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Accurate medical image segmentation is critical for disease quantification and
treatment evaluation. While traditional U-Net architectures and their
transformer-integrated variants excel in automated segmentation tasks.
Existing models also struggle with parameter efficiency and computational
complexity, often due to the extensive use of Transformers. However, they
lack the ability to harness the image’s intrinsic position and channel features.
Research employing Dual Attention mechanisms of position and channel have
not been specifically optimized for the high-detail demands of medical images.
To address these issues, this study proposes a novel deep medical image
segmentation framework, called DA-TransUNet, aiming to integrate the
Transformer and dual attention block (DA-Block) into the traditional U-shaped
architecture. Also, DA-TransUNet tailored for the high-detail requirements of
medical images, optimizes the intermittent channels of Dual Attention (DA) and
employs DA in each skip-connection to effectively filter out irrelevant
information. This integration significantly enhances the model’s capability to
extract features, thereby improving the performance of medical image
segmentation. DA-TransUNet is validated in medical image segmentation
tasks, consistently outperforming state-of-the-art techniques across
5 datasets. In summary, DA-TransUNet has made significant strides in medical
image segmentation, offering new insights into existing techniques. It
strengthens model performance from the perspective of image features,
thereby advancing the development of high-precision automated medical
image diagnosis. The codes and parameters of our model will be publicly
available at https://github.com/SUN-1024/DA-TransUnet.
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1 Introduction

Machine learning and deep learning techniques have emerged as
powerful tools in biomedical research, revolutionizing disease
diagnosis, treatment planning, and personalized medicine (Le,
2024; Tran and Le, 2024). Medical image segmentation is the
process of delineating regions of interest within medical images
for diagnosis and treatment planning. It serves as a cornerstone in
medical image analysis. Manual segmentation is both accurate and
affordable for pathology diagnosis but vital in standardized clinical
settings. Conversely, automated segmentation ensures a reliable and
consistent process, boosting efficiency, cutting down on labor and
costs, and preserving accuracy. Consequently, there is a substantial
demand for exceptionally accurate automated medical image
segmentation technology within the realm of clinical diagnostics.
However, medical image segmentation faces unique challenges, such
as the need for precise delineation of complex anatomical structures,
variability across patients, and the presence of noise and artifacts in
the images (Tran et al., 2023). These challenges necessitate the
development of advanced segmentation techniques that can capture
fine-grained details while maintaining robustness and efficiency.

In the last decade, the traditional U-net structure has been
widely employed in numerous segmentation tasks, yielding
commendable outcomes. Notably, the U-Net model (Ronneberger
et al., 2015), along with its various enhanced iterations, has achieved
substantial success. ResUnet (Diakogiannis et al., 2020) emerged
during this period, influenced by the residual concept. Similarly,
UNet++ (Zhou et al., 2018) emphasizes enhancements in skip
connections. Moving beyond these CNN-based approaches, the
Transformer architecture introduces a completely new
perspective. The transformer (Vaswani et al., 2017), originally
developed for sequence-to-sequence modeling in Natural
Language Processing (NLP), has also found utility in the field of
Computer Vision (CV). ViTs segment images into patches and input
their embeddings into a transformer network for strong
performance. (Dosovitskiy et al., 2020). This signifies a trend of
shifting from traditional CNN models to more flexible Transformer
models. While the above-mentioned U-Net structures have
enhanced the capabilities of models in segmentation tasks
(Ronneberger et al., 2015; Zhou et al., 2018; Diakogiannis et al.,
2020), they do not integrate the more powerful feature extraction
abilities inherent in the Transformer and attention mechanisms,
which limits their potential for further improvement. On the one
hand, several studies have made progress in image segmentation by
leveraging Dual Attention (DA) mechanisms for both channels and
positions. The Dual Attention Network (DANet) utilizes a Position
Attention Block (PAM) and Channel Attention Block (CAM) from
the DA Network for natural scene image segmentation (Fu et al.,
2019). This research primarily focuses on scene segmentation and
does not explore the unique characteristics of medical imagery. Also,
DAResUnet (Shi et al., 2020) introduces a dual attention block
combined with a residual block (Res-Block) in a U-net architecture
for medical image segmentation, demonstrating significant
improvements in this domain. However, in the realm of medical
image segmentation, existing models, including those employing
Dual Attention mechanisms, have not yet extensively explored the
optimal integration of Dual Attention with Transformer models for
enhanced feature extraction; this oversight represents a significant

research opportunity in the task of medical image segmentation.
Therefore, addressing this gap and optimizing the integration of
Transformers and Dual Attention mechanisms in the context of
medical image segmentation poses a significant challenge for future
research in the field.

To overcome the above drawbacks, recent studies have explored
the application of Transformer models in medical image
segmentation. Inspired by ViTs, TransUNet (Chen et al., 2021)
further combines the functionality of ViTs with the advantages of
U-net in the field of medical image segmentation. Specifically, it
employs a transformer’s encoder to process the image and employs
CNN and hopping connections for accurate up-sampling feature
recovery, yet it neglects image-specific features like position and
channel. These aspects are crucial for capturing the nuanced
variations and complex structures often present in medical
images, which are essential for accurate diagnosis and analysis.
Swin-Unet (Cao et al., 2022) combines the Swin-transform block
with the U-net structure and achieves good results. Yet, adding
extensive Transformer blocks inflates the parameter count without
significantly improving results. This study merely stacked multiple
Transformers to enhance models, resulting in inflated parameters
and computational complexity with marginal gains in performance.
Moreover, some studies have specifically focused on incorporating
position and channel attention mechanisms in medical image
segmentation. For instance, DA-DSUnet has been applied to
head-and-neck tumor segmentation, but it doesn’t combine
Position Attention Module (PAM) and Channel Attention
Module (CAM), nor does it discuss the potential filtering role of
DA blocks in skip connections (Tang et al., 2021). Additionally, it
doesn’t leverage ViT for feature extraction. Another example is
research on brain tumor segmentation, which, while applying DA
blocks, limits its scope to brain tumors without validating other
types of medical images (Sahayam et al., 2022). These studies
integrate DA blocks with other blocks but do not thoroughly
explore the role of DA in skip connections or optimize DA
blocks for the unique intricacies of medical imaging.

However, Despite the progress made by these transformer-based
approaches, they often overlook the importance of integrating
image-specific features, such as position and channel
information, which are crucial for capturing the nuanced
variations and complex structures in medical images. Moreover,
the existing methods that incorporate dual attention mechanisms
have not been optimized for the unique characteristics of medical
imagery, leaving room for further improvement. To address these
limitations, we propose DA-TransUNet, which strategically
integrates the Dual Attention Block (DA-Block) into the
transformer-based U-Net architecture, specifically tailored for
medical image segmentation.

In this research, our proposed model DA-TransUNet is an
innovative approach for medical image segmentation that
integrates the Transformer mechanism, specifically the Vision
Transformer (ViT) and a Dual Attention (DA) mechanism
within a U-Net architecture. First, the Transformer ViT is
combined with DA in the encoder of the U-Net structure,
enhancing feature extraction capabilities by leveraging the
detailed characteristics of medical images. This integration allows
the model to capture both local and global contextual information,
which is essential for accurate segmentation of complex anatomical
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structures. Then, to further refine feature extraction tailored to
medical images, DA is optimized for specific channels and
incorporated into every module of the skip connections, enabling
the model to effectively filter out irrelevant information and focus on
the most discriminative features. The skip connections pass the
shallow positional information from the encoder, while the DA
module refines the crucial detailed features. This targeted
optimization is substantiated by extensive ablation studies,
demonstrating its significance in improving the model’s
performance. Lastly, this architecture has been rigorously tested
across five medical image segmentation datasets and extensive
ablation studies, demonstrating its effectiveness and superiority
(Candemir et al., 2013; Jaeger et al., 2013; Bernal et al., 2015;
Landman et al., 2015; Tschandl et al., 2018; Codella et al., 2019;
Jha et al., 2020; Jha et al., 2021).

