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Introduction: Falls are amajor cause of accidents that can lead to serious injuries,
especially among geriatric populations worldwide. Ensuring constant supervision
in hospitals or smart environments while maintaining comfort and privacy is
practically impossible. Therefore, fall detection has become a significant area of
research, particularly with the use of multimodal sensors. The lack of efficient
techniques for automatic fall detection hampers the creation of effective
preventative tools capable of identifying falls during physical exercise in long-
term care environments. The primary goal of this article is to examine the benefits
of using multimodal sensors to enhance the precision of fall detection systems.

Methods: The proposed paper combines time–frequency features of inertial sensors
with skeleton-basedmodeling of depth sensors to extract features. Thesemultimodal
sensors are then integrated using a fusion technique. Optimization and a modified
K-Ary classifier are subsequently applied to the resultant fused data.

Results: The suggested model achieved an accuracy of 97.97% on the UP-Fall
Detection dataset and 97.89% on the UR-Fall Detection dataset.

Discussion: This indicates that the proposed model outperforms state-of-the-art
classification results. Additionally, the proposedmodel can be utilized as an IoT-based
solution, effectively promoting thedevelopmentof tools to prevent fall-related injuries.
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1 Introduction

Falling is one of the most significant global public health issues (Maritta et al., 2021).
With an estimated 646,000 fatal falls occurring worldwide each year, falls are the second
leading cause of unintentional injury deaths (Singh et al., 2021). This is particularly
detrimental to the elderly, who progressively lose their ability to control their
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movements smoothly with advancing age (Yang et al., 2022). The
threat to public health is further exacerbated by the growing elderly
population (Wang et al., 2024). Recently, the World Health
Organization (WHO) reported that deaths from falls most
common among individuals over the age of 65 years, with a
significant prevalence also noted in adults over the age of
60 years (Zhang et al., 2023).

In the modern era, fall detection has become a key and vital
research area within the investigation of biosurveillance systems
(Zhao et al., 2024). The duration that individuals remain on the floor
after falling plays a crucial role in determining the severity of the fall
(Wan et al., 2020). Early identification of falls enables caregivers to
provide prompt assistance, thereby reducing the negative effects of
falls (Dua et al., 2021). A reliable fall detection biosurveillance
system can significantly relieve the strain on caregivers by
monitoring falls and sending out timely notifications (Mahmood
et al., 2020; Zhou et al., 2020; An et al., 2022; Velliangiri et al., 2020).

In the modern era of artificial intelligence, fall detection holds
significant promise; yet, numerous challenges remain (Chen
et al., 2020). A fall is typically defined as an incident that
causes a person to unintentionally come to rest on the ground,
a floor, or another lower level while engaged in physical activity
(Gochoo et al., 2021). However, fall detection is a comparably
challenging task due to the prevalence of similar behaviors in
daily life activities (Wang et al., 2023). For instance, lying down is
a common action that can complicate fall detection (Khalid et al.,
2021). Additionally, falls are random, unplanned, and harmful
events, making it difficult to collect genuine data during daily
physical activities (Cai et al., 2023).

Numerous scholars have studied the use of multimodal sensors
to evaluate and observe fall detection, particularly in elderly
populations. Ghadi et al. (2022) presented a wavelet pattern
recognition and multi-feature extraction methodology to extract
multisensory features. These features were then optimized and
classified using fuzzy logic-based optimization and a hidden
Markov model (HMM) to detect falls and daily life activities,
achieving an accuracy of 87.5% on the UP-Fall Detection dataset.
Villaseñor et al. (2019) gathered a fall detection dataset using
wearable, ambient, and camera sensors. Their technique used
correlation-based feature selection and applied three machine
learning and neural network algorithms, including k-nearest
neighbors, support vector machines (SVMs), random forests, and
multi-layer perceptrons. The proposed technique achieved the
highest accuracy of 95.1% using the random forest classifier on
the UP-Fall Detection dataset. Marvi et al. (2021) introduced a
noise-tolerant fall detection system designed to remain effective even
in the presence of missing data. They utilized a deep learning
framework, specifically a recurrent neural network and bidirectional
long short-term memory (LSTM), on wearable sensor data. This
technique achieved an impressive accuracy of 97.41% on the UP-
Fall Detection dataset. Kraft et al. (2020) presented a harmonized
fall detection technique tested on the MUMA, SimFall, and UP-Fall
Detection datasets. Their harmonization strategy involved cropping a
200-timestamp window from theMUMA dataset and a 250-timestamp
window from the central point of the SimFall dataset time series.
Additionally, a peak detection algorithm was applied to the UP-Fall
Detection dataset. This deep learning algorithm achieved a top-notch
accuracy of approximately 93.3% on these benchmark datasets.

