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Increased mass manufacturing and the pervasive use of plastics in many facets of
daily life have had detrimental effects on the environment. As a result, these
worries heighten the possibility of climate change due to the carbon dioxide
emissions from burning conventional, non-biodegradable polymers.
Accordingly, biodegradable gelatin and chitosan polymers are being created
as a sustainable substitute for non-biodegradable polymeric materials in various
applications. Chitosan is the only naturally occurring cationic alkaline
polysaccharide, a well-known edible polymer derived from chitin. The
biological activities of chitosan, such as its antioxidant, anticancer, and
antimicrobial qualities, have recently piqued the interest of researchers.
Similarly, gelatin is a naturally occurring polymer derived from the hydrolytic
breakdown of collagen protein and offers various medicinal advantages owing to
its unique amino acid composition. In this review, we present an overview of
recent studies focusing on applying chitosan and gelatin polymers in various
fields. These include using gelatin and chitosan as food packaging, antioxidants
and antimicrobial properties, properties encapsulating biologically active
substances, tissue engineering, microencapsulation technology, water
treatment, and drug delivery. This review emphasizes the significance of
investigating sustainable options for non-biodegradable plastics. It showcases
the diverse uses of gelatin and chitosan polymers in tackling environmental issues
and driving progress across different industries.
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1 Introduction

The management of plastic waste presents a significant environmental challenge in
contemporary society. The widespread utilization of plastics in various aspects of daily life,
coupled with the escalation of mass production, has led to significant environmental
consequences (Moharir and Kumar, 2019; PanSu et al., 2020). As a result, these concerns
contribute to the increasing risk of climate change caused by releasing carbon dioxide from the
incineration of non-biodegradable traditional polymers like polyethylene, polyvinylchloride,
and polypropylene. It is also essential to consider the environmental impacts associated with
the production processes of biodegradable alternatives (Amulya et al., 2021). Biodegradable
polymers are developing as a sustainable substitute for non-biodegradable polymer materials
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across various applications (Ahmed et al., 2023). The most effective
approach for addressing non-biodegradable plastic waste involves
substituting economically inefficient materials with biodegradable
polymers for recycling or reutilization, given their environmentally
sustainable properties (Flury and Narayan, 2021). A biodegradable
polymer is a substance that can be broken down by microorganisms,
as well as environmental factors like temperature and oxygen, into less
complex components that do not pose harm to the ecosystem (Yin
and Yang, 2020; Wu et al., 2021). Moreover, biodegradable polymers
are utilized in various industries based on their price, ability to absorb
moisture, accessibility, mechanical properties, antibacterial
characteristics, thermal resistance, and compatibility with living
organisms (Christian, 2020; Vieira et al., 2022). Chitosan, a
polysaccharide, and gelatin, a protein, are two biodegradable
polymers that have demonstrated diverse utility in various fields
such as packaging, agriculture, wastewater treatment, drug
delivery, orthopedics, wound dressings, tissue engineering, and
other applications (Wang et al., 2021; Ebhodaghe, 2022; Sethi and
Kaith, 2022). Chitosan, specifically, possesses antimicrobial
characteristics that can prolong the storage duration of food
items by suppressing the proliferation of bacteria and fungi. In
contrast, gelatin is an effective barrier material that protects
against oxygen, moisture, and various contaminants, rendering
it a viable choice for food packaging applications (Flórez et al.,
2022; Lu et al., 2022). Also, they have demonstrated potential in a
range of medical applications within the healthcare sector,
including but not limited to wound dressings, drug delivery
mechanisms, and tissue engineering. For instance, chitosan has
been employed in wound dressings because of its hemostatic and
antimicrobial characteristics. In contrast, gelatin has been applied
in tissue engineering as a support structure for promoting cell
proliferation (Bello et al., 2020; Moeini et al., 2020; Ding et al.,
2021; Lukin et al., 2022). Numerous studies have shown that
combining chitosan and gelatin produces a high-quality and
uniform film (Xu D. et al., 2021a; Roy and Rhim, 2021).
Chitosan and gelatin possess additional advantageous
characteristics, including the ability to minimize harm to non-
targeted cells or tissues and inhibit the enzymatic breakdown of
medications (Liu Y. et al., 2022a; Battogtokh et al., 2022; Zhu et al.,
2022). Because of these qualities, gelatin and chitosan are excellent
materials for biological imaging and diagnostics, medication
delivery systems, and cancer therapy (Wegrzynowska-
Drzymalska et al., 2022; Zhou et al., 2022). Moreover, previous
studies have indicated that the gradual decomposition of gelatin
and chitosan nanoparticles (NPs) contributes to a regulated and
sustained release of drugs. This is attributed to the solid positive
surface charges of these NPs, which serve as stable vehicles for
delivering substances to specific locations within the human body
(Nagpal et al., 2010; Sahoo et al., 2015; Garg et al., 2019).
Nevertheless, chitosan and gelatin possess constraints related to
their physicochemical stability. Scholars persist in investigating
strategies to address these obstacles by implementing
modifications and incorporating other materials to enhance
their efficacy (Rodríguez-Rodríguez et al., 2020; Ebhodaghe, 2022).

