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Levulinic acid (LA) is a polymer with a vast industrial application range and can be
co-produced as a minor by-product during the biological production of
polyhydroxyalkanoates (PHA). However, the influence of key parameters as
tools for favouring the production of LA over PHA is still unclear. In this study,
we investigated how several critical operational conditions, i.e., carbon-nitrogen
ratio (C/N), organic loading rate (OLR) and airflow, can be optimised to favour LA
accumulation over PHA production by a mixed microbial culture (MMC), using
synthetic grape pomace (GP) hydrolysate as the substrate. The results showed
that it was possible to direct the MMC towards LA accumulation instead of PHA.
Themaximum LA yield was 2.7 ± 0.2 g LA/(L·d) using a C/N of 35, an airflow of 5 L/
min and an OLR of 4 g sCOD/(L·d). The OLR and, to a lesser extent, the C/N ratio
were the main factors significantly and positively correlated with the biological
synthesis of LA.
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1 Introduction

Worldwide energy demand has doubled in the last 10 years (Sajid et al., 2021). This has
resulted in a global primary energy consumption of around 160 × 1018 J per year, of which
80% is covered by fossil fuels (Di Bucchianico et al., 2022). However, excessive reliance on
fossil fuels contributes significantly to greenhouse gas emissions, which in turn intensifies
pollution in the environment and causes global warming (EPA, 2017). Hence, it is
mandatory to mitigate petroleum-based consumption by searching for new, sustainable,
green alternatives. Lignocellulosic biomass can be used as a substitute feedstock in
producing biofuels and biochemicals, a strategy widely proposed within the transition
plans for a sustainable economy and industry (Sherwood, 2020).

Among the different platform chemicals derived from biomass is levulinic acid (LA),
also known as 4-oxopentanoic acid, a linear C5-alkyl carbon chain and considered one of
the ‘Top 10’ value-added compounds in the world (Hayes and Becer, 2020). The estimated
global market for LA is around US$ 22 million and is soon expected to increase enormously
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(Bazoti et al., 2023). Levulinic acid is a multipurpose platform
chemical derived from biomass that can be used for synthesising
a wide variety of potential biobased chemicals such as additives for
fuels (methyl tetrahydrofuran and levulinate esters), biodegradable
herbicides (delta-amino acid levulinic), resins and plasticisers
(diphenolic acid) (Santiago and Guirardello, 2020; Charnnok and
Laosiripojana, 2022). Nowadays, LA is usually chemically obtained
from the acid hydrolysis of 5- and 6-carbon carbohydrates derived
from cellulose at high pressures and temperatures, using waste and
by-products of lignocellulosic biomass as raw materials (Jeong et al.,
2018). However, the energy needs associated with the high
temperature and pressure levels of the process result in
significant financial and environmental expenses for this type of
LA production (Signoretto et al., 2019). Additionally, operating with
these conditions can also generate contaminating residues, including
corrosive and hard-to-recycle homogeneous catalysts (Corona
et al., 2018).

Implementing the microbial biosynthesis of LA from renewable
carbon sources would be advantageous as it would result in lower
downstream costs and reduce potential environmental impacts. The
development of biotechnology tools has opened avenues to the
design of new-to-nature pathways, enabling the bioproduction of
LA by assembling combinations of enzymes not previously observed
in vivo. The direct biological production of LA was achieved by the
pioneering work of Zanghellini (2016), who used engineered S.
cerevisiae and Pichia stipe enzymes. Likewise, Vila-Santa et al. (2021)
identified several microbial precursors for the bioproduction of LA,
proposing the transformation of D-alanine to LA via 2,5-
Diaminovaleric acid by Escherichia coli and Saccharomyces
cerevisiae. This proposed pathway is promising due to the low
number of required metabolic steps and the high internal pools
of D-alanine, which could be successfully improved in E coli and S.
cerevisiae. However, a complete microbial pathway to produce LA as
a product or an intermediate by a single microorganism has not yet
been described. In contrast, the microbial LA metabolic pathway
and its related genes have largely been deciphered, highlighting the
transformation of LA into 3-hydroxyvalerate-coenzyme A by the
sequential action of the enzymes LvaE, LvaD, LvaAB and LvaC,
encoded by the lvaABCDEFG operon, followed by a β-oxidation of
the hydroxyvalerate-coenzyme A to propionyl-CoA and acetyl-CoA
in Pseudomonas putida KT2440 (Habe et al., 2020).