Gasparrini et al. (2016) developed a TST Fall Detection dataset
using camera and wearable sensors. A data fusion approach was
applied to this dataset, and the variation in skeleton joint positions
yielded an accuracy of approximately 90%. Yao et al. (2019) used
traditional features, whichwere later classifiedwith SVM. By adjusting
the threshold through extensive experiments, this feature-based
method combined with machine learning technology achieved an
impressive accuracy of 93.56% on the TST Fall Detection dataset.
Seredin et al. (2019) used skeleton-based features to encode
information from neighboring frames. These individual decisions
from neighboring frames were combined using the cumulative
sum method, and an SVM classifier was then applied to the
resultant data. This model achieved an accuracy of 95.8% on the
TST Fall Detection dataset. The system was validated using a leave-
one-person-out cross-validation scheme. Mendez et al. (2019)
identified human orientation features selected by a genetic
algorithm to determine the posture of a skeleton when it is
about to fall or is close to the floor. Utilizing SVM, along with
velocity and acceleration, they obtained an accuracy of 90% on
the TST Fall Detection dataset.

To improve feature capture, two-stream convolutional neural
networks (CNNs) have been applied to fall detection. Fei et al.
(2023) used optical flow input into VGG-16 for temporal feature
capture and key nodes of the human skeleton input into ST-GCN
for spatial feature capture. The process then involves feature
fusion and binary classification. Significantly, this detection
method remains unaffected by lighting variations and shows
enhanced robustness. There is growing research interest in
integrating the CNN and LSTM networks. Apicella et al.
(2021) used PoseNet for pose estimation and a pre-trained
CNN to generate additional poses in the cases where skeletal
key points are absent or pose estimation encounters difficulties.
The subsequent classification task is managed by LSTM. This
modular architecture facilitates the easier implementation of
enhancements and adjustments. Inturi et al. (2023) explored
the spatial correlation of acquired skeletal key points using the
CNN while also maintaining long-term dependencies through
LSTM networks. Their study underscores the superior accuracy
of AlphaPose in detecting key points compared to OpenPose.

In this paper, the multimodal sensor data have been first pre-
processed separately. Then, wave length features and autoregression
have been used to extract features of inertial sensor data.
Additionally, Markov random field (MRF) and ridge regression
have been used for depth and RGB sensor data. The principal
component analysis (PCA) has been used to fuse the data of
multimodal sensors. Finally, a convolutional neural
network–gated recurrent unit (CNN-GRU) has been used for the
prediction of fall detection. It could also be used for the classification
of different daily life activities.

The primary contributions of our paper are as follows:

• The selection of features from various domains aims to
optimize the extraction of relevant raw data information
for classification tasks. This process simultaneously
minimizes variations within classes and enhances
distinctions between classes.

• To address the intricate patterns of movement dysfunction
present in the fall detection dataset and enhance the
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identification rate of two benchmark datasets, an implemented
approach involved the utilization of a modified K-Ary entropy
classifier (KEC).

• Furthermore, a comprehensive comparative analysis was
conducted on two publicly accessible and standardized
datasets for fall detection, namely, UP-Fall Detection and
TST Fall Detection datasets. The experimental results of the
proposed model exhibited a high recognition accuracy rate in
terms of perception efficacy compared to other cutting-edge
methodologies.

The rest of the paper is organized as follows: Section 2 provides a
description of the solution framework, encompassing pre-processing,
feature extraction, feature fusion, and classification; Section 3 presents
the experimental results, including a comparison to similar cutting-
edge fall detection systems; and finally, Section 4 presents the
conclusion and outlines potential future study areas.