The objective of this review is to provide an overview of the
biopolymers chitosan and gelatin, as well as to outline the latest
advancements in their utilization as animal-derived products in
food, pharmaceuticals, and medicine.

1.1 Chitosan

Chitosan is the only naturally occurring cationic alkaline
polysaccharide. Its scientific composition is 2-amino-2-deoxy-
D-glucose. Chitosan can be synthesized through the deacetylation
of chitin using NaOH, as illustrated in Figure 1, and through
fermentation processes involving certain microbial cultures.
Shrimp, crab, and bug shells are the primary sources of chitin
(Mohan et al., 2020; Mulyani et al., 2020; Tan et al., 2020).
Chitosan is a readily accessible and cost-effective polysaccharide
with semi-crystalline properties, primarily soluble in mild organic
acids, including lactic, acetic, citric, tartaric, formic, and malic acids
(Cazón et al., 2021; Bhowmik et al., 2022). Chitosan, derived from
various sustainable sources, is a bio-resource known for its
exceptional antibacterial and antioxidant properties, as well as its
ability to inhibit enzymes. It is considered safe for consumption,
environmentally friendly, and biodegradable. Consequently,
extensive research is being conducted on chitosan across various
sectors, such as food science, pharmaceuticals, environmental
conservation, chemical engineering, cosmetics, agriculture, and
textiles (Wang et al., 2020; Kou et al., 2021). Chitosan has been
the subject of extensive research across various applications and
sectors owing to its antibacterial, antioxidant, biodegradable,
enzyme-inhibitory, and biocompatible properties (Jiménez-
Gómez and Cecilia, 2020; Ahghari et al., 2022; Bashir et al., 2022;
Liu T. et al., 2022b). Chitosan is a biopolymer that shows promise for
food packaging applications due to its capacity to suppress the
growth of Gram-negative and Gram-positive bacteria, yeasts, and
food-borne filamentous fungi. Furthermore, it functions as an
antimicrobial substance, a vehicle for delivering antimicrobial
agents and prebiotics that can improve the body’s ability to resist
colonization by harmful pathogens (Jiang et al., 2023). The
fascination with the structure and utilization of chitosan can be
traced back to the 19th century. In 1859, Rouget was the first to
explore the deacetylated variations of chitin, the parent natural
polymer found abundantly in nature. Presently, chitosan has
obtained Generally Recognized as Safe status from the U.S. Food
and Drug Administration (Oleksy et al., 2023). Chitosan is
recognized for its diverse advantageous characteristics, such as its
capacity to adhere to fats and cholesterol within the gastrointestinal
(GI) system, potentially leading to a decrease in cholesterol levels
and facilitating weight management (Huang et al., 2020).
Nevertheless, its drawbacks encompass a diminished capacity for
dissolving in water, resulting in the formation of a firm crystal
structure. Furthermore, its elevated water vapor permeability proves
unsuitable for environments with high humidity levels (Elsabee,
2013; Candir et al., 2018; Chaudhary et al., 2020). Table 1 shows that
chitosan can be used in many industries.

Depending on the degree of deacetylation and the chitin
source, the molar mass of commercially available chitosan
products varies greatly, usually ranging from 50 kDa to over
1,000 kDa. Chitosan exhibits solubility in acidic to neutral
solutions due to its pKa value of around 6.5 (Kumar et al.,
2004; Ogawa et al., 2004; de Alvarenga, 2011). Since chitosan is
mainly derived from the shells of crustaceans, nations with sizable
seafood industries dominate chitosan manufacturing. China,
India, and Japan are the top manufacturers; these countries
have set up extensive production plants to fulfill the demand
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from throughout the world (de Alvarenga, 2011; Yadav et al., 2019;
Santos et al., 2020; Huq et al., 2022). Hydrogen bonding between
the polymer chains of chitosan plays a crucial role in its structural
stability and contributes to its distinct physical features (Ogawa
et al., 2004; Chen et al., 2018). Furthermore, lysozyme—an enzyme

in human tears, saliva, and other physiological fluids—acts as the
primary biodegradation agent for chitosan. Chitosan is an
advantageous material for biomedical applications because of its
enzymatic breakdown, which produces non-toxic byproducts
(Lončarević et al., 2017; Desai et al., 2023).

FIGURE 1
Sources of chitin and structure of chitosan.

TABLE 1 Various applications of chitosan.