The operation with a mixed microbial culture (MMC) has been
widely described as an interesting approach for the microbial-
mediated biosynthesis of petroleum-based polymers due to the
lower operating costs, easy adaptation to the use of agro-
industrial waste as a carbon source and an enhancement of the
robustness to changes in operating conditions (Montiel-Jarillo et al.,
2017; Huang et al., 2018; Mohamad Fauzi et al., 2019; Wu et al.,
2023). Regarding LA biosynthesis, it has been hypothesised that the
beneficial synergistic cooperation between strains in the MMC could
result in the best-performing pathway to produce LA from
renewable sources (Vila-Santa et al., 2021). The use of the MMC
has widely been oriented to PHA production from fermented waste,
using sequential batch reactors (SBRs) subjected to the feast and
famine (F/F) culture strategy (Fra-Vázquez et al., 2018; Correa-
Galeote et al., 2022a; Gottardo et al., 2022). However, beyond PHA,
the use of non-fermented waste in the MMC under the F/F culture
strategy could lead to the accumulation of other compounds such as

triacylglycerol, polyglucose or LA (Freches and Lemos, 2017; Pinto-
Ibieta et al., 2020; Pinto-Ibieta et al., 2021; Argiz and Correa-galeote,
2022; Correa-Galeote et al., 2022b).

To the best of our knowledge, Pinto-Ibieta et al. (2020), Pinto-
Ibieta et al. (2023) were the only authors who have reported the co-
production of LA and other added-value compounds, mainly
polyhydroxybutyrate and adipic acid, in an MMC subjected to
the F/F culture strategy, using synthetic hydrolysed hemicellulose
and xylose-rich substrate as carbon sources. The operational
conditions that favour the specific accumulation of a particular
target compound are still unclear. Specifically, although the results
described by Pinto-Ibieta et al. (2020), Pinto-Ibieta et al. (2021),
Pinto-Ibieta et al. (2023) show a high relative capacity of LA
accumulation by the MMC using pentoses as carbon sources
(maximum accumulation of 37% w/w), the operational
conditions that could improve LA production have not been well
established.

Therefore, other non-fermented agro-industrial waste should be
tested to identify the feasibility of using other monosaccharides
(hexoses) as carbon sources to feed an LA-producing MMC. Grape
pomace (GP) is an agro-industrial waste from the winery sector that
could be an attractive substrate for the bioproduction of LA since it
contains up to 38% w/w (dry matter) of soluble carbohydrates
(Corbin et al., 2015). As GP is produced at a rate of 0.13 tonnes
per tonne of wine grapes, it is necessary to implement a suitable
management method for its valorisation (Croxatto-Vega et al.,
2019). Hence, the bioproduction of LA by using an MMC fed
with GP could be an attractive waste management due to the
high industrial potential and economic value of this chemical
platform, as the estimated value of the LA global market is
predicted to reach US$ 30 million in 2027 (Bazoti et al., 2023).
Given the potential interest in developing a biological process for the
synthesis of LA, it is mandatory to identify the operational
conditions that favour the specific bioproduction of LA by an
MMC using the F/F culture strategy. In this context, the main
scientific novelty of this research is based on the effect of varying the
key operational conditions, i.e., carbon-nitrogen ratio (C/N),
organic loading rate (OLR) and airflow, to produce LA using an
MMC at the F/F culture strategy with carbohydrates (composed of
glucose and xylose) obtained from hydrolysed GP.

2 Materials and methods

2.1 Inoculum and synthetic carbon
source obtention

Aerobic sludge was taken from the wastewater treatment plant
in Temuco (Aguas Araucanía, Chile). We collected 10 L of aerobic
sludge from the recirculation line on the aerobic reactor and let it
settle for 12 h. In addition, 1.5 L of concentrated aerobic sludge was
taken and used as inoculum. To ensure the reproducibility of the
experiments, a synthetic GP hydrolysate was prepared based on the
sugar composition previously reported by Serrano et al. (2023),
i.e., 64% glucose, 31% xylose and 5% arabinose. Using a synthetic
mixture made it possible to circumvent undesirable interferences in
the evaluation of the suitability of the sugar mixture as a substrate for
LA accumulation. Such interferences arise due to matrix effects from
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minor compounds in the grape hydrolysate, such as phenols
or terpenes.

