautions of this experiment and voluntarily signed

an informed consent form. The clinical rehabilitation decision-
making experimental scenarios is shown in Figure 8.

In order to verify the feasibility of the system in clinical decision
making, experts were asked to evaluate the training programs inferred
from the model. The evaluation method was as follows: the experts
scored each training program based on the safety and reasonableness of
themode and strength level inferred from each training in actual clinical
decision making. As shown in Table 14. Where “Training No. x” is the
training serial number (30 training sessions for 15 individuals), E1-E10
are 10 experts. Each expert scores the mode (full marks is 5), strength
level (full marks is 5) of reasoning for each training session, and overall
program (full marks is 10). The specific scoring details are shown in the
following table as an example for a particular patient’s training. The full
marks of each training session is 100 out of 100, and the current score is
90. This includes a score of 50 out of 50 for the predicted score of the
training mode, and a score of 40 out of 50 for the strength level score.
Therefore, the accuracy in terms of score is 90% (Overall program),
100% (Mode), 80% (Strength level). Scatterplot Figure 9 was obtained
from the expert rating scale, plotting themode, robot strength level, and
overall evaluation of the program.

Figure 9A shows that the expert always has a high evaluation of
the modes inferred by the DSS, indicating that, it can be seen that the

TABLE 12 Indicators in each mode.

Accuracy (%) AUC Recall (%) F1 score (%)

Passive 95.9 0.942 90.9 94.1

Assisted 87.7 0.907 86.7 85.4

Resisted 90.9 0.923 88.5 90.8

Average 91.5 0.924 88.7 90.1

The mean value of system performance is deepened with bold.

TABLE 13 Subject information.

Mode Subjects Male Female Affected limb site

Passive 4 1 3 Upper limb

Assisted 7 4 3 Upper limb

Resisted 4 3 1 Upper limb

FIGURE 8
Clinical rehabilitation decision-making experimental scenarios.
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intelligent decision-making model has a high level of feasibility for
mode reasoning in rehabilitation training program. By analyzing
Figure 9B, it can be concluded that the expert’s evaluation range for

the strength level inferred from the system remains between 60%
and 100%, with over 80% accounting for the majority, the evaluation
of the strength level for passive mode and resistance mode remains

TABLE 14 The expert rating scale.

Training
No.x

DSS E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Total
marks

Full
marks

Score
(%)

Mode Passive Passive Passive Passive Passive Passive Passive Passive Passive Passive Passive

Expert rating 5 5 5 5 5 5 5 5 5 5 50 50 100

Strength level F2 F3 F2 F3 F2 F2 F2 F2 F2 F2 F2

Expert rating 0 5 0 5 5 5 5 5 5 5 40 50 80

Overall program 5 10 5 10 10 10 10 10 10 10 90 100 90

Expert total
rating

FIGURE 9
Scatterplot of feasibility evaluation of intelligent decision-making for mode (A), strength level (B), and overall program (C).
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almost at a high level, while there are occasional deviations in the
assistance mode. Therefore, it can be concluded that the intelligent
decision-making model is feasible for strength level reasoning in
rehabilitation training programs. By analyzing Figure 9C , it can be
concluded that the expert’s evaluation range for the training scheme
of system reasoning is maintained between 80% and 100%, with
passive mode and resistance mode almost maintaining a high level.
Based on the above analysis, it can be concluded that the intelligent
rehabilitation DSS has a high feasibility for reasoning the
training program.

To verify the decision-making ability of this system in clinical
rehabilitation, the training patterns and intensity levels determined by
expert and intelligent decision-making in different modes and in the
same modes were compared. Divide the data results of the expert’s
decision-making and the data results of the DSS into expert decision-
making group and intelligent decision-making group. Draw a split-side
violin diagrams as shown in Figure 10, where the long dashed line
represents the median, the short dashed line above the long dashed line

represents the 75% quantile, and the short dashed line below the long
dashed line represents the 25% quantile.

Upon analyzing Figure 10A representing the mixed training
mode, there’s considerable overlap in the quartiles of training
mode between the expert decision-making groups and intelligent
decision-making groups. This indicates a high degree of similarity
between the expert’s decision and the DSS, which indicates that
DSS is excellent at determining training mode. Examining
Figure 10B for the passive mode, the median strength level for
the manual decision-making group is 2.5, while for the intelligent
decision-making group is 2. Both groups predominantly fall within the
2 to 3 range, with 75% quartile overlap, revealing the system’s
proficiency in deciding strength levels within the passive mode.
Analyzing Figure 10C in the assisted mode, 75% quartiles of
training force levels overlap between both groups, with slightly
larger medians and distributions observed in the intelligent group
compared to the manual group. This indicates that the system’s
decisions on force levels in the assisted mode may surpass those of

FIGURE 10
Split-side violin diagrams in the overall program (A), passive mode (B), assisted mode (C), and resisted mode (D).
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manual decisions. However, given that higher assisted levels imply
easier training, the intelligent decision results can be safely applied in
clinical patient training. Reviewing Figure 10D for the resistancemode,
both groups exhibit a median strength level at 1, with the primary
distribution also centered around 1. This demonstrates the system’s
adeptness in determining strength grades within the resistance mode.