The main contributions of this article are summarized
as follows:

1) The model of DA-TransUnet is proposed by integrating
Transformer ViT and Dual Attention in U-net
architecture’s encoder and skip connections. This design
enhances feature extraction capabilities in better extracting
detailed features of medical images.

2) We propose an optimized Dual Attention (DA) Block that is
designed for medical image segmentation with two key
enhancements: the optimization of intermediate channel
configurations within the DA block, and its integration into
each skip-connection layer for effectively filtering irrelevant
information. These are validated through comprehensive
ablation experiments.

3) The segmentation performance and generalization ability of
DA-TransUnet are validated on five medical datasets. In
comparison to recent related studies, DA-TransUnet
exhibits superior results in medical image segmentation,
demonstrating its effectiveness in this field.

The rest of this article is organized as follows. Section 2 reviews
the related works of automatic medical image segmentation, and the
description of our proposed DA-TransUNet is given in Section 3.
Next, the comprehensive experiments and visualization analyses are
conducted in Section 4. Finally, Section 5 makes a conclusion of
the whole work.

2 Related work

2.1 U-net model

Recently, attentionmechanisms have gained popularity in U-net
architectures (Ronneberger et al., 2015). For example, Attention
U-net incorporates attention mechanisms to enhance pancreas
localization and segmentation performance (Oktay et al., 2018);
DAResUnet integrates both double attention and residual
mechanisms into U-net (Shi et al., 2020); Attention Res-UNet
explores the substitution of hard-attention with soft-attention
(Maji et al., 2022); Sa-unet incorporates a spatial attention
mechanism in U-net (Guo et al., 2021). Following this,
TransUNet innovatively combines Transformer and U-net

structure (Chen et al., 2021). Building on TransUNet, TransU-
Net++ incorporates attention mechanisms into both skip
connections and feature extraction (Jamali et al., 2023). Swin-
Unet (Cao et al., 2022) improves by replacing every convolution
block in U-net with Swin-Transformer (Liu et al., 2021). DS-
TransUNet proposes to incorporate the tif module (which is a
multi-scale module using Transformer) to the skip connection to
improve the model (Lin et al., 2022). AA-transunet leverages Block
Attention Model (CBAM) and Deep Separable Convolution to
further optimize TransUNet (Yang and Mehrkanoon, 2022).
TransFuse uses dual attention Bifusion blocks and AG to fuse
features of two different parts of CNN and Transformer (Zhang
et al., 2021). Numerous attention mechanisms have been added to
U-net and TransUNet models, yet further exploration is warranted.
Diverging from prior approaches, our experiment introduces a dual
attention mechanism and Transformer module into the traditional
U-shaped encoder-decoder and skip connections, yielding
promising results.

2.2 Application of skip connections in
medical image segmentation modeling

Skip connections in U-net aim to bridge the semantic gap
between the encoder and decoder, effectively recovering fine-
grained object details (Drozdzal et al., 2016; He et al., 2016;
Huang et al., 2017). There are three primary modifications to
skip connections: firstly, increasing their complexity (Azad et al.,
2022a). U-Net++ redesigned the skip connection to include a Dense-
like structure in the skip connection (Zhou et al., 2018), and
U-Net3++(Huang et al., 2020) changed the skip connection to a
full-scale skip connection. Secondly, RA-UNet introduces a 3D
hybrid residual attention-aware method for precise feature
extraction in skipped connections (Jin et al., 2020). The third is a
combination of encoder and decoder feature maps: An alternative
extension to the classical skip connection was introduced in BCDU-
Net with a bidirectional convolutional long-term-short-term
memory (LSTM) module was added to the skip connection
(Azad et al., 2019). Aligning with the second approach, we
integrate Dual Attention Blocks into each skip connection layer,
enhancing decoder feature extraction and thereby improving image
segmentation accuracy.

2.3 The use of attentional mechanisms in
medical images

Attention mechanisms are essential for directing model focus
towards relevant features, thereby enhancing performance. In recent
years, dual attention mechanisms have seen diverse applications
across multiple fields. In scene segmentation, the Dual Attention
Network (DANet) employs position and channel attention
mechanisms to improve performance (Fu et al., 2019). A
modularized DANs framework is presented that adeptly merges
visual and textual attention mechanisms (Nam et al., 2017). This
cohesive approach enables selective focus on pivotal features in both
types of data, thereby improving task-specific performance.
Additionally, the introduction of the Dual Attention Module
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(DuATM) has been groundbreaking in the field of audio-visual
event localization. This model excels at learning context-aware
feature sequences and performing attention sequence
comparisons in tandem, effectively incorporating auditory-
oriented visual attention mechanisms (Si et al., 2018). Moreover,
dual attention mechanisms have been applied to medical
segmentation, yielding promising results (Shi et al., 2020). The
Multilevel Dual Attention U-net for Polyp Segment combines
dual attention and U-net in medical image segmentation (Cai
et al., 2022). While significant progress has been made in medical
image segmentation, there is still ample room for further research to
explore the potential of position and channel attention mechanism
in the field of medical image segmentation.

3 Methods

In the subsequent section, we propose the DA-TransUNet
architecture, illustrated in Figure 1. We start with a
comprehensive overview of the architecture. Next, we detailed the
architecture’s key components in the following order: the dual
attention blocks (DA-Block), the encoder, the skip connections,
and the decoder.

3.1 Overview of DA-TransUNet

In Figure 1, the architecture of DA-TransUNet is presented. The
model comprises three core components: the encoder, the decoder,
and the skip connections. In particular, the encoder fuses a
conventional convolutional neural network (CNN) with a

Transformer layer and is further enriched by the DA-Block,
which are exclusively introduced in this model architecture. In
contrast, the decoder primarily employs conventional
convolutional mechanisms. For the optimization of skip
connections, DA-Blocks serve as pivotal components within the
DA-TransUNet architecture. DA-Blocks filter irrelevant
information in skip connections, enhancing image reconstruction
accuracy. In summary, in contrast to traditional convolutional
approaches and the extensive use of Transformers, DA-
TransUNet uniquely leverages DA-Blocks for the extraction and
utilization of image-specific features of position and channel. This
strategic incorporation significantly elevates the overall performance
of the model.

Compared to traditional U-Net architectures, DA-TransUNet
integrates the Transformer layer in the encoder to capture global
dependencies, while the U-Net relies solely on convolutional layers
for local feature extraction. Moreover, the inclusion of DA-Blocks in
the encoder and skip connections sets DA-TransUNet apart from
both U-Net and Transformer-based models. These DA-Blocks
enable the extraction and utilization of image-specific position
and channel features, enhancing the model’s ability to capture
fine-grained details crucial for medical image segmentation.