Applications Examples References

Tissue engineering Repair of scaffolds, regeneration of bones and tissues, regeneration of sulphate
sponges in bone, diabetes treatment, development of artificial pancreas, cartilage

regeneration, skin tissue regeneration, cardiac tissue regeneration

Islam et al. (2020), Kołodziejska et al. (2021), Kim
et al. (2023)

Pharmaceutical and biomedical
materials

Drug delivery systems, treating burns, surgical structures, dental repair and
treatment, lenses for eyes, artificial skin, dialysis of blood, accelerated wound

healing, antitumor and antibiotic uses, and synthetic blood vessels

Iacob et al. (2021), Khalaf et al. (2023), Almajidi et al.
(2024)

Cosmetics Skin and hair care products Guzmán et al. (2022), Kulka and Sionkowska (2023)

Food and feed additives Extension of natural flavor, color stabilization in foods, lipid absorption reduction,
food and beverage de-acidification, antioxidant and food preservation, stabilizing
agent, thickening agent, controlling agent, additives in livestock and fish food,

manufacture of dietary fibers

Muzzarelli and De Vincenzi (2020), Anggraeni et al.
(2022)

Water engineering Treatment of waste water, dye removal from water, removal of pesticides and ions
from water, removal of heavy metals from water, removal of petroleum products
from water, color removal from textile waste waters, removal of dyes from effluents

Ahmed et al. (2020), Bhatt et al. (2023)

Food packaging Covering various fruits and vegetables, spraying chitosan on food, preparing a film,
controlling food contaminating microbes, covering meat, fish, chicken, increasing

the shelf life of food

Kumar et al. (2020a), Priyadarshi and Rhim (2020),
Flórez et al. (2022)

Gene therapy It delivers numerous genes employed in gene therapy, siRNA, and cancer therapy
technologies

Wu et al. (2020), Reshad et al. (2021)

Agriculture Seed coating, excellent film coating with antimicrobial activities, removal of
pesticides and herbicides from soil and water, preservation of post harvested foods,

enhancing soil quality, enhancing plant growth

Faqir et al. (2021), Zhang et al. (2022a),
Hidangmayum and Dwivedi (2022)
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1.2 Gelatin

Gelatin is a naturally occurring polymer derived from the
hydrolytic breakdown of collagen protein. Its unique amino acid
composition imparts various medicinal advantages Figure 2
(Kumosa et al., 2018). The substance is a transparent gel that
exhibits fissures upon desiccation due to the degradation of
collagen within tissues and skeletal structures (Alipal et al., 2021).
Following collagen isolation, gelatin can be obtained through two
methods: acid hydrolysis or alkaline hydrolysis (Bello et al., 2020; C
Echave et al., 2017; Tabata and Ikada, 1998). Collagen, the
predominant protein in mammals, is distinguished by its
distinctive triple-helix configuration, offering exceptional tensile
strength and stability (Brodsky et al., 1997; Di Lullo et al., 2002).
Collagen’s isoelectric point varies according to its kind and source;
however, it typically ranges from pH five to 6. There are several uses
for collagen in the culinary, cosmetic, and pharmaceutical sectors
(Thomas and Kelly, 1922; Lee et al., 2001; Avila Rodríguez et al.,
2018). In addition to covalent cross-links that boost collagen’s
mechanical strength, intra- and intermolecular hydrogen bonds
preserve the protein’s three-dimensional structure. Collagen has a
wide range of molar masses; Type I collagen has a molecular weight
of about 300 kDa (Ramachandran et al., 1955; Bella et al., 1996;
Gores et al., 2021). The growing demand for collagen and collagen-
derived products in medical, cosmetic, and nutraceutical uses has
resulted in a considerable global industry (Avila Rodríguez et al.,
2018; Vieira et al., 2023).

Typically, gelatin is available in tablet, granule, or powder form
and may require dissolution in water before utilization (Yang et al.,
2016). The favorable attributes of this material, such as its ability to
biodegrade, biocompatibility, and low toxicity, promote enhanced
cell adhesion, differentiation, and proliferation. Simultaneously, it
undergoes degradation by endogenous enzymes metalloproteinases
within the body without eliciting an immunogenic reaction (C

Echave et al., 2017; Echave et al., 2017; Echave et al., 2019).
Gelatin is extensively utilized in various industries such as
pharmaceuticals, food, cosmetics, and photography due to its
unique functional properties. Gelatin is a food ingredient
employed in the dairy, bread, beverage, and confectionery sectors
to offer gelling, texturization, stability, and emulsification properties
(Hanani et al., 2014). Gelatin is protein-rich and can be a viable
alternative to fats and carbohydrates in some nutritionally balanced
food products (Lv et al., 2019). Collagen, the predominant protein in
both humans and animals, serves as the protein matrix for gelatin,
providing a source of protein. Collagen is present in various body
parts, with the highest concentrations found in bones, skin, tendons,
and ligaments (Alipal et al., 2021). Gelatin is free of fat and
cholesterol, making it a low-energy option. Additionally, it
contains protective colloids that offer potential health benefits
(Alipal et al., 2021). Pang and colleagues (Pang et al., 2014)
suggest that gelatin exhibits significant emulsifying properties and
has the potential to inhibit the coagulation of proteins from milk,
soybean milk, and other sources in the presence of gastric acid
within the stomach, thereby facilitating the process of food digestion
(Pang et al., 2014).