2.2 SBR set-up and operation

Fifteen 1-L working volume sequential batch reactors (SBRs)
were operated in parallel to obtain an MMC enriched in LA-
producing microorganisms. For that purpose, the SBRs were
operated to achieve a pseudo-stationary state regarding the
volatile solids (VS) concentration and LA production for at least
five consecutive cycles. The SBRs were initially inoculated with 3.6 g
VS/L of aerobic sludge. Each SBR was automatically fed and purged
using a peristaltic pump connected to a compact DAQ system
(cDAQ-9178 chassis, National Instruments, Austin, TX,
United States) and a routine programmed using the LabView
software (National Instruments). The SBRs were operated at 25°C
in 24-h cycles, feeding each cycle with 200 mL of synthetic GP
enriched with micro- and macronutrients (Pinto-Ibieta et al., 2020).
Once the steady state had been reached, the dissolved oxygen (DO)
was monitored to corroborate the SBR operation by feast/famine
culture regimen. An example of the DO variation in relation to the
differences in oxygen consumption during the feast and famine
phases within the feeding cycles is shown in the Supplementary
Material (Supplementary Figure S1). The pH was monitored
throughout the experimental time, varying in a short range
between 5.8 and 6.2 (Supplementary Figure S2). No
pH adjustments were required. Samples were taken at the end of
each two to three cycles to evaluate the processes.

2.3 Experimental design and
statistical analysis

A 23 factorial design was used with three factors, two levels, three
replicates and five central points. A factorial design was used due to
set-up limitations, since the factorial design enables the delineation
of interactions among different factors with a lower number of runs
compared to a full factorial design. The factors evaluated were OLR,
airflow rate and C/N ratio. These factors and their respective levels
were defined according to previous works employing an MMC
subjected to the F/F culture strategy (Fang et al., 2019; Fra-
Vázquez et al., 2018; Huang et al., 2016; Pinto-Ibieta et al., 2020;
Pinto-Ibieta et al., 2021; Pokój et al., 2019). The matrix of the partial
23 factorial experimental design is shown in Table 1. Pearson’s
correlation analysis was performed using Sigmaplot® version 11.0 on

the different operational conditions, i.e., C/N ratio, airflow and OLR,
and the values of LA production yield and accumulation were
obtained at each experimental condition.

2.4 Analytical methods

Substrate consumption was measured by determining the
reducing sugar concentration in the filtered samples (0.22-μm
pore size PVDF membrane, Merck). Reduced sugar was
quantified using the dinitrosalicylic acid (DNS) reagent method
(Zhang et al., 2012; Prasertsung et al., 2017). The absorbance of the
final solution was measured at 540 nm, using a GENESYS 10 s
spectrophotometer (Thermo Scientific, United States) and glucose
as a standard reagent (Merck, Germany). The VS (used for biomass
production quantification) and soluble chemical oxygen demand
(sCOD) were quantified using a standard technique (AWWA,
2005). LA and PHB were quantified and identified according to
the methodology described by Lappalainen and Dong (2019) and
Serafim et al. (2024) after a washing process to ensure the absence of
dissolved sugars that would interfere with the results. The washing
process consisted of three washes of the biomass. For this, 3 mL of
the sample was centrifuged for 10 min at 12,000 g, and the pellet
obtained was resuspended to 3 mL with distillate water. Further, the
lyophilisation of this sample was carried out. The lyophilised
biomass was resuspended in 1 mL of acidified methanol (20%
H2SO4) with 0.65 mg/mL of benzoic acid as an internal standard
(Sigma Aldrich). One ml of chloroform was added to this mixture,
and the solution was kept in a thermoblock at 100°C for 3.5 h. After
cooling, 0.5 mL of water was used for extraction. The chloroform
phase was collected, and molecular sieves (0.3 nm) were added for
water removal. One ml of the obtained chloroform phase was finally
injected in a GC/MS column (Clarus 600, PerkinElmer). The
column used to determine PHA concentration was a DB-FFAP
30 m × 0.25 mm × 0.25 um (Agilent), while an ELITE 1701 30 m ×
0.25 mm × 0.25 um was used to determine LA concentration
(PerkinElmer). The calibration curve was obtained by injecting a
series of standards at different concentrations of LA and
polyhydroxybutyrate (PHB) (Sigma Aldrich), previously subjected
to the described procedure. Substrate degradation was measured by
determining the concentration of reducing sugars and acetate in the
filtered samples (0.22-μm pore size PVDF membrane, Merck). To
quantify the total reducing sugars, the dinitrosalicylic acid (DNS)
reagent method was used (Zhang et al., 2012; Prasertsung et al.,
2017). Acetate was determined by gas chromatography in a flame
ionisation detector (Clarus 400, PerkinElmer) using a NukolTM
capillary column (Sigma-Aldrich, Darmstadt, Germany). The VS
and soluble chemical oxygen demand (SCOD) were quantified using
a standard technique (AWWA, 2005).