6 Discussions

In this study, we propose an RBR and ML-aided CBR to assist
physiotherapists in making rehabilitation training decisions in upper
limb rehabilitation robot training scenarios. We combined clinical
assessment scales such as Brunnstrom scales and muscle tone with
upper limb rehabilitation robot assessment indicators to establish a
DSS for rehabilitation robot training based on RBR and ML-aided
CBR. This has important clinical value and scientific significance for
promoting the intelligent system application of rehabilitation robots.

This study employs quantitative parameters derived from
multidimensional robot capability assessments to optimize decision-
making in prescription. Compared to current rehabilitation robot
evaluations that rely solely on clinical scales and single performance
dimensions (Wang et al., 2014; Jiang et al., 2022), this study overcomes
issues such as the subjectivity of clinical scales and the poor
interpretability of single robot evaluation indices. Thus, it provides
a theory and method with application value for intelligent prescription
decision-making of rehabilitation robot training.

In this study, we established an upper limb rehabilitation robot
decision-making model based on hybrid reasoning of CBR and RBR,
and used CBR to update the results of optimized RBR, which led to a
significant improvement in the reasoning efficiency (Wen et al., 2014;
Saraiva et al., 2016), and changed the traditional situation that relied on
the scale only for decision-making in rehabilitation training. In real-life
rehabilitation training situations, some patients may propose to perform
multiple sets of training on a single day (2 min-10min-10min–2 min as
a set), at which point theDSSwill quickly adjusts the subsequent training
program according to the training status, thus reducing the burden of
unplanned situations on the therapist. This study uses real patient data,
including personal data, signs, symptoms, and diagnoses. Therefore,
there will be a large amount of data, and in the face of similar situations,
some scholars have suggested in their research that the idea of machine
learning can be integrated (Saraiva et al., 2016), and this study
successfully practices the strategy of incorporating machine learning,
which allows us to process and utilize the data more deeply and fully.

In this study, in order to select a suitablemachine learningmethod to
improve CBR, the performance of algorithms such as SVM, Random
Forest, and XGBoost are compared by several metrics such as accuracy,
average AUC, recall, and F1. The results show that the Random Forest
algorithmperforms best in this system. Finally, comparing and analyzing
the training plan proposed by the experts and the system, the results
show that the experts are recognized the rationality of the system, and it
can be expected to reduce the therapist’s workload to a certain extent in
the subsequent application.

The limitations of this study are related to the size of the expert
knowledge base and the case base. Therefore, we plan to expand the
research by recruiting diversified experts in the field or in other fields and
establishing expert networks, which will in turn expand the content of
the rule base. By processing the data of existing samples and employing

methods such as Association RuleMining (Cheng andWang, 2017) and
Network Analysis (Yu et al., 2020), we will further explore the rule
relationships between assessment data and prescription results, aiming to
refine and enhance the decision outcomes. With the expansion of the
rule base, we intend to try ML to enhance RBR (Rieke et al., 2020), so as
to reduce the burden and cost of the process of collecting datasets with
annotations. Also in future work, we intend to collect more cases. By
increasing the number of cases, time-performance could be affected, but
there are effective Case Base Maintenance algorithms that could be used
to minimize this issue (Smiti and Elouedi, 2011).

7 Conclusion

This research established an expert knowledge base based on the
clinical experience of rehabilitation therapists and medical data. By
employing the RBR method, a cyclic planning inference model was
constructed. Utilizing clinical training case data and CBR, various data
processing methods and machine learning algorithms were compared
and integrated. The algorithms of chi-square filtering and random forest
were selected to build a training parameter inferencemodel. Ultimately, a
DSS for upper limb rehabilitation robot training based on rules and cases
was developed. The feasibility and effective decision-making capability of
the system were verified through practical clinical rehabilitation
decisions. This system enhances the efficiency and precision of
formulating rehabilitation training plans, integrating medical resources
to extract valuable information. It represents a breakthrough in the study
of integrating artificial intelligence with dynamic rehabilitation decision-
making. Simultaneously, it alleviates challenges related to constrained
medical resources and the high workload of rehabilitation therapists to a
certain extent, thus exhibiting promising application prospects and
substantial research implications.
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