To elucidate the rationale behind our proposed DA-TransUNet
model’s design, it’s imperative to consider the limitations and
strengths of both U-Net architectures and Transformers in the
context of feature extraction. While Transformers excel in global
feature extraction through their self-attention mechanisms, they are
inherently limited to unidirectional focus on positional attributes,
thus neglecting multi-faceted feature perspectives. On the other
hand, traditional U-Net architectures are proficient in local feature
extraction but lack the capability for comprehensive global

FIGURE 1
Illustration of the proposed dual attention transformer U-Net(DA-TransUNet). For the input medical images, we feed them into an encoder with
transformer andDual Attention Block (DA-Block). Then, the features of each of the three different scales are purified by DA-Block. Finally, the purified skip
connections are fused with the decoder, which subsequently undergoes CNN-based up-sampling to restore the channel to the same resolution as the
input image. In this way, the final image prediction result is obtained.
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contextualization. To address these constraints, we integrate DA-
Blocks both preceding the Transformer layers and within the
encoder-decoder skip connections. This achieves two goals:
firstly, it refines the feature map input to the Transformer,
enabling more nuanced and precise global feature extraction;
secondly, the DA-Block in the skip connections optimize the
transmitted features from the encoder, facilitating the decoder in
reconstructing a more accurate feature map. Thus, our proposed
architecture amalgamates the strengths and mitigates the
weaknesses of both foundational technologies, resulting in a
robust system capable of image-specific feature extraction.

3.2 Dual attention block (DA-Block)

As shown in the attached Figure 2, the Dual Attention Block
(DA-Block) serves as a feature extraction module that integrates
image-specific features of position and channel. This enables feature
extraction tailored to the unique attributes of the image. Particularly
in the context U-Net shaped architectures, the specialized feature
extraction capabilities of the DA-Block are crucial. While
Transformers are adept at using attention mechanisms to extract
global features, they are not specifically tailored for image-specific
attributes. In contrast, the DA-Block excels in both position-based
and channel-based feature extraction, enabling a more detailed and
accurate set of features to be obtained. Therefore, we incorporate it
into the encoder and skip connections to enhance the model’s
segmentation performance. The DA-Block consists of two
primary components: one featuring a Position Attention Module
(PAM), and the other incorporating a Channel Attention Module
(CAM), both borrowed from the Dual Attention Network for scene
segmentation (Fu et al., 2019).

3.2.1 PAM (position attention module)
As shown in Figure 3, PAM captures spatial dependencies

between any two positions of feature maps, updating specific
features through a weighted sum of all position features. The

weights are determined by the feature similarity between two
positions. Therefore, PAM is effective at extracting meaningful
spatial features.

PAM initially takes a local feature, denoted as A ∈ RC×H×W (C
represents Channel, H represents, and W represents Width). We
then feed A into a convolutional layer, resulting in three new feature
maps, namely, B, C, and D, each of size RC×H×W. Next, we reshape B
and C to RC×N, where N = H× W denotes the number of pixels. We
perform a matrix multiplication between the transpose of C and B
and subsequently use a softmax layer to compute the spatial
attention map S ∈ RN×N:

Sji �
exp Bi · Cj( )

∑N
i�1 exp Bi · Cj( )

(1)

Here, Sjimeasures the impact of the i-th position on the j-th position.
We then reshape matrix D to RC×N. A matrix multiplication is
performed between D and the transpose of S, followed by reshaping
the result to RC×H×W. Finally, we multiply it by a parameter α and
perform an element-wise sum operation with the features A to
obtain the final output E ∈ RC×H×W:

Ej � α∑
N

i�1
SjiDi( ) + Aj (2)

The weight α is initialized as 0 and is learned progressively. PAM
has a strong capability to extract spatial features. It can be
inferred from Eq. 2 that the resulting feature E at each
position is a weighted sum of the features across all positions
and original features, it possesses global contextual features and
aggregates context based on the spatial attention map. This
ensures effective extraction of position features while
maintaining global contextual information.

3.2.2 CAM (channel attention module)
As shown in Figure 4, this is CAM, which excels in extracting

channel features. Unlike PAM, we directly reshape the original
feature A ∈ RC×H×W to RC×N, and then perform a matrix

FIGURE 2
The proposed Dual Attention Block (DA-Block) is shown in the Figure. The same input feature map is input into two feature extraction layers, one is
the position feature extraction block and the other is the channel feature extraction block, and finally, the two different features are fused to obtain the
final DA-Block output.
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multiplication between A and its transpose. Subsequently, we apply
a softmax layer to obtain the channel attention map X ∈ RC×C:

Xji �
exp Ai · Aj( )

∑C
i�1 exp Ai · Aj( )

(3)

Here, xjimeasures the impact of the i-th channel on the j-th channel.
Next, we perform amatrix multiplication between the transpose of X
and A, reshaping the result to RC×H×W. We thenmultiply the result by
a scale parameter β and perform an element-wise sum operation
with A to obtain the final output E ∈ RC×H×W:

Ej � β∑
N

i�1
XjiAi( ) + Aj (4)

Like α, β is learned through training. Similar to PAM, during the
extraction of channel features in CAM, the final feature for each
channel is generated as a weighted sum of all channels and original
features, thus endowing CAM with powerful channel feature
extraction capabilities.

3.2.3 DA (dual attention module)
As shown in the Figure 2, we present the architecture of the Dual

Attention Block (DA-Block). This architecture merges the robust
position feature extraction capabilities of the Position Attention
Module (PAM) with the channel feature extraction strengths of the
Channel Attention Module (CAM). Furthermore, when coupled
with the nuances of traditional convolutional methodologies, the
DA-Block emerges with superior feature extraction capabilities. DA-
Block consists of two components, the first one is dominated by
PAM and the second one is dominated by CAM. The first
component takes the input features and performs one
convolution to scale the number of channels by one-sixteenth to
get α1. This convolution operation not only simplifies feature
extraction by PAM but also helps to adjust the scale and
dimension of features, making them more suitable for the
subsequent attention mechanism computations. Following a
PAM feature extraction and another convolution, α̂1 is obtained,
which further refines the extracted features.

α1 � Conv input( ) (5)
α̂1 � Conv PAM α1( )( ) (6)

The other component is the same, with the only difference being that
the PAM block is replaced with a CAM with the following formula:

α2 � Conv input( ) (7)

α̂2 � Conv CAM α2( )( ) (8)
After extracting α̂1 and α̂2 from the two layers of attention, the
output is obtained by aggregating and summing the two layers of
attention and recovering the number of channels in one
convolution.

output � Conv α̂1 + α̂2( ) (9)

To optimize the DA-Block for medical image segmentation, we
fine-tuned the number of intermediate channels. This optimization
allows the model to focus on the most critical features, enhancing its
sensitivity to key information in the medical images. By adapting the
DA-Block to the specific characteristics of medical images, we enable
the model to better capture the fine-grained details necessary for
accurate segmentation. This targeted optimization sets our approach
apart from previous works, which often overlook the importance of
tailoring attention mechanisms to the unique demands of medical
image segmentation.

3.3 Encoder with transformer and
dual attention

As illustrated in Figure 1, the encoder architecture consists of
four key components: convolution blocks, DA-Block, embedding
layers, and transformer layers. Of particular significance is the
inclusion of the DA block before the Transformer layer. This
design is aimed at performing specialized image processing on
the post-convolution features, enhancing the Transformer’s
feature extraction for image content. While the Transformer
architecture plays a crucial role in preserving global context, the
DA block strengthens the Transformer’s capability to capture
image-specific features, enhancing its ability to capture global
contextual information in the image. This approach effectively
combines global features with image-specific spatial and channel
characteristics.

The first component comprises the three convolutional blocks of
the architecture of the U-Net and its diverse iterations, seamlessly
integrating convolutional operations with downsampling processes.
Each convolutional layer halves the size of the input feature map and
doubles its dimension, a configuration empirically found to
maximize feature expressiveness while maintaining computational
efficiency. The second component uses DA-Block extract features at
both positional and channel levels, enhancing the depth of feature
representation while preserving the intrinsic characteristics of the
input map. The third component is the embedding layer serves as a

FIGURE 4
Architecture of channel attention Mechanism (CAM).