3 Results and discussion

3.1 Stability of the SBRs under different F/F
operational conditions

Figure 1 shows the VS variation as a function of culture time for
the different experimental conditions described in Table 1. All SBRs

TABLE 1 Matrix of the partial 23 factorial experimental design.

C/N ratio Airflow (L/min) OLR (g sCOD/(L·d))
R1 20 3 3

R2 35 1 2

R3 5 5 2

R4 5 1 4

R5 35 5 4

OLR, organic loading rate; sCOD, chemical oxygen demand.
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started from 3.6 g VS/L and increased above 5 g VS/L throughout
the operation time, except under R2 conditions, where the solids
decreased up to an average value of 3 g VS/L. Thus, in both
conditions, the biomass was completely removed from the SBR,
indicating that the established MMCs could adapt and metabolise
the fed substrate (Oliveira et al., 2017). The lower VS concentration
reached under R2 conditions would be related to the necessity of
adapting the MMC to these conditions, which would not be
adequate for the initial microbial composition of the MMC
(Jiménez-Páez et al., 2023). A similar VS decrease was observed
in an SBR operated under the F/F strategy for the synthesis of LA by
Pinto-Ibieta et al. (2020), who described a decline from 8.2 to 4 g VS/
L when aerobic sludge was fed a carbon source composed of 80%
xylose, 9% acetic acid, 6% furfural and 5% arabinose. The highest

biomass production was achieved under R5 conditions (C/N ratio: 5,
OLR: 4 g sCOD/(L·d) and airflow: 1 L/min), reaching a stable
concentration of around 8.1 ± 0.77 g VS/L after 30 days of
operation (Figure 1). This highest biomass production coincided
with the SBR operated at the highest OLR. This was expected as low
OLR conditions can lead to microbial growth limitation, whereas
applying high OLR rates implies a higher carbon availability,
resulting in increased biomass production (Alburqueque et al.,
2010; Valentino et al., 2015). In a previous study, an increase in
OLR from 1 to 7 g sCOD/(L·d) increased the biomass from 0.5 to
3.0 g VS/L in an MMC using acetate as a carbon source (Oliveira
et al., 2017).

The reducing sugar concentrations at the beginning and the end
of each cycle operated under all SBR operational conditions

FIGURE 1
Volatile solids as a function of culture time for all operational conditions studied.

FIGURE 2
Reducing sugar concentrations at the beginning and end of the cycles as a function of the operating time during the pseudo-stationary stage.
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throughout the 60 days of culture are shown in Figure 2. At the end
of each cycle, there were no significant concentrations of reducing
sugars, indicating that the synthetic GP was almost entirely
consumed by the microorganisms in each cycle for all culture
periods (Pinto-Ibieta et al., 2020). The high biodegradability of
the used synthetic GP hydrolysate can be explained by its
composition, which is rich in easily metabolised sugars (Section
2.1). The almost negligible concentration of reducing sugars at the
end of each cycle indicates that the MMC could degrade all available
substrate despite the difference in OLR (Figure 2). That also implies
that there were no reducing sugars in the taken samples that would
be chemically converted into LA during the experiment, thereby
distorting the measured biological synthesis of LA (Kang
et al., 2018).