2 Chitosan and gelatin processing
techniques

Chitosan and gelatin can undergo diverse processing methods
for various applications (Kou et al., 2021; Rigueto et al., 2022).
Chitosan and gelatin are versatile materials that may be included in
many products, including tablets, capsules, nano- and
microparticles, beads, gels, and films. It can also be precipitated,
blended, spray-dried, emulsified, and crosslinked (Bansal et al.,
2011). Utilizing the solvent evaporation technique, membranes
and films suitable for use in water and air filtering procedures

FIGURE 2
Structure of collagen (Walimbe and Panitch, 2020).
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may be produced. In the straightforward three-step solvent
evaporation method, nano- or micron-sized biopolymer fillers are
combined with polymer resin; occasionally, fibers are added to
improve the mechanical qualities. The evaporation process is
then started by pouring the combined solution into a glass
container and heating it. The cast membrane or film can be
removed from the container once it has evaporated (Alipal et al.,
2021; Ilyas et al., 2022). The electrospun fibers are smaller in
diameter and have a greater surface area. The potential
differences produced between the spinneret and collector are
applied to the polymer solution. The pendant-like droplets
become jets due to the electric filling. At a critical point, the
tension provided by the solution on the surface is exceeded by
the electricity’s repulsion. This process causes fast whipping of the
extruded polymer solution, which is unstable and causes nanofibers
to develop on the collector due to evaporation (Sajkiewicz et al.,
2014; Qasim et al., 2018; Green-Warren et al., 2022). During this
procedure, biopolymer particles are blended with a polymer solution
and maintained within a dispersion needle. The solution in the
needle receives a high voltage. The droplets resist one another
because of their equal charges. As a result of instability at the
needle tip, the droplets begin to disperse into micron-sized
particles and land on surfaces that are oppositely charged, all the
while the solvent quickly evaporates (Choktaweesap et al., 2007;
Islam et al., 2011; Sahoo et al., 2015; Garg et al., 2019; Hathout and
Metwally, 2019). The best substitutes for chemically made wax
coatings are biopolymers (Shyu et al., 2019; Shiekh et al., 2021).
These coverings shield fruits from oxidation, reducing the amount of
microorganisms present. To preserve their quality, fruits and
vegetables are coated with gelatin and chitosan after harvest
(Poverenov et al., 2014; Shyu et al., 2019).

3 Chitosan and gelatin as antimicrobial

The antimicrobial efficacy of chitosan is influenced by various
fundamental factors, including the specific type of microorganism,
the concentration and source of chitosan, its structural
characteristics such as molecular weight and degree of
acetylation, pH levels, environmental conditions, temperature,
incorporation into composite materials, and the use of chitosan
derivatives (Li and Zhuang, 2020; Yan et al., 2020). Chitosan with a
lower molecular weight typically demonstrates greater
antimicrobial efficacy due to its enhanced solubility, facilitating
improved penetration of bacterial cell membranes (Gopi et al.,
2020). Chitosan and chitooligosaccharide were incorporated
into the cellulose matrix to enhance its antibacterial
properties, with assessments conducted on both Gram-positive
and Gram-negative bacterial strains. The findings
demonstrated that Bacterial cellulose–chitosan and Bacterial
cellulose–chitooligosaccharide composites displayed advantageous
antibacterial properties compared to pure bacterial cellulose matrix.
Additionally, these composites were characterized by reduced
porosity and a compact structure. The composite material of
bacterial cellulose/chitooligosaccharide demonstrates exceptional
compatibility in food and medicinal contexts (Yin et al., 2020).
Through the process of synthesis and testing, the antibacterial
activity of chitosan NPs against tomato phytopathogens was