FIGURE 3
Architecture of position attention Mechanism (PAM).
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critical intermediary, enabling the requisite dimensional adaptation,
a prelude to the subsequent Transformer strata. The fourth
component integrates Transformer layers for enhanced global
feature extraction, beyond the reach of traditional CNNs. Putting
the above parts together, it works as follows: the input image
traverses three consecutive convolutional blocks, systematically
expanding the receptive field to encompass vital features.
Subsequently, the DA-Block refines features through the
application of both position-based and channel-based attention
mechanisms. Following this, the remodeled features undergo a
dimensionality transformation courtesy of the embedding
stratum before they are channeled into the Transformer
framework for the extraction of all-encompassing global features.
This orchestrated progression safeguards the comprehensive
retention of information across the continuum of successive
convolutional layers. Ultimately, the Transformer-generated
feature map is restructured and navigated through skip
connection layers to feed into the decoder.

By combining convolutional neural networks, transformer
architectures, and dual-attention mechanisms, the encoder
configuration culminates in a robust capability for feature
extraction, resulting in a symbiotic powerhouse of capabilities.

3.4 Skip-connections with dual attention

Similar to other U-structured models, we have also incorporated
skip connections between the encoder and decoder to bridge the
semantic gap that exists between them. To further minimize this
semantic gap, we introduced dual-attention blocks (DA-Blocks), as
depicted in Figure 1, in each of the three skip connection layers. This
decision was based on our observation that traditional skip
connections often transmit redundant features, which DA-Blocks
effectively filter. Integrating DA-Blocks into the skip connections
allows them to refine the sparsely encoded features from both
positional and channel perspectives, extracting more valuable
information while reducing redundancy. By doing so, DA-Blocks
assist the decoder in more accurate feature map reconstruction.
Moreover, the inclusion of DA-Blocks not only enhances the
model’s robustness but also effectively mitigates sensitivity to
overfitting, contributing to the overall performance and
generalization capability of the model.

3.5 Decoder

As depicted in Figure 1, the right half of the diagram
corresponds to the decoder. The primary role of the decoder is
to reconstruct the original feature map by utilizing features acquired
from the encoder and those received through skip connections,
employing operations like upsampling.

The decoder’s components include feature fusion, a
segmentation head, and three upsampling convolution blocks.
The first component: feature fusion entails the integration of
feature maps transmitted through skip connections with the
existing feature maps, thereby assisting the decoder in faithfully
reconstructing the original feature map. The second component: the
segmentation head is responsible for restoring the final output

feature map to its original dimensions. The third component: the
three upsampling convolution blocks incrementally double the size
of the input feature map in each step, effectively restoring the
image’s resolution.

Putting the above parts together, the workflow begins by passing
the input image through convolution blocks and subsequently
performing upsampling to augment the size of the feature maps.
These feature maps undergo a twofold size increase while their
dimensions are reduced by half. The features received through the
skip connections are then fused, followed by continued upsampling
and convolution. After three iterations of this process, the generated
feature map undergoes one final round of upsampling and is
accurately restored to its original size by the segmentation head.

Thanks to this architecture, the decoder demonstrates robust
decoding capabilities, effectively revitalizing the original feature map
using features from both the encoder and skip connections.

Furthermore, compared to other transformer-based approaches
that extensively utilize transformer blocks throughout the architecture,
such as Swin-Unet, DA-TransUNet achieves a more favorable balance
between performance and computational efficiency. The judicious
integration of DA-Blocks in the encoder and skip connections
allows DA-TransUNet to enhance feature representation while
maintaining a manageable computational footprint.

4 Experiments

To evaluate the proposedmethod, we performed experiments on
Synapse (Landman et al., 2015), CVC-ClinicDB dataset (Bernal
et al., 2015), Chest X-ray mask and label dataset (Candemir
et al., 2013; Jaeger et al., 2013) Analysis, Kvasir SEG dataset (Jha
et al., 2020), Kvasir-Instrument dataset (Jha et al., 2021), 2018ISIC-
Task (Tschandl et al., 2018; Codella et al., 2019). The experimental
results demonstrate that DA-TransUNet outperforms existing
methods across all six datasets. In the following subsections, we
first introduce the dataset and implementation details. Then show
the results on each of the six datasets.

4.1 Datasets

4.1.1 Synapse
The Synapse dataset consists of 30 scans of eight abdominal

organs. These eight organs include the left kidney, right kidney,
aorta, spleen, gallbladder, liver, stomach and pancreas. There are a
total of 3779 axially enhanced abdominal clinical CT images.

4.1.2 CVC—ClinicDB
CVC-ClinicDB is a database of frames extracted from

colonoscopy videos, which is part of the Endoscopic Vision
Challenge. This is a dataset of endoscopic colonoscopy frames for
the detection of polyps. CVC-ClinicDB contains 612 still images
from 29 different sequences. Each image has its associated manually
annotated ground truth covering the polyp.

4.1.3 Chest Xray
Chest Xray Masks and Labels X-ray images and corresponding

masks are provided. The X-rays were obtained from the
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Montgomery County Department of Health and Human Services
Tuberculosis Control Program, Montgomery County, Maryland,
United States. The set of images contains 80 anterior and posterior
X-rays, of which 58 X-rays are normal and 1702 X-rays are
abnormal with evidence of tuberculosis. All images have been de-
identified and presented in DICOM format. The set contains a
variety of abnormalities, including exudates and corneal
morphology. It contains 138 posterior-anterior radiographs, of
which 80 radiographs were normal and 58 radiographs showed
abnormal manifestations of tuberculosis.

4.1.4 Kvasir SEG
Kvasir SEG is an open-access dataset of gastrointestinal polyp

images and corresponding segmentationmasks, manually annotated
and verified by an experienced gastroenterologist. It contains
1000 polyp images and their corresponding groudtruth, the
resolution of the images contained in Kvasir-SEG varies from
332 × 487 to 1920 × 1072 pixels, and the file format is jpg.

4.1.5 Kvasir-instrument
Kvasir-Instrument a gastrointestinal instrument Dataset. It

contains 590 endoscopic tool images and their groud truth mask,
the resolution of the image in the dataset varies from 720 × 576 to
1280 × 1024, which consists of 590 annotated frames comprising of
GI procedure tools such as snares, balloons, biopsy forceps, etc. The
file format is jpg.

4.1.6 2018ISIC-task
The dataset used in the 2018 ISIC Challenge addresses the

challenges of skin diseases. It comprises a total of 2512 images,
with a file format of JPG. The images of lesions were obtained using
various dermatoscopic techniques from different anatomical sites
(excluding mucous membranes and nails). These images are sourced
from historical samples of patients undergoing skin cancer screening
at multiple institutions. Each lesion image contains only a
primary lesion.