2 Materials and methods

2.1 System methodology

Figure 1 depicts the proposed fall detection model for the fall
activity detection of multimodal sensor data. The architecture of
the proposed fall detection system begins with data acquisition,
where RGB, depth, and inertial data were collected from the UP-
Fall Detection and TST Fall Detection datasets. The UP-Fall
Detection dataset includes both RGB video data and inertial
sensor data capturing various fall activities. In contrast, the

TST Fall Detection dataset contains accelerometer data and depth
sensor data, specifically obtained from scenarios designed for fall
activity detection within the TST framework. Both datasets provide
comprehensive multimodal data, essential for developing and testing
robust fall detection algorithms. Next, during the pre-processing phase,
the Dynamic Data Reconciliation (DDR) filter was applied to clean the
inertial data. Additionally, silhouette segmentation was performed on
the RGB and depth data to extract silhouettes from the images for
further processing. In the feature extraction process, autoregressive and
waveform lengthmethods were used to extract features from the inertial
data. For the RGB and depth data, features were extracted using ridge
regression andMRF techniques. Finally, the data extracted from various
modalities were combined to bolster the effectiveness of the modified
K-Ary entropy classifier through PCA.

FIGURE 1
Comprehensive architecture of the proposed fall detection system.

FIGURE 2
Visual representation of the ridge data edge detection and
distance map over the UP-Fall Detection dataset.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Al Mudawi et al. 10.3389/fbioe.2024.1398291

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1398291


2.2 Pre-processing

Pre-processing is an essential step of activity recognition and
classification in the human fall detection procedure (Lu et al., 2022).
It helps denoise the inertial data and extract the silhouette of RGB
and depth images, thus aiding in ensuring optimal performance and
accuracy (Khan et al., 2024). The pre-processing strategy of inertial,
RGB, and depth sensors is briefly described below.

2.2.1 Inertial sensor data
Due to excessive sensitivity of inertial wearable sensors, the data

contain random noise, which adversely affects the feature extraction
process (Jalal et al., 2019a; Jalal et al., 2019b; Jalal et al., 2019c; Jalal
et al., 2019d). Therefore, a filtration process is highly needed to
mitigate the randomness of inertial sensor data (Liu et al., 2021). In
this step, the DDR filter is applied to remove unnecessary
randomness and noise inherited in the inertial data (Shi et al.,
2022). The DDR filter works on the reconciliation principle by
integrating the sample information of signals with respect to time t
and window w. However, the main limitation of the DDR filter is to
have the input data long enough to obtain the appropriate results.
Therefore, 1-min-long inertial data samples have yielded standard
results, as shown in Figure 2.

2.2.2 RGB sensor data
In this process, the noise of RGB images has been removed using

the median filter. Then, silhouette segmentation on RGB images has
been performed by locating the components on the images using the
four-connected pixel analysis algorithm (Cui et al., 2022). Then,
bounding has been identified by applying a certain threshold over
the height and width of the human body (Fu et al., 2023). Then,
threshold segmentation has been applied to obtain the accurate
results of RGB images (Liu et al., 2022). Finally, the silhouette from
the depth image has been extracted using saliency map-based
silhouette segmentation. The results are shown in Figure 3.

2.2.3 Depth sensor data
The silhouette of depth images has been extracted by first

passing the depth images through the median filter (Batool et al.,
2019). Then, the depth image has been converted to a binary image
using Otsu thresholding (Sun et al., 2024). Then, the morphological
operation of dilation and erosion has been applied to detect the
contour of the images. The canny edge detection process has been
applied to detect the edges of the human body. Then, extra objects
have been removed from the depth image. Finally, the silhouette
from the depth image has been extracted using saliency map-based
silhouette segmentation. The results are shown in Figure 4.

FIGURE 3
Graphical depiction of waveform length extraction on the UP-Fall Detection dataset.

FIGURE 4
Graphical depiction of waveform length extraction on the TST Fall Detection dataset.
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2.3 Feature extraction

The feature extraction process is a vital part of the human
activity classification process; it could either be the recognition of
daily life activities, smart home activities, or elderly fall detection.
The feature extraction methodologies vary with the type of
sensors, such as time–frequency features and wavelet features,

which have been mostly used for inertial sensor data. Moreover,
HOG features, orientation features, and spatiotemporal features
have been mostly used for RGB and depth sensor data (Gdairi
et al., 2022). In this paper, autoregressive waveform length
features have been used for inertial sensor feature extraction.
Moreover, MRF and ridge regression have been used for RGB and
depth feature extraction. The feature extraction process is briefly
described below.