evaluated. Pathogens include Colletotrichum gelosporidies,
Phytophthora capsici, Gibberella fugikuori, Sclerotinia
sclerotiorum, and Fusarium oxysporum are used in the testing
procedure (Oh et al., 2019). Elwakil et al. (2020) prepared
chitosan NPs and liposomes incorporating ethanolic cinnamon
extract. They examined their chemical and physical
characteristics before assessing their ability to heal wounds. Using
chitosan and liposomes containing ethanolic cinnamon extract, they
made a gel and tested it on diabetic mice. They discovered that the
liposome/cinnamon gel was required for more effective treatment of
bacterial infections and enzyme inhibition. Previous research has
shown that chitosan exhibits greater efficacy in combating Gram-
positive bacteria compared to Gram-negative bacteria. Additionally,
chitosan has been found to possess inhibitory properties against
various bacteria and fungi (Yan et al., 2021). The incorporation of
chitosan and essential oil formulation in chitosan-derived edible
packaging films enhanced the antimicrobial efficacy against a range
of Gram-negative bacteria, notably Escherichia coli, Pseudomonas
aeruginosa, Klebsiella pneumoniae, Pseudomonas fluorescens,
Shewanella baltica, Shewanella putrefaciens, Serratia spp., as well
as Gram-positive bacteria like Staphylococcus saprophyticus and
Staphylococcus aureus (Altiok et al., 2010; Wang et al., 2011;
Hafsa et al., 2016; Sani et al., 2019; Amor et al., 2021; Punia
Bangar et al., 2021). Nevertheless, the growth of yeast, fungus,
and mold is also suppressed (Pavlátková et al., 2023). Chitosan
sheets were evaluated for their effectiveness against Penicillium
italicum when combined with bergamot essential oil,
demonstrating significant inhibitory properties. However, the
inhibitory efficacy of the composite sheets was observed to
diminish throughout the storage duration (Sánchez-González
et al., 2010). The essential oils derived from cinnamon were
found to have inhibitory effects on the growth of various fungi
such as Botrytis cinerea, Aspergillus oryzae, Penicillium digitatum,
Aspergillus niger, and Rhizopus stolonifera when applied to chitosan
films (Mutlu-Ingok et al., 2020; El-araby et al., 2022). Li Z. et al.
(2019a) noted that incorporating turmeric essential oil into chitosan
led to notable anti-aflatoxigenic effects due to its demonstrated
antifungal properties against Aspergillus flavus. Kavoosi et al. (2013)
found that gelatin films containing thymol exhibited significant
antibacterial efficacy, indicating their potential utility as
antibacterial nano wound dressings for combating pathogens
responsible for wound burns. This characteristic renders them
appropriate for application as nano wound dressings with
antibacterial properties for treating burns caused by pathogenic
microorganisms (Ndlovu et al., 2021). They absorb wound exudates,
maintain a moist wound environment, mimic the structure of the
extracellular matrix (ECM), and exhibit antibacterial properties
(Deng et al., 2022).

In the research conducted by Roy and Rhim (2021), it was
observed that composite films comprising gelatin and chitosan
exhibited effective antibacterial characteristics against pathogenic
bacteria such as E. coli and L. monocytogenes. This antimicrobial
efficacy was attributed to the inherent antimicrobial properties of
chitosan. Furthermore, the study revealed that the antibacterial
properties of the composite films were enhanced by the addition
of functional fillers, cinnamon, and rutin (Roy and Rhim, 2021).
Kurczewska (2022) states that gelatin and chitosan, along with their
derivatives, are biodegradable polysaccharides characterized by
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biocompatibility, non-toxicity, and possessing antimicrobial and
antifungal attributes (Kurczewska, 2022). The antibacterial
efficacy of a chitosan-polyphenol extract was examined on Gram-
negative bacterial strains including Proteus mirabilis, P. aeruginosa,
E. coli, Salmonella enterica, Salmonella typhimurium, and Proteus
vulgaris, demonstrating notable antimicrobial effects (Balti et al.,
2017; Pires et al., 2022). Also, chitosan-polyphenol extracts exhibited
notable antibacterial efficacy against Gram-positive bacterial strains
including Bacillus subtilis, Listeria innocua, Bacillus cereus,
Streptococcus mutans, Listeria monocytogenes, S. aureus,
Lactobacillus plantarum, Lactobacillus sakei, and Bacillus
thuringiensis (Balti et al., 2017; Zhang et al., 2019; Amankwaah
et al., 2020; Zarandona et al., 2020). A hybrid hydrogel composed of
chitosan and gelatin, supplemented with berberine hydrochloride
(BBR) and gallic acid, demonstrated improved antibiofilm
properties against E. coli and S. aureus. This formulation shows
promise for potential use in biomedical settings (Liu et al., 2023). In
addition, in a study, composite films made of chitosan, gelatin, and
polyvinyl alcohol (PVA), which include antimicrobial agents such as
Duchesnea indica extract, have demonstrated the ability to inhibit
pathogens like S. aureus. This indicates the promising application of
these films in food packaging (Choi et al., 2022).