4.2 Implementation settings

4.2.1 Baselines
In our endeavor to innovate in the field of medical image

segmentation, we benchmark our proposed model against an
array of highly-regarded baselines, including the U-net, UNet++,
DA-Unet, Attention U-net, and TransUNet. The U-net has been a
foundational model in biomedical image segmentation
(Ronneberger et al., 2015). Unet++ brings added sophistication
with its implementation of intermediate layers (Zhou et al.,
2018). The DA-Unet goes a step further by integrating dual
attention blocks, amplifying the richness of features extracted
(Cai et al., 2022). The Attention U-net employs an attention
mechanism for improved feature map weighting (Oktay et al.,
2018), and finally, the TransUNet deploys a transformer
architecture, setting a new bar in segmentation precision (Chen
et al., 2021). Through this comprehensive comparison with these
eminent baselines, we aim to highlight the unique strengths and
expansive potential applications of our proposed model.
Additionally, we benchmarked our model against advanced state-

of-the-art algorithms. UCTansNet allocates skip connections
through the attention module in the traditional U-net model
(Wang et al., 2022a). TransNorm integrates the Transformer
module into the encoder and skip connections of standard U-Net
(Azad et al., 2022b). A novel Transformer module was designed and
a model named MIM was built with it (Wang et al., 2022b). By
extensively comparing our model with current state-of-the-art
solutions, we intend to showcase its superior segmentation
performance.

4.2.2 Implementation details
We implemented DA-TransUNet using the PyTorch framework

and trained it on a single NVIDIA RTX 3090 GPU (Paszke et al.,
2019). The model was trained with an image resolution of 256 ×
256 and a patch size of 16. We employed the Adam optimizer,
configured with a learning rate of 1e-3, momentum of 0.9, and
weight decay of 1e-4. All models were trained for 500 epochs unless
stated otherwise. In order to ensure the convergence of the
indicators, but due to different data set sizes, we used 50 epochs
for training on the two data sets, Chest Xray Masks and Labels and
ISIC 2018-Task.

During the training phase on five datasets, including CVC-
ClinicDB, the proposed DA-TransUNet model is trained in an end-
to-end manner. Its objective function consists of a weighted binary
cross-entropy loss function (BCE) and a Dice coefficient loss
function. To facilitate training, the final loss function, termed
“Loss,” is formulated as follows:

Loss � 1
2
× BCE + 1

2
× DiceLoss (10)

To ensure a fair evaluation of the Synapse dataset, we utilized the
pre-trained model “R50-ViT” with input resolution and patch size
set to 224 × 224 and 16, respectively. We trained the model using the
SGD optimizer, setting the learning rate to 0.01, momentum of 0.9,
and weight decay of 1e-4. The default batch size was set to 24. The
loss function employed for the Synapse dataset is defined as follows:

Loss � 1
2
× Cross − Entropy Loss + 1

2
× DiceLoss (11)

This loss function balances the contributions of cross-entropy
and Dice losses, ensuring impartial evaluation during testing on the
Synapse dataset.

When using the datasets, we use a 3 to 1 ratio, where 75% is the
training set and 25% is the test set, to ensure adequacy of training.

4.2.3 Model evaluation
In evaluating the performance of DA-TransUNet, we utilize a

comprehensive set of metrics including Intersection over Union
(IoU), Dice Coefficient (DSC), and Hausdorff Distance (HD). These
metrics are industry standards in computer vision and medical
image segmentation, providing a multifaceted assessment of the
model’s accuracy, precision, and robustness.

The choice of these metrics is based on their complementary
nature and ability to capture different aspects of segmentation
quality. IoU and DSC measure the overlap between the predicted
and ground truth segmentation masks, providing a global
assessment of the model’s ability to accurately identify and
delineate target structures. HD, on the other hand, captures the
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maximum distance between the predicted and ground truth
segmentation boundaries, ensuring that the predicted
segmentation closely adheres to the true boundaries of the target
structures, even in the presence of small segmentation errors or
irregularities.

IOU (Intersection over Union) is one of the commonly used
metrics to evaluate the performance of computer vision tasks such as
object detection, image segmentation and instance segmentation. It
measures the degree of overlap between the predicted region of the
model and the actual target region, which helps us to understand the
accuracy and precision of the model. In target detection tasks, IOU is
usually used to determine the degree of overlap between the
predicted bounding box (Bounding Box) and the real bounding
box. In image segmentation and instance segmentation tasks, IOU is
used to evaluate the degree of overlap between the predicted region
and the ground truth segmentation region.

IOU � TP

FP + TP + FN
(12)

The Dice coefficient (also known as the Sørensen-Dice
coefficient, F1-score, DSC) is a measure of model performance in
image segmentation tasks, and is particularly useful for dealing with
class imbalance problems. It measures the degree of overlap between
the predicted results and the ground truth segmentation results, and
is particularly effective when dealing with segmentation of objects
with unclear boundaries. The Dice coefficient is commonly used as a
measure of the model’s accuracy on the target region in image
segmentation tasks, and is particularly suitable for dealing with
relatively small or uneven target regions.

Dice P, T( ) � |P1 ∩ T1|
|P1| + |T1|5Dice � 2|T ∩ P|

|F| + |P| (13)

Hausdorff Distance (HD) is a distance measure for measuring
the similarity between two sets and is commonly used to evaluate the
performance of models in image segmentation tasks. It is
particularly useful in the field of medical image segmentation to
quantify the difference between predicted and true segmentations.
The computation of Hausdorff distance captures the maximum
difference between the true segmentation result and the predicted
segmentation result, and is particularly suitable for evaluating the
performance of segmentation models in boundary regions.

H A, B( ) � max maxa∈Aminb∈B‖a − b‖,maxb∈Bmina∈A‖b − a‖{ } (14)

We evaluate using both Dice and HD in the Synapse dataset and
both Dice and IOU in other datasets.

4.3 Comparison to the state-of-the-
art methods

4.3.1 Segmentation performance and comparison
We have chosen U-net (Ronneberger et al., 2015), Res-Unet

(Diakogiannis et al., 2020), TransUNet (Chen et al., 2021),
U-Net++(Zhou et al., 2018), Att-Unet (Oktay et al., 2018),
TransNorm (Azad et al., 2022b), UCTransNet (Wang et al., 2022a),
MultiResUNet (Ibtehaz and Rahman, 2020), swin-unet (Cao et al.,
2022) and MIM (Wang et al., 2022b) to compare with our DA-
TransUNet, and the experimental data are tabulated below.

In order to demonstrate the superiority of the DA-TransUNet
model proposed in this paper, we conducted the main experiments
using the Synapse dataset and compared it with its 11 state-of-the-
art models (SOTA) (see Table1).

As shown in the Figure 5, we can see that the average DSC and
average HD evaluation criteria are 79.80% and 23.48 mm,
respectively, which are improved by 2.32% and 8.21 mm,
respectively, compared with TransUNet, which indicates that
our DA-TransUNet has better segmentation ability than
TransUNer in terms of overall segmentation results and organ
edge prediction. As shown in the Figure 6, on the other hand, we
can see that DSC has the highest value of our model. Although
HD is higher than Swin-Unet, it is still an improvement
compared to several newer models and TransUNet. The
segmentation time for an image is 35.98 ms for our DA-
TransUNet and 33.58 ms for TransUNet, which indicates that
there is not much difference in the segmentation speed between
the two models, but our DA-TransUNet has better segmentation
results. In the segmentation results of 8 organs, DA-TransUNet
outperforms TransUNet by 2.14%, 3.43%, 0.48%, 3.45%, and
4.11% for the five datasets of Gallbladder, right kidney, liver,
spleen, and stomach, respectively. The segmentation rate for the
pancreas is notably higher at 5.73%. In a comparative evaluation
across six distinct organs, DA-TransUNet demonstrates superior
segmentation capabilities relative to TransUNet. Nevertheless, it
exhibits a marginal decrement in the segmentation accuracy for
the aorta and left kidney by 0.69% and 0.17%, respectively. The
model achieves the best segmentation rates for the right kidney,
liver, pancreas, and stomach, indicating superior feature learning
capabilities on these organs.