2.3.1 Autoregressive features
The samples of each inertial sensor data frame have been

represented by autoregression as a linear mixture of previous
samples (Zhang et al., 2019) and white noise, as shown in
Figure 5. The AR has been represented as

Ar y( ) � ∑N
j�1
cjyj−1 + er,

where Ar determines the coefficients of the yj−1 sample, er depicts the
error rate, and N represents the order of the ARmodel. Here, a 13th-
order polynomial has been used to obtain the resultant
autoregressive coefficients.

FIGURE 5
Calculated autoregressive features of the inertial data sensors
over the UP-Fall Detection dataset.

FIGURE 6
Visual representation of the ridge data edge detection and distance map over the UP-Fall Detection dataset.

FIGURE 7
Visual representation of the ridge data edge detection and distance map over the UP-Fall Detection dataset.
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2.3.2 Waveform length extraction
The waveform length assesses the overall variance of the inertial

signal by calculating the absolute difference of adjacent frames of the
data in the signal (Jalal et al., 2020). The resultant scalar values are
helpful in calculating the difference between high and low intensity
of the inertial sensors data:

WL y( ) � ∑k−1
k�0

yk+1 − yk

∣∣∣∣ ∣∣∣∣,
where yk+1 determines the anticipated value of the predicted signal
and yk is the current value of the sample signal.

2.3.3 Ridge
The ridge feature is one of the key feature extraction processes of

RGB and depth silhouettes. The ridge involves two key components of

binary edge extraction and distance map of the visionary data (Badar
et al., 2020; Jalal et al., 2018). First, binary edge data have been detected by
calculating the local statistical characteristics of each neighboring data of
the depth silhouette. Then, a window has been applied to extract binary
edge data surrounding these objects. Consequently, a well-defined body
structure and robust edge connectivity have been obtained as

Eb ft( ) � fpc∈ ft
∣∣∣∣∃fpi, fpi − fpc

∣∣∣∣ ∣∣∣∣> δe{ }, fpiϵ fpc−1,{
fpc+1, fpc−w, fpc+w},

where fpc depicts the center of the depth pixel compared to its
corresponding fpi adjacent depth pixels.

Second, the distance map of the ridge data has been determined
to obtain the local maxima of corresponding edges as a chain of
pixels. The resultant ridge data surrounded by binary edges emulate
the human skeleton.

Dr ft( ) � fpc ∈ ft
∑n

k�1FM fpi( )
n( ) FM fpc( )( )

∣∣∣∣∣∣∣∣ < δe{ },
where FM depicts the distance map of center pixels to the
corresponding surrounding pixels. The ridge data results, as
shown in Figure 6, effectively remove the noisy edge data and
detect the position of the skeleton.

2.3.4 Markov random field
The MRF merged the same-color regions in the RGB silhouette

to maintain consistency of the segmented region (Chen et al., 2021).
The MRF works by calculating the probability distribution of similar
interacting features as

Rc � Sn,Nb, Dr( ),
where Rc depicts the relational vector of corresponding nodes, Sn
represents set of similar nodes, Nb is the used neighboring nodes,
and Dr depicts the third degree of relationship across the adjacent
nodes. The results of the MRF are shown in Figure 7.

FIGURE 8
Principal component analysis (PCA) fusion results of multimodal sensor data.

FIGURE 9
Classification accuracy of the modified K-Ary entropy classifier
over the UP-Fall Detection Dataset.
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2.4 Principal component analysis

At this stage, sensor data fusion is probably required to
combine the data of multimodal sensors including RGB,
depth, and inertial sensors into ubiquitous representation
(Khatun et al., 2018; Kraft et al., 2020; Liu et al., 2022; Liu
et al., 2021; Lu et al., 2022; Mahmood et al., 2020; Maritta et al.,

2021; Marvi et al., 2021) (Prati et al., 2019; Jalal et al., 2019a; Jalal
et al., 2019b; Jalal et al., 2019c; Jalal et al., 2019d; Khatun et al.,
2018; Batool and Javeed, 2022a; Batool and Javeed, 2022b). PCA
is a standard technique that systematically combines the data of
different sensor modalities into ubiquitous format. PCA utilizes
orthogonal information about multi-sensor data to preserve the
least square average of the sensor data, hence eliminating the rest

FIGURE 10
Sample images from the UP-Fall Detection dataset capturing instances of individuals falling backward.