4 Chitosan and gelatin as antioxidants

It is acknowledged that oxidation poses a significant challenge to
the quality of food items. Additionally, the high-temperature
processing of protein-based foods leads to the formation of
heterocyclic amines, which are identified as carcinogenic
compounds (Flores Llovera et al., 2019). Various elements,
including processing parameters, culinary techniques, the
existence of antioxidants, duration, and heat levels, can impact
the generation of heterocyclic amines. Consequently, the
mitigation or prevention of the creation of these carcinogenic
compounds has emerged as a significant concern (Nadeem et al.,
2021). A component that can postpone or prevent the oxidation of
the molecules present in the medium is an antioxidant compound
(Shahidi and Zhong, 2015). Gelatin and chitosan are both excellent
options for creating antioxidant formulations and products since
they both have antioxidant qualities (Jridi et al., 2014). The strong
propensity of chitosan biopolymer to act as a hydrogen atom donor
enhances its antioxidant capacity (Negm et al., 2020). Chitosan,
when incorporated into food products as a food additive, can
function as an antioxidant agent. This stops foods from forming
heterocyclic amines (Liu T. et al., 2022b). Oz et al. (2017)
investigated the effects of utilizing chitosan at varying
concentrations of 0.25%, 0.50%, 0.75%, and 1% w/w on the
quality of meatballs and the production of heterocyclic aromatic
amines. The meatballs underwent preparation at different
temperature levels (150°C, 200°C, and 250°C). Findings indicated
that elevating the temperature from 150°C to 250°C resulted in a rise
in the concentration of heterocyclic amine within the meatballs.
However, upgrading the concentration of chitosan resulted in a
notable reduction in the levels of the heterocyclic amine. Frozen
meat’s 2-thiobarbituric acid reactive substance (TBARS) levels
decreased by 70% when 1% chitosan was added. It has been
observed that adding chitosan causes the free iron in beef heme

proteins that are liberated during processing to be chelated
(Tharanathan and Kittur, 2003). The antioxidant properties of
chitosan have been found to correlate positively with its
molecular weight, concentration, and viscosity. Chitosan derived
from discarded crab shells was evaluated on herring tissue, and
chitosan samples of varying viscosities were similarly assessed on
fish specimens. The highest activity was observed with low-viscosity
chitosan, and its action was similar to that of butylated
hydroxytoluene (BHT), butylated hydroxy-anisole (BHA), and
tert-butylhydroquinone (TBHQ). TBHQ, BHT, and BHA are
synthetic antioxidants. Chitosan is believed to inhibit lipid
oxidation in fish by sequestering ferrous ions (No et al., 2007;
Muthu et al., 2021). Mirsadeghi et al. (2019) demonstrated that
the incorporation of acid-soluble chitosan at a concentration of 1%
into Huso fillets during the cooking process resulted in a significant
decrease in the formation of heterocyclic amines, with an observed
inhibitory effect of 68.09%. Adiletta and colleagues (Adiletta et al.,
2019) assessed the functionality of enzymes including polyphenol
oxidase, peroxidase, ascorbate peroxidase, and catalase to investigate
the effects of chitosan-based coatings on preserving fig freshness.
The findings indicated that applying a chitosan coating led to a
notable enhancement in the levels of anthocyanins, flavonoids, and
total polyphenols, as well as increased antioxidant activity in the
preserved figs. This treatment also resulted in a decrease in oxidative
stress and inhibited browning reactions when compared to the
control group that did not receive the coating (Adiletta et al.,
2019). The gelatin obtained from by-products of skipjack tuna
(Katsuwonus pelamis) canning was refined to yield nineteen
peptides exhibiting significant antioxidant properties. The gel’s
exceptional clarity and strength are attributed to its elevated
concentration of amino acids. These findings suggest that the
antioxidant peptides derived from this gelatin could serve as
potential supplements in health-promoting products to prevent
ultraviolet-A damage (Zhang Y. et al., 2022b). In a study
conducted by Sul et al., they found that adding carbon dots
(CDs) from banana peel to chitosan/gelatin-based films improved
the antioxidant properties of the films (Sul et al., 2023). Similarly,
Roy and Rhim (2021) antioxidant activity of chitosan/gelatin-based
films was evaluated using ABTS and DPPH methods. They have
found that by adding cinnamon and rutin to chitosan/gelatin films,
the antioxidant properties of the films increase. Furthermore, it has
been shown various naturally derived bioactive compounds,
including volatile oils, extracts from black or green tea, apple
extract, purple and black eggplant, as well as purple and black
rice, have been found to enhance the antioxidant properties of
chitosan (Riaz et al., 2018; Yong et al., 2019a; Yong et al., 2019b;
Aslı et al., 2020). This occurrence has been linked to the ability of the
polyphenols present in the extract to eliminate free radicals through
the release of phenolic hydrogen atoms (Pattnaik et al., 2022).