To further confirm the better segmentation of our model
compared to TransUNet, we visualized the segmentation plots of
TransUNet and DA-TransUNet (see Figure 5). From the yellow and
purple parts in the first column, we can see that our segmentation
effect is obviously better than that of TransUNet; from the second
column, the extension of purple is better than that of TransUNet,
and there is no vacancy in the blue part; from the third column, there
is a semicircle in the yellow part, and the vacancy in red is smaller
than that of TransUNet, etc. It is evident that DA-TransUNet
outperforms TransUNet in segmentation quality. In summary,
DA-TransUNet significantly surpasses TransUNet in segmenting
the left kidney, right kidney, spleen, stomach, and pancreas. It also
offers superior visualization performance in image segmentation.

We simultaneously took DA-TransUNet in five datasets, CVC-
ClinicDB, Chest Xray Masks and Labels, ISIC2018-Task, kvasir-
instrument, and kvasir-seg, and compared it with some classical
models (see Table 2). In the table, the values of IOU and Dice of
DA-TransUNet are higher than TransUNet in all five datasets, CVC-
ClinicDB, Chest Xray Masks and Labels, ISIC2018-Task, kvasir-
instrument, and kvasir-seg. Also DA-TransUNet has the best
dataset segmentation in four of the five datasets. As seen in the
table, our DA-TransUNet has more excellent feature learning and
image segmentation capabilities.

We also show the results of image segmentation visualization of
DA-TransUNet in these five datasets, and we also show the results of
the comparison models for the comparison. The visualization results
for Chest X-ray Masks and Labels, Kvasir-Seg, Kvasir-Instrument,
ISIC2018-Task, and CVC-ClinicDB datasets are presented in
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Figure 7, Figure 8, Figure 9, Figure 10, and Figure 11, respectively. In
the Figure, it can be seen that the segmentation effect of DA-
TransUNet has a good performance. Firstly, DA-TransUNet has
better segmentation results than TransUNet. In addition, compared
with the four classical models of U-net, Unet++, Attn-Unet, and
Res-Unet, DA-TransUNet has a certain improvement. It can be seen
that the effectiveness of DA-TransUNet for model segmentation is
not only confirmed in the Synapse dataset, but also in the five
datasets (CVC-ClinicDB, Chest Xray Masks and Labels, ISIC2018-
Task, kvasir-instrument, kvasir-seg). We further establish that DA-
TransUNet excels in both 3D and 2D medical image segmentation.

4.3.2 Computational complexity and efficiency
The integration of DA-Blocks in the encoder and skip

connections introduces additional computational overhead
compared to the standard TransUNet architecture. Let the
input feature map have a spatial resolution of H × W and C
channels. The computational complexity of the Position
Attention Module (PAM) is O(H2W2C), while the Channel
Attention Module (CAM) has a complexity of O(C2HW). As
the DA-Block consists of both PAM and CAM, its overall
computational complexity is O(H2W2C + C2HW). However, it

is worth noting that the DA-Block itself is not computationally
intensive, as it only involves simple matrix multiplications and
element-wise operations.

Table 3 compares the number of parameters, Dice Similarity
Coefficient (DSC), and Hausdorff Distance (HD) between DA-
TransUNet and TransUNet. The incorporation of DA-Blocks leads
to a modest increase of 2.54% in the number of parameters compared
to TransUNet. This incremental increase in parameters is justifiable
considering the substantial performance gains achieved by DA-
TransUNet, as demonstrated in our experimental results (Section
4). DA-TransUNet achieves an average improvement of 2.99% in
DSC and 25.9% in HD compared to TransUNet. The strategic
placement of DA-Blocks allows for efficient feature refinement
while maintaining a reasonable model size.

4.4 Ablation study

We conducted ablation experiments on the DA-TransUNet
model using the Synapse dataset to discuss the effects of different
factors on model performance. Specifically, it includes: 1) DA-Block
in Encoder. 2) DA-Block in Skip Connection.

TABLE 1 Experimental results on the Synapse dataset.

Model Year DSC
↑ (%)

HD
↓

Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

U-net
(Ronneberger
et al., 2015)

2015 76.85 39.70 89.07 69.72 77.77 68.6 93.43 53.98 86.67 75.58

U-Net++(Zhou
et al., 2018)

2018 76.91 36.93 88.19 68.89 81.76 75.27 93.01 58.20 83.44 70.52

Residual U-Net
(Diakogiannis
et al., 2020)

2018 76.95 38.44 87.06 66.05 83.43 76.83 93.99 51.86 85.25 70.13

Att-Unet (Oktay
et al., 2018)

2018 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75

MultiResUNet
(Ibtehaz and
Rahman, 2020)

2020 77.42 36.84 87.73 65.67 82.08 70.43 93.49 60.09 85.23 75.66

TransUNet (Chen
et al., 2021)

2021 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

UCTransNet
(Wang et al.,
2022a)

2022 78.23 26.75 84.25 64.65 82.35 77.65 94.36 58.18 84.74 79.66

TransNorm (Azad
et al., 2022b)

2022 78.40 30.25 86.23 65.1 82.18 78.63 94.22 55.34 89.50 76.01

MIM(Wang et al.,
2022b)

2022 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

swin-unet (Cao
et al., 2022)

2022 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

DA-
TransUNet(Ours)

2023 79.80 23.48 86.54 65.27 81.70 80.45 94.57 61.62 88.53 79.73

Average Relative
Improvement

- 2.03 −9.00 −0.73% −1.09% 0.28% 5.21% 0.82% 4.86% 1.97% 4.5%

The bold values indicate the best performance among all the methods compared in each respective evaluation metric. Specifically, for each row in a table, the bold number represents the method

that achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Sun et al. 10.3389/fbioe.2024.1398237

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1398237


4.4.1 Effect of the DA-Block in encoder and skip
connection

In this research (see Table 4), we conducted experiments to
assess the impact of integrating DA-Blocks into the encoder and skip
connections on the model’s segmentation performance. To be
specific, we introduced DA-Blocks into each layer of the skip
connections. The results demonstrated an improvement: the DSC

baseline saw an increase from 77.48% to 78.28%, HD index dropped
from 31.69 mm to 29.09 mm. This indicates that the addition of DA-
Blocks at each skip connection layer provided the decoder with more
refined features, mitigating feature loss during the upsampling
process, thereby reducing the risk of overfitting and enhancing
model stability. Furthermore, incorporating DA-Blocks into the
encoder before the Transformer yielded an enhancement, with

FIGURE 5
Segmentation results of TransUNet and DA-TransUNet on the Synapse dataset.
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the DSC baseline increasing from 77.48% to 78.87%, even though the
HD metric decreased from 31.69 mm to 27.71 mm. In conclusion,
based on the findings presented in Table 4, we can assert that the

inclusion of DA-Blocks both before the Transformer layer and
within the skip connections effectively boosts medical image
segmentation capabilities.

FIGURE 6
Line chart of DSC and HD values of several advanced models in the Synapse dataset.

TABLE 2 Experimental results of datasets (CVC-ClinicDB, Chest Xray Masks and Labels, ISIC2018-Task, kvasir-instrument, kvasir-seg).