3.2 Enrichment of the LA-accumulating
mixed microbial culture under different
operational conditions

Figure 3 presents the LA accumulation (% w/w in dry weight)
shown by the MMC throughout the experimental period under each
set of conditions. The accumulation capacity was sufficient at the
end of the experiment in all SBRs, although significant differences
were found among the LA bioproduction for the different SBRs due
to variations in the operational conditions. According to the biomass
accumulation in the SBRs (Figure 1), the pseudo-stationary phase in
LA accumulation was reached after 30 days of operation. The
highest LA accumulation was found in R5 (using a C/N ratio of
35, airflow of 5 L/min and an OLR of 4 g sCOD/(L·d)), with an
average LA accumulation of 35% (w/w) at the pseudo-stationary
phase (Figure 3). A similar maximum LA accumulation value (37%
(w/w)) was obtained by the MMC fed 2.5 g sCOD/(L·d) of
hydrolysed hemicellulose composed mainly of xylose (Pinto-

Ibieta et al., 2020). The LA accumulation in this work was always
above 10% (w/w), regardless of the operational conditions
(Figure 3). These values are higher than those obtained
previously with SBRs for the bioproduction of high-added value
compounds such as PHA using xylose or other waste as substrates
(Huang et al., 2016; Yin et al., 2019; Correa-Galeote et al., 2022b).
Hence, the sugar content from GP could be used as a suitable
substrate for the biological production of LA, potentially converting
this widely produced waste from wine manufacturing into a valuable
by-product.

Strikingly, PHA production was not detected in any of the
SBRs under the studied conditions, and the operational
conditions and the carbon source imposed on the MMC did
not permit the accumulation of PHA. Additionally, almost no
acetic acid was accumulated in the SBRs during the experimental
period. The absence of PHA and acetic acid indicates that the
metabolic pathways carried out by the MMC were strongly
directed to LA accumulation, preventing the transformation of
the sugars from the substrates into volatile fatty acids, e.g., acetic
acid for the subsequent biosynthesis of PHA, one of the main
described metabolic route for PHA production (Vázquez-
Fernández et al., 2022). Other authors using reducing sugars,
such as glucose or xylose, obtained a selection of PHA-producing
MMC (Cui et al., 2016; Huang et al., 2016; Yin et al., 2019; Li et al.,
2022). The favour of LA over PHA would be an empirical
demonstration of the biological synthesis of LA by the
metabolic pathways proposed by Lee et al. (2019). Therefore,
controlling the evaluated operational variables is crucial to
stimulate the MMC to metabolise the reduced sugars from GP
into LA instead of bioaccumulating PHA.

The LA production yield values showed similar trends those
achieved for LA accumulation (Figures 3, 4). Maximum values were
obtained at the R5 conditions, i.e., an average value of 2.7 ± 0.2 g LA/
L (2.01 g COD-LA/L) was obtained after 30 days of operation. This

FIGURE 3
Levulinic acid production as a function of culture time for all operational conditions studied.
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concentration of LA expressed as COD, represents a conversion rate
of 54% with respect to the substrate added to the reactors. Like LA
accumulation, the lowest LA production yield corresponded to
R2 and R3 conditions, around 75% lower than those described
for the R5 conditions (Figure 4). Despite this reduction, the LA
production yields obtained under R2 and R3 conditions were similar
to those described by Pinto-Ibieta et al. (2020), who reported an LA
production yield of 0.9 g LA/L using a substrate containing 80%
xylose, 9% acetic acid, 6% furfural and 5% arabinos, an F/F cycle of
12 h, an airflow of 4 L/min, an OLR of 2.2 g COD/(L·d) and a C/N
ratio of 22.5. In this context, the higher LA production yield at
R5 would result from the higher OLR and C/N ratio fixed by
these authors.