FIGURE 11
Sample images from the TST Fall Detection dataset capturing instances of individuals falling forward.

FIGURE 12
Error bar graph and receiver operating characteristic (ROC) curve results of the TST Fall Detection dataset.
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of the sensor data, as shown in Figure 8. This process has been
conducted in three steps. First, the mean of the data has been
calculated and then subtracted from each attribute xi of the data
to obtain the center of the data:

M x( ) � x1, x2, , .........., xn( ) −mean.

Second, the details about data variance and covariance have been
obtained by computing the transpose of the covariance matrix.
Finally, the eigenvalue has been selected with its corresponding
eigenvector to obtain the effective result of multimodal sensor data.

∑Amp � γAmp.

2.5 Modified K-Ary entropy classifier

The modified KEC is our modified K-Ary hashing classifier (Wu
et al., 2018) and has been shown to achieve a cutting-edge accuracy
by Batool et al. (2023). In this paper, we have used the KEC for
depicting the performance of multimodal sensor data over
benchmark fall detection datasets. The resultant fused data of
PCA have been given as input to the KEC. The KEC has been
implemented using a one-level entropy-based hashing mechanism
that divided the data into uniformly distributed subtree patterns.
Moreover, Euclidean and hamming distances have been calculated
to obtain the final classification results. The KEC algorithm first

FIGURE 13
Error bar graph and ROC curve results of the UP-Fall Detection dataset.

FIGURE 14
Wearable sensors positioned on person 1 and person 2 (from left to right) at the chest, elbow, and ankle.
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divided the entire vector array V into an approximately half-array
as 2n.

V y( ) � ⌈ y − min V( )
max v( ) − min v( ) × 2n⌉ − 1.

Next, the center of the vector array acted as a parent node, and
the rest of the nodes acted as child nodes. The overall data of the
vector array were then normalized into a single integer using the
BitBooster technique. The distance between the two nearest nodes
was then determined using the Euclidean distance, and the number
of high bits in an integer was determined using the hamming weight.

Euclidean and hamming distances together produced findings that
are roughly accurate.

Dvn �
���������������������
Hw Ed v1, v2, . . . . . . , vn( ){ }√

.

The subtree patterns were finally categorized by calculating
the inter-cluster entropy function, which distinguished between
two or more subtree patterns, and within-cluster pattern
entropy, which calculated the entropy of nodes within the
subtree pattern. The final output of the classifier is shown
in Figure 9.

FIGURE 15
Error bar graph and ROC curve results of person 1.

FIGURE 16
Error bar graph and ROC curve results of person 2.
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3 Experimental results and dataset
description

The proposed system has been built on an Intel Core CPU i5, 64-
bit operating system with 8 GB RAM. The main coding has been
carried out in Python using different signal and image processing
techniques. The leave-one-out cross-validation scheme has been
applied to measure the accuracy, recall, and F1 score. Moreover, UP-
Fall Detection and TST Fall Detection benchmark datasets have
been used for the fall detection mechanism of the biosurveillance
system. Detailed information about these datasets is provided below.

3.1 UP-Fall Detection dataset

The UP-Fall Detection dataset (Villaseñor et al., 2019) was
collected using multimodal sensors including RGB and inertial
sensors. During the data collection phase, a cohort of 17 young,
healthy individuals devoid of impairments, comprising 9 males and
8 females, with ages ranging from 18 to 24 years, were enlisted. These
subjects boasted a mean height of 1.66 m and a mean weight of
66.8 kg. They were tasked with executing 11 distinct activities,
encompassing 6 routine human movements (walking, standing,
picking up an object, sitting, jumping, and lying down) and
5 types of human falls (falling forward using hands, falling
forward using knees, falling backward, falling while seated in an
empty chair, and falling sideways). In this paper, we only used
human fall activities, as shown in Figure 10. To mitigate potential
injuries, a mattress was placed in the fall zone for all activities
involving falls. The data collection process adopted a multimodal
approach, incorporating wearable sensors, ambient sensors, and

vision devices. However, in the proposed fall detection system,
we only incorporated wearable sensors and vision RGB data. The
data collection occurred on the third floor of the Faculty of
Engineering at Universidad Panamericana, Mexico City, Mexico.
All measurement devices and equipment were interconnected to a
set of local computers, which served as a centralized hub for data
consolidation. The collected data were then stored in hard drives for
subsequent analysis. Notably, the dataset included a total of 384 RGB
images, extracted from this meticulous data collection effort and
used in the proposed fall detection system.