CVC-ClinicDB Chest xray
masks and
labels

ISIC2018-task Kvasir-
instrument

Kvasir-seg

Iou ↑ Dice ↑ Iou ↑ Dice ↑ Iou ↑ Dice ↑ Iou ↑ Dice ↑ Iou ↑ Dice ↑

U-net (Ronneberger et al., 2015) 0.7821 0.8693 0.9303 0.9511 0.8114 0.8722 0.8957 0.9358 0.8012 0.8822

Attn-Unet (Oktay et al., 2018) 0.7935 0.8741 0.9274 0.9503 0.8151 0.876 0.8949 0.9359 0.7801 0.8661

Unet++(Zhou et al., 2018) 0.7847 0.8714 0.9289 0.9505 0.8133 0.873 0.8995 0.9389 0.7767 0.8657

ResUNet (Diakogiannis et al., 2020) 0.5902 0.7422 0.9262 0.9505 0.7651 0.8332 0.8572 0.9141 0.6604 0.7785

TransUNet (Chen et al., 2021) 0.8163 0.8901 0.9301 0.9535 0.8263 0.8878 0.8926 0.9363 0.8003 0.8791

DA-TransUNet(Ours) 0.8251 0.8947 0.9317 0.9538 0.8278 0.8888 0.8973 0.9381 0.8102 0.8847

The bold values indicate the best performance among all the methods compared in each respective evaluationmetric. Specifically, for each row in a table, the bold number represents the method

that achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.

FIGURE 7
Comparison of qualitative results between DA-TransUNet and existing models on the task of segmenting Chest X-ray Masks and Labels X-ray datasets.
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4.4.2 Effect of adding DA-Blocks to skip
connections in different layers

Building on the quantitative results from Table 5, we experimented
with various configurations of DA-Block placement across three
different layers of skip connections to identify the optimal
architectural layout for enhancing the model’s performance.
Specifically, when DA-Blocks were added to just the first layer, the
DSCmetric improved to 79.36% from a baseline of 78.87%, and theHD

metric decreased to 25.80 mm from 27.71 mm. Adding DA-Blocks to
the second and third layers resulted in some progress.WhenDA-Blocks
were integrated across all layers, there was an improvement, reflected by
a DSC of 79.80% and a HD of 23.48 mm. In contrast to traditional
architectures where skip connections indiscriminately pass features
from the encoder to the decoder, our approach with DA-Blocks
selectively improves feature quality at each layer. The results, as
corroborated by Table 5, reveal that introducing DA-Blocks to even

FIGURE 8
Comparison of qualitative results between DA-TransUNet and existing models on the task of segmenting Kvasir-Seg datasets.

FIGURE 9
Comparison of qualitative results between DA-TransUNet and existing models on the task of segmenting Kavsir-Instrument datasets.

FIGURE 10
Comparison of qualitative results between DA-TransUNet and existing models on the task of segmenting 2018ISIC-Task datasets.
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a single layer enhances performance, and the greatest gains are observed
when applied across all layers. This indicates the effectiveness of
integrating DA-Blocks within skip connections for enhancing both
feature extraction andmedical image segmentation. Therefore, the table
clearly supports the idea that layer-wise inclusion of DA-Blocks in skip
connections is an effective strategy for enhancing medical image
segmentation.

4.4.3 Effect of the number of intermediate
channels in DA-Block

Based on the results shown in the Table 6, we conducted a discussion
regarding the size of the intermediate layer in the DA-Block, which
demonstrates the effectiveness of convolutional layers from an
experimental perspective. The original DA-Block had an intermediate
layer size that is one-fourth of the input layer size. However, since its

FIGURE 11
Comparison of qualitative results between DA-TransUNet and existing models on the task of segmenting CVC-ClinicDB datasets.

TABLE 3 Comparison of model parameters and performance between DA-TransUNet and TransUNet.

Model Params Params increase DSC improvement HD improvement

TransUNet 105,276,066 - - -

DA-TransUNet 107,950,840 2.54% 2.99% 25.9%

The bold values indicate the best performance among all the methods compared in each respective evaluationmetric. Specifically, for each row in a table, the bold number represents the method

that achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.

TABLE 4 Effects of combinatorial placement of DA-Blocks in the encoder and through skip connections on performance metrics.

Encoder with DA Skip with DA DSC ↑ HD ↓

DA-TransUNet 77.48 31.69

DA-TransUNet √ 78.28 29.09

DA-TransUNet √ 78.87 27.71

DA-TransUNet √ √ 79.80 23.48

The bold values indicate the best performance among all the methods compared in each respective evaluationmetric. Specifically, for each row in a table, the bold number represents the method

that achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.

TABLE 5 Effects of incorporating DA-Block in the encoder and skip connections at different layers on performance metrics.

1st layer 2nd layer 3rd layer DSC ↑ HD ↓

DA-TransUNet 78.87 27.71

DA-TransUNet √ 79.36 25.80

DA-TransUNet √ 78.65 23.43

DA-TransUNet √ 79.49 30.71

DA-TransUNet √ √ √ 79.80 23.48

The bold values indicate the best performance among all the methods compared in each respective evaluationmetric. Specifically, for each row in a table, the bold number represents the method

that achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.
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intended application is for road scene segmentation and not specifically
tailored for medical image segmentation, we deemed that setting the
intermediate layer size to one-fourth of the input layer size might not be
suitable for the medical image segmentation domain. As seen in the
graph, whenwe set the intermediate layer size to be the same as the input
size, the evaluation results show a DSC of 78.55% and HD of 28.22 mm.
In the related research DANet (Fu et al., 2019), where the intermediate
layer was set to one-fourth of the input layer, the DSC result was 79.71%,
and HD was 25.90 mm. However, when we further reduced the size of
the intermediate layer to one-sixteenth of the input layer size, we
observed an improvement in DSC to 79.80%, and HD decreased
further to 23.48 mm. It is evident that setting the intermediate layer
to one-sixteenth of the input layer size ismore suitable formedical image
segmentation tasks. The reduction in the intermediate layer size can help
the model mitigate the risk of overfitting, optimize computational
resources, and, given the precision requirements of medical image
segmentation tasks, enable the model to focus more on selecting the
most crucial features, thereby enhancing sensitivity to critical
information for the task.

5 Discussion

In this present study, we have discovered promising outcomes
from the integration of DA-Blocks with the Transformer and their
combination with skip-connections. Encouraging results were
consistently achieved across all six experimental datasets.

5.1 Statistical validation of the improvements
by DA-TransUNet

To enhance the credibility of our results and further validate the
superiority of DA-TransUNet, We evaluated the performance of the
models discussed in the Experiment Section 4 (U-Net, TransUNet,
and DA-TransUNet) on 12 subsets of the Synapse dataset,
constituting 40% of the total data, and obtained their Dice
Similarity Coefficients (DSC). It is important to note that both
DA-TransUNet and TransUNet are based on the U-Net
architecture, which serves as the baseline model. Therefore, using
U-Net as the benchmark to assess whether the improvements of DA-
TransUNet over TransUNet are significant is a valid approach.

We first assessed the normality of the DSC improvement values for
both DA-TransUNet and TransUNet relative to U-Net using the
Shapiro-Wilk test. The results showed p-values of 0.36 and 0.82 for
the improvements of DA-TransUNet and TransUNet, respectively.
Since both p-values are greater than 0.05, we cannot reject the null
hypothesis of normality. This indicates that the DSC improvement
values for both DA-TransUNet and TransUNet relative to U-Net can
be considered approximately normally distributed. We then performed
a paired t-test to compare the significance of the improvements. As
shown in Table 7, the test yielded a t-statistic of 2.45 and a p-value of
0.032, demonstrating a significant difference between the
improvements achieved by DA-TransUNet and TransUNet.