5 Chitosan and gelatin in
food packaging

Over two hundred human illnesses, spanning from GI issues to
cancer, are attributed to the consumption of food contaminated with
pathogenic microorganisms, parasites, viruses, or toxic substances,
resulting in approximately 600 million new cases and
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420,000 fatalities annually (Suvarna et al., 2022). Food items derived
from agricultural sources, such as fruits, are significantly tainted by
harmful microorganisms due to inadequate safety measures
(Paramithiotis et al., 2017). Similarly, the heightened levels of
global trade have amplified the potential for disease transmission
via contaminated food products, leading to an increased incidence of
foodborne illnesses. Therefore, there is a necessity for intensified and
targeted endeavors aimed at enhancing food packaging systems to
mitigate the potential for foodborne illnesses (Bahrami et al., 2020).
Food packaging systems provide a range of advantages, including
improved handling, extended shelf life, and safeguarding against
physicochemical harm during storage and transportation. As such,
they play a vital function within the worldwide food sector.
Additionally, individuals are seeking food packaging materials
that are innovative, cost-efficient, environmentally sustainable,
and effective in ensuring the safety, nutritional value, and quality
of products (Omerović et al., 2021). Novel packaging techniques
incorporating antioxidant and antibacterial properties are currently
under development to enhance food safety measures (Roy and
Rhim, 2021). Biopolymers, including proteins and carbohydrates,
offer numerous advantages over traditional synthetic polymers
when utilized as a stable matrix in active packaging films (Atarés
and Chiralt, 2016). Using petroleum-based materials has negative
environmental implications since they are neither renewable,
recyclable, reused, or obtained responsibly (Cruz et al., 2022;
Zhao et al., 2022). In a study, Sul et al. (2023) prepared active
films with an equal mixture of chitosan and gelatin and added CDs
from banana peel to be used for food packaging. They discovered
that adding CD to chitosan/gelatin functional films has a wide range
of applications in food packaging, particularly in extending the shelf
life of meat and preserving its visual quality. Hamann et al. (2022)
prepared active films consisting of 15% gelatin, 1% green tea extract,
and 30% glycerol. These films were incorporated into the outer layer
of the newly prepared sausages. The results of their study indicated
that the application of an active gelatin film on sausages led to a
decrease in TBARS levels during refrigerated storage. Ultimately,
they determined that gelatin films incorporating green tea extract
show potential as a viable alternative for prolonging the shelf life of
sausages (Hamann et al., 2022). Wu et al. (2019) developed chitosan
films by incorporating curcumin-loaded mesoporous silica
nanoparticles (CMSNP) through the solvent-casting technique.
The film’s dimensions, mechanical properties, and water vapor
permeability were determined to be 0.0931 ± 0.0021 mm in
thickness, 19.87 ± 1.02 MPa in tensile strength, 25.46% ± 2.16%
in elongation at break, and 15.21 ± 1.83 g 10–11/s m2 Pa in water
vapor permeability. The CMSNP film and the plain Chitosan/
Curcumin blend film demonstrated zones of inhibitions (ZOI)
measuring approximately 7.5 and 8 mm against E. coli and
8 mm and 10 mm against S. aureus, respectively (Wu et al.,
2019). Siripatrawan and Kaewklin (2018) created active
packaging using chitosan and Titanium dioxide (TiO2) NPs at
varying concentrations (0%, 0.25%, 0.5%, 1%, and 2% w/w). The
chitosan film with a 1% concentration of TiO2 NPs exhibited
antibacterial effects against various strains of bacteria, including
S. aureus, E. coli, P. aeruginosa, and S. typhimurium, as well as fungi
such as Penicillium andAspergillus. Therefore, the findings indicated
that chitosan-TiO2 nanocomposite films have the potential to serve
as effective active packaging materials (Siripatrawan and Kaewklin,

2018). Dehghani et al. (2022) developed coating dispersions using
combinations of fish gelatin, conjugates, and bitter almond gum in
varying ratios of 1:2, 2:1, and 1:1. The researchers examined the
impact of coating suspensions on the physicochemical and
qualitative characteristics of tomatoes during a 28-day storage
period at a temperature of 20°C. The researchers discovered that
combining fish gelatin with a greater proportion of bitter almond
gum has the potential to be an effective method for creating coating
dispersion and preserving the quality of fruits over time (Dehghani
et al., 2022). Wang et al. (2018) utilized a blend of chitosan and gold
NPs to demonstrate the frozen state and temperature profile of food
by observing the color variation resulting from the aggregation of
gold NPs due to their localized surface plasmon resonance.
Moreover, due to the alterations in the physical and chemical
properties of food, chitosan-derived materials developed for
tracking pH fluctuations in food products can also detect
bacterial presence and oxidative degradation of food. Singh et al.
(2021) incorporated gallic acid and sodium carbonate into the
chitosan film to create an oxygen-absorbing substance. The
findings indicated a reduction in the mechanical properties of the
chitosan films with escalating levels of sodium carbonate and gallic
acid additives. This phenomenon could be attributed to the
significant quantity of sodium carbonate disrupting the internal
structure of the chitosan film. El-Gioushy et al. (2022) conducted
research on the utilization of nano-chitosan as a functional edible
coating film at varying concentrations (1, 2, and 3 cm3/L) to improve
the shelf life and quality attributes of Barhi cultivar date palm fruits
during refrigerated storage at ±2°C for 70 days. Their findings
indicated that applying three cm3/L of nano-chitosan as a spray
on Barhi date fruits yielded optimal outcomes after the storage
period (El-Gioushy et al., 2022). In an investigation involving
gelatin-chitosan and pectin-chitosan, films and coatings were
produced. The researchers integrated lemongrass essential oil, Zn,
or ZnO as active components into the films. The thermal analysis
indicated a notable level of stability. Regarding mechanical
properties, the gelatin-chitosan films exhibited favorable
attributes suitable for practical utilization. Furthermore, the
antibacterial efficacy was evaluated, revealing a synergistic
interaction among the active components integrated within the
films. The unique aspect of this research lies in the
experimentation conducted on the protective coating applied to
containers holding raspberries. The most favorable microbiological
performance was observed in containers treated with a gelatin-
chitosan emulsion containing ZnO. The longevity of the fruit was
extended by all formulations examined, ranging from four to 8 days
(Jovanović et al., 2021). Table 2 Summary of recent studies on the
use of chitosan/gelatin composites reinforced for food packaging.