3.2 TST Fall Detection dataset

The dataset (Cippitelli et al., 2016) comprises 11 young, healthy
volunteers aged between 22 and 39 years, with heights ranging from
1.62 m to 1.97 m. The dataset includes two main groups of actions:
activities of daily living (ADLs) and fall-related activities. ADLs
involve actions like sitting (where the actor sits on a chair),
grasping (walking and picking up an object from the floor),
walking (back-and-forth movement), and lying down. Fall activities
include falling forward, backward, to the side, and ending up either
lying down or sitting. In the proposed fall detection system, only fall
activities are incorporated in Figure 11. The complete database
contains 264 different actions, totaling 46,000 skeleton data points
and 230,000 acceleration values. The system setup includes two
inertial measurement units (IMUs) mounted on the subject’s wrist
and waist, along with a Microsoft Kinect v2 sensor. Additionally, the
fall detection system utilizes IMU sensor data and depth information
obtained by the Microsoft Kinect v2 sensors. A shimmer device is
positioned on the right side of the body, secured at the waist with a
belt, while another accelerometer simulates a smartwatch on the right
wrist. The Kinect sensor monitors the test area from a distance of
approximately 1.5 m above the floor and 2 m away from the person.
Notably, the dataset also includes 1,594 RGB-D images extracted from
this meticulous data collection effort and used in the proposed fall
detection system.

3.3 Experimental results

In the following section, we evaluate the benchmark datasets
using the receiver operating characteristic (ROC) curve, error bar
graph, and leave-one-out cross-validation (LOSO) scheme.

TABLE 1 Confusion matrix results of the UP-Fall Detection dataset.

UP-Fall Detection dataset FFK FFB FFH FFC FFS

FFK 97.80 0.5 0.2 0.5 1.0

FFB 0 98.75 0.5 0.25 0.5

FFH 0.2 0 98.80 0.5 0.5

FFC 0.5 1.5 0.15 97.65 0.2

FFS 0.1 0.02 1.5 1.5 96.88

Average recognition accuracy = 97.97%

FFK, falling forward on knees; FFB, falling backward; FFH, falling forward on hands; FFC, falling while sitting on an empty chair; FFS, falling sideward.

TABLE 2 Confusion matrix results of the TST Fall Detection dataset.

TST Fall Detection dataset STF LTF BTF FTF

STF 97.50 0.5 2.5 0.5

LTF 0 98.25 1.7 0.05

BTF 2.0 0.6 97.35 0.05

FTF 0.5 1.02 0 98.48

Average recognition accuracy = 97.97%

STF, sitting fall; LTF, lateral fall; BTF, backward fall; FTF, front fall.
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Additionally, we validate the proposed model on real-world data by
collecting IMU sensor readings from the chest, elbow, and ankle
positions of two individuals, referred to as person 1 and person 2.
Further details are provided in the subsequent sections.

3.3.1 Error bar and ROC results on benchmark
datasets

The proposed system is evaluated by using the ROC curve and
error bar graph. The ROC curve illustrates the diagnostic ability
of our proposed system as its discrimination threshold is varied.
Each point on the ROC curve represents a sensitivity/specificity
pair corresponding to a particular decision threshold. The area
under the ROC curve (AUC) provides a single scalar value to
summarize the overall performance of the model. A higher AUC
indicates better performance, with a value of 1 representing a
perfect model. In addition to analyzing the ROC curve, we used
an error bar graph to assess the performance of our fall detection
system. This graph visually represents the prediction variability
and reliability of the model. Each bar corresponds to the mean
accuracy for detecting falls and non-falls, while the error bars

indicate the standard deviation or confidence intervals around
these means. Essentially, it shows the range within which the true
accuracy likely lies, reflecting the model consistency across
various trials or data samples. The results of the TST Fall
Detection dataset and UP-Fall Detection dataset are shown in
Figures 12, 13, respectively.