Moreover, to further quantify the superiority of DA-TransUNet
over TransUNet, we calculated the 95% confidence interval for the
difference in improvements between DA-TransUNet and
TransUNet. The results showed that the mean difference was
3.96, with a standard deviation of 5.61, and the confidence
interval was [0.40, 7.53]. This means that, at a 95% confidence
level, the magnitude of the difference in DSC improvements between
DA-TransUNet and TransUNet lies between 0.40 and 7.53.

To provide a comprehensive overview of the models’
performance, we calculated the 95% confidence intervals for their
DSC scores. DA-TransUNet achieved a mean DSC of 79.80 ± 5.01,
with a confidence interval of [74.79, 84.81], while TransUNet
achieved a mean DSC of 75.84 ± 6.77, with a confidence interval
of [69.06, 82.61]. These results, summarized in Table 7, suggest that
DA-TransUNet not only achieves higher average performance but
also exhibits more consistent results compared to TransUNet.

The statistical analysis, confidence intervals, and the
quantification of the relative improvement provide strong
evidence for the superiority of DA-TransUNet over TransUNet
in the task of medical image segmentation. These results highlight
the effectiveness of our proposed approach and its potential to
advance the field of medical image analysis.

5.2 Enhancing feature extraction and
segmentation with DA-Blocks

To start with, drawing from empirical results in Table 4, it is
demonstrated that the integration of DA-Block within the encoder
significantly enhances the feature extraction capabilities as well as its
segmentation performance. In the landscape of computer vision,
Vision Transformer (ViT) has been lauded for its robust global

TABLE 6 Effect of the number of intermediate channels in DA-Block.

1 2 4 8 16 32 DSC ↑ HD ↓

DA-TransUNet √ 78.55 28.22

DA-TransUNet √ 79.35 23.77

DA-TransUNet √ 79.71 25.90

DA-TransUNet √ 79.35 25.66

DA-TransUNet √ 79.80 23.48

DA-TransUNet √ 79.71 24.45

The bold values indicate the best performance among all the methods compared in each

respective evaluation metric. Specifically, for each row in a table, the bold number

represents the method that achieves the highest score or lowest error on that particular

metric, demonstrating its superior performance relative to the other approaches.

TABLE 7 Statistical analysis of DSC improvements and model performance.

Model Mean DSC ± SD 95% CI for DSC

DA-TransUNet 79.80 ± 5.01 [74.79, 84.81]

TransUNet 75.84 ± 6.77 [69.06, 82.61]

Comparison of DSC improvements achieved by DA-
TransUNet and TransUNet relative to U-net

Metric Mean
difference

95% CI for
difference

t-Test
p-value

Improvement 3.96 [0.40, 7.53] 0.032
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feature extraction capabilities (Dosovitskiy et al., 2020). However, its
falls short in specialized tasks like medical image segmentation,
where attention to image-specific features is crucial. To remedy this,
in DA-TransUNet we strategically place DA-Blocks ahead of the
Transformer module. These DA-Blocks are tailored to first extract
and filter image-specific features, such as spatial positioning and
channel attributes. Following this initial feature refinement, the
processed data is then fed into the Transformer for enhanced
global feature extraction. This approach results in significantly
improved feature learning and segmentation performance. In
summary, the strategic placement of DA-Blocks prior to the
Transformer layer constitutes a pioneering approach that
significantly elevates both feature extraction efficacy and medical
image segmentation precision.

Morever, building on empirical data in Table 5, our integration of
DA-Blocks with skip connections significantly improves semantic
continuity and the decoder’s ability to reconstruct accurate feature
maps. While traditional U-Net architectures (Ronneberger et al., 2015)
utilize skip connections to bridge the semantic gap between encoder and
decoder, our novel incorporation of Dual Attention Blocks within the
skip-connection layers yields promising results. By incorporating DA-
Blocks across skip-connection layers, we focus on relevant features and
filter out extraneous information, making the image reconstruction
process more efficient and accurate. In summary, the strategic inclusion
of DA-Blocks in skip connections represents a groundbreaking
approach that not only enhances feature extraction but also
improves the model’s performance in medical image segmentation.

Lastly, our extensive evaluation across six diverse medical image
segmentation datasets demonstrates the effectiveness and
generalizability of the DA-TransUNet. The consistent improvements
over state-of-the-art methods (Table 1) highlight the impact of our
targeted integration of the DA-Block. Moreover, the ablation studies
(4.4) provide valuable insights into the individual contributions of the
DA-Block in different components of the architecture. These findings
not only underscore the novelty of our approach but also shed light on
the importance of strategically integrating attention mechanisms for
enhanced medical image segmentation. The DA-TransUNet represents
a significant step forward in leveraging the power of attention
mechanisms and transformers for accurate and robust segmentation
across a wide range of medical imaging modalities. Our work paves the
way for further exploration of targeted attentionmechanisms inmedical
image analysis and has the potential to impact clinical decision-making
and patient care.

5.3 Limitations and future directions

Despite the advantages, our model also has some limitations. Firstly,
the introduction of the DA-Blocks contributes to an increase in
computational complexity. This added cost could potentially be a
hindrance in real-time or resource-constrained applications. Although
this increase in parameters is relatively modest considering the
performance gains achieved, it could still be a concern in resource-
constrained scenarios or when dealing with very large-scale datasets.
Secondly, the decoder part of our model retains the original U-Net
architecture. While this design choice preserves some of the advantages
of U-Net, it also means that the decoder has not been specifically
optimized for our application. This leaves room for further research and

improvements, particularly in the decoder section of the architecture.
Thirdly, one potential limitation of our DA-TransUNet architecture is
the risk of losing fine-grained details during the tokenization process,
which occurs after the convolution and pooling operations in the
encoder. This is particularly concerning for medical images with thin
and complex structures, where preserving intricate details is crucial for
accurate segmentation. Although our proposed integration of the Dual
Attention (DA) module before the Transformer in the encoder and
within the skip connections helps mitigate this issue to some extent, as
evidenced by the improved segmentation performance, we acknowledge
that there may still be room for further enhancement in capturing and
retaining fine-grained information.

6 Conclusion

In this paper, we innovatively proposed a novel approach to image
segmentation by integrating DA-Blocks with the Transformer in the
architecture of TransUNet. The DA-Blocks, focusing on image-specific
position and channel features, were further integrated into the skip
connections to enhance the model’s performance. Our experimental
results, validated by an extensive ablation study, showed significant
improvements in the model’s performance across various datasets,
particularly the Synapse dataset.

Our research revealed the potential of image-special features
position and channel (DA-Block) in enhancing the feature
extraction capability and global information retention of the
Transformer. The integration of DA-Block and Transformer
substantially improved the model’s performance without creating
redundancy. Furthermore, the introduction of DA-Blocks into skip
connections not only effectively bridges the semantic gap between
the encoder and decoder, but also refines the feature maps, leading to
an enhanced image segmentation performance.

Our model also has some limitations. Firstly, the introduction of
DA blocks increases computational complexity. This added cost may
pose obstacles for real-time or resource-constrained applications.
Secondly, the decoder part of our model retains the original U-Net
architecture. Lastly, the utilization of image feature positions and
channels is only superficial, with deeper exploration possible.

This study has paved the way for the further use of image-special
features position and channel (DA-Block) in the field of medical image
segmentation. At the same time, it provides the idea of leveraging image
characteristics to achieve high-precision medical image segmentation.
Future work may focus on optimizing the decoder part of our
architecture and exploring methods to reduce the computational
complexity introduced by DA blocks without compromising the
model’s performance. We believe our approach can inspire future
research in the domain of medical image segmentation and beyond.
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