3.3 Impacts of OLR, C/N ratio and airflow on
LA accumulation capacity

The highest LA accumulation (% w/w) was obtained at
conditions different to those that resulted in the highest
achieved biomass (R4: C/N ratio of 5, airflow of 1 L/min and an
OLR of 4 g sCOD/L). This suggests that the evaluated operational
parameters could modulate the obtained LA yield in the SBRs
(Figures 3, 4). Table 2 shows the values of Pearson’s correlation
coefficients of the different operational parameters and the
obtained values of LA production yield and accumulation.
Based on these findings, the OLR was the main factor in
both LA production yield and accumulation. The high and
significant value of the Pearson’s coefficient observed between

the OLR and the LA production yield indicates that a higher OLR
would directly entail a higher LA production yield, albeit within
the evaluated range. A positive correlation between PHA
accumulation and OLR has previously been described by
Simona et al. (2022) and Carvalho et al. (2014) for MMCs
using a feeding solution made of a synthetic mixture of acetic
and propionic acids and fermented molasses, respectively.
Thus, the OLR could be a factor related to the accumulation
capacity of an MMC. However, it is, most likely, not the only
factor involved in promoting a specific pathway for LA
accumulation instead of PHA.

Likewise, LA accumulation was significantly and positively
related to the C/N ratio (Table 2). Experimentally, the
maximum LA accumulation, i.e., 35% (w/w), occurred when the
OLR was 4 g sCOD/(L·d). The C/N ratio was 35/1, regardless of the
airflow (1 or 5 L/min) (Figure 3), according to the observed
Pearson´s correlation values (Table 2). According to the
literature, a C/N ratio of 22.5/L facilitates a similar
bioproduction (37% (w/w)) in an MMC fed with hemicellulose
hydrolysate (Pinto-Ibieta et al., 2020). However, in another study,
a higher C/N ratio of 30/L resulted in a low LA bioproduction; an
accumulation of only 7% was achieved using hemicellulose as a
carbon source (Pinto-Ibieta et al., 2023). Therefore, despite the
observed influence of the C/N ratio on the LA accumulation
capacity, the role of the C/N ratio in LA accumulation by the
MMC is still unclear.

Contrary to the OLR and the C/N ratio, the evaluated range of
airflow showed no influence on LA production yield and
accumulation (Table 2). Different authors have reported that an
airflow of 1 L/min in an MMC operated using F/F to produce PHA
allowed to achieve a satisfactory accumulation level (Moralejo-
Gárate et al., 2011; Moralejo-Gárate et al., 2012; Moralejo-Gárate
et al., 2013; Moita et al., 2014; Mohamad Fauzi et al., 2019).
Therefore, airflow may not greatly influence LA accumulation as
long as it is not a limiting factor.

The obtained results demonstrate the feasibility of the
biological synthesis of LA by an MMC using GP hydrolysate
as substrate, highlighting the control of the OLR and C/N ratio as
the crucial factors to enhance the microbial pathway that results
in the intracellular accumulation of LA. Still, there is a shortage of
information regarding the metabolic process, including the
identification of the microorganisms involved and the
empirical validation of the routes suggested in the literature.
Further research in this regard would allow us to understand the
process better and propose new improvement strategies that
would result in a greater capacity for LA accumulation in
these systems.

FIGURE 4
Levulinic acid yield as a function of culture time for all operational
conditions studied.

TABLE 2 Pearson’s correlation coefficients of C/N ratio, airflow and OLR and the obtained values of LA production yield and LA accumulation.

Airflow OLR LA production yield LA accumulation

C/N ratio 0.000 0.000 0.344 0.653*

Airflow 0.000 0.240 0.124

OLR 0.890* 0.676*

LA production yield 0.896*

*p < 0.05; OLR, organic loading rate; LA, levulinic acid.
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4 Conclusion

The present work demonstrates that the bioproduction
of LA is possible by using an MMC fed with a mixture of
reducing sugars (glucose, xylose and arabinose), which could
be potentially obtained from sugar-rich agro-industrial waste
such as GP. The OLR and, to a lesser extent, the C/N ratio
were the main factors significantly and positively correlated with
LA accumulation and production yield. These results pave the
way for the biological synthesis of LA by microorganisms,
supporting the use of LA as a metabolic intermediate in
microbial metabolism. Based on our findings, it appears that
the microbial consortia within the settled MMC can biosynthesise
LA through a syntrophic pathway. This is significant because the
in vivo generation of LA by a single microorganism has not been
seen to date.
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