3.3.2 Error bar and ROC results on real-world data
In our evaluation of the fall detection system using real-world data,

we collected IMU sensor readings located at the chest, elbow, and ankle
positions of person 1 and person 2, as shown in Figure 14. The physical
activities include falling forward (FF), falling backward (FB), and
falling sideway (FS). We generated a ROC curve and error bar
graph, as shown in Figures 15, 16, respectively. Each point on the
ROC curve corresponds to a sensitivity/specificity pair. Our model
achieved a mean accuracy of 97% across the three real-world activities,
effectively distinguishing between fall and non-fall events. The results
of the ROC curve and error bar graph demonstrate the ability of the
model to identify true positives while minimizing false positives. The
results indicate that the robustness of our model is crucial for real-

TABLE 3 Precision, recall, and F-measure results obtained over the UP-Fall Detection dataset using the LOSO scheme.

UP-Fall Detection dataset Precision Recall F-measure

FFK 0.978 0.974 0.975

FFB 0.987 0.980 0.983

FFH 0.988 0.987 0.987

FFC 0.976 0.978 0.976

FFS 0.968 0.969 0.968

Average 0.979 0.977 0.977

TABLE 4 Precision, recall, and F-measure results obtained over the TST Fall Detection dataset using the LOSO scheme.

TST Fall Detection dataset Precision Recall F-measure

STF 0.975 0.980 0.977

LTF 0.982 0.985 0.983

BTF 0.973 0.970 0.971

FTF 0.984 0.981 0.982

Average 0.978 0.979 0.978

TABLE 5 Comparison of the recognition accuracy of the proposed model with cutting-edge techniques over the UP-Fall Detection dataset.

Author Method Accuracy (%)

Ghadi et al. (2022) Hidden Markov model (HMM) 87.50

Villaseñor et al. (2019) Random forest (RF) 95.10

Marvi et al. (2021) Bidirectional long short-term memory 97.41

Kraft et al. (2020) Deep learning algorithm 93.30

Proposed approach Modified K-Ary entropy (KEC) 97.97
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world applications, improving the response time, model stability,
precision, and outcomes for at-risk individuals.

3.3.3 LOSO results on benchmark datasets
The performance of the proposed model has been assessed using

the LOSO scheme to evaluate the average accuracy of benchmark
datasets. The average accuracy of UP-Fall Detection and TST Fall
Detection datasets is given in Tables 1, 2, respectively. Moreover, the
results of precision, F1 score, and recall (Rafique et al., 2019) are
given in Tables 3, 4 respectively. Finally, the comparison of the
proposed methodology with other cutting-edge methods over UP-
Fall Detection and TST Fall Detection datasets is given in Tables 5, 6,
respectively.

4 Conclusion

In this paper, we introduced a comprehensive multimodal
approach for fall detection. Our method integrates data from RGB,
depth, and inertial sensors to enhance accuracy and reliability. The pre-
processing stage effectively removes noise from each sensor type,
ensuring clean input data. For feature extraction, we used
autoregressive and waveform length features for inertial data while
using MRF and ridge methods for depth and RGB data, respectively.
To fuse the results obtained frommultimodal sensors, we utilized PCA,
which facilitated robust classification. For the final classification, the
modified K-Ary entropy classifier was used, achieving superior
performance. Evaluation using LOSO on the UP-Fall Detection and
TST Fall Detection datasets demonstrated the efficacy of our approach.
Our method surpassed the state-of-the-art methods with impressive
accuracy, precision, recall, and F-measure scores of 97.97% and
97.89%. These results underscore the effectiveness of our proposed
multimodal approach in fall detection applications. The proposed fall
detection model will help in enhancing the safety of elderly people by
generating an alert to caregivers during a fall, ensuring quick assistance.
Moreover, it will promote independence, reduce the need for constant
caregivermonitoring, help prevent costly hospitalizations, and can also
be integrated with smart home devices through AI advancements.

In the future, we aim to develop our own comprehensive elderly
fall dataset, encompassing diverse scenarios and environmental
conditions relevant to fall detection. This dataset will incorporate a
variety of sensors to capture a wide range of fall-related events and
contexts accurately. Additionally, we intend to validate the
effectiveness and robustness of our proposed technique across
various benchmark fall detection datasets. This validation will help

further establish the generalization and reliability of our approach
across different settings and populations.
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TABLE 6 Comparison of the recognition accuracy of the proposed model with cutting-edge techniques over the TST Fall Detection dataset.

Author Method Accuracy (%)
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Seredin et al. (2019) Encoding features 95.80

Mendez et al. (2019) Genetic + principal component analysis (PCA) + SVM 90.00
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