The capacity of food packaging materials to regulate the transfer
of water vapor is one of the most critical factors. This characteristic,
which stops moisture loss and oxidation, is essential for preserving
the quality and lengthening the shelf life of perishable foods. It has
been discovered that chitosan films have a low water vapor
transmission rate, which helps to keep food items wet. Because
chitosan is hydrophilic, it may create strong hydrogen bonds that aid
in forming a barrier against water vapor (Cazón et al., 2019; Long
et al., 2023). Gelatin exhibits notable gas barrier characteristics and
swelling behavior in aqueous environments, yet it is hindered by
limited mechanical strength and susceptibility to water vapor
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permeation (Sobral et al., 2001; Zhang et al., 2010). Pellá et al. (2020)
developed a thin film with low solubility and exceptionally low water
vapor permeability by physically mixing cassava starch, gelatin,
casein, and sorbitol. The fruit with coating saw less quality loss
and had a higher concentration of soluble solid and vitamin C due to
the delayed rate of chlorophyll breakdown. In addition, the guava
fruit covered with this film had a 2-day shelf life increase. After
9 days of storage, fruit with a coating remained green, but fruit
without a coating had turned brown after 3 days. It is evident that
gelatin-based mixtures efficiently postpone the ripening and rotting
of fruit (Pellá et al., 2020). A combination coating consisting of
chitosan, gelatin, gallic acid, and clove oil was created by Xiong et al.
(2021) to study the fresh-keeping properties of fresh salmon fillet
that was kept in a refrigerator for 15 days at 4°C. It was found that the
combination coating may successfully stop the salmon fillet’s
brightness from decreasing. This may be because the film has an
antioxidant effect that protects and isolates the fish from the
environment. Adding chitosan/gelatin and clove oil significantly
enhanced the antioxidant and antibacterial effects, resulting in a
shelf-life extension of at least 5 days. Additionally, the gas and water
vapor permeability of the gelatin coating and the PH value of all the
coated fillet samples decreased (Xiong et al., 2021).

The studies summarized in Table 2 collectively highlight the
potential of chitosan/gelatin composites reinforced with various
nanomaterials for food packaging applications (Yuceer and
Caner, 2014; Kumar et al., 2020b; Riaz et al., 2020; Costa
et al., 2021; Ediyilyam et al., 2021; Duan et al., 2023). The
reinforcement materials consistently increase the mechanical
strength, barrier characteristics, and antimicrobial activity of the
composites. However, the environmental impact and cost-
effectiveness of large-scale production of these composites

need to be investigated further. Future research should focus
on addressing these gaps and developing standardized
testing protocols.

5.1 The process of producing food
packaging films

5.1.1 Casting method
The casting method, solvent casting, is the predominant

technique utilized for film formation in laboratory and pilot-
scale settings. The procedure for preparing biopolymer films
includes dissolving the biopolymer in an appropriate solvent,
pouring the solution into a mold, and subsequently drying the
casted solution. The initial stage involves choosing the polymer or
combination of polymers to form the fundamental film. The
selected polymer is dissolved in an appropriate solvent, a
critical step as the film-forming capability primarily hinges on
the solubility of the polymer rather than its melting characteristics.
During the casting process, the solution obtained is poured into a
preselected mold or a Petri dish coated with Teflon. During the
drying phase, the solvent undergoes evaporation, leading to the
formation of a polymer film that attaches to the mold. Various
types of air dryers, including hot air ovens, microwaves, tray
dryers, and vacuum driers, are employed to efficiently eliminate
solvents and facilitate the successful peeling of formed films
(Jensen et al., 2015; Suhag et al., 2020). To increase chitosan’s
solubility, dissolves in an acidic solution like acetic acid. Water is
used to dissolve gelatin, and heat is frequently used to promote
total dissolving (Park et al., 2002; Chuaynukul et al., 2018).
Usually, the casting procedure is carried out at ambient

TABLE 2 Recent studies on the use of chitosan/gelatin for food packaging.

Biodegradable
matrix

Reinforcement Conclusion Reference

Gelatin/chitosan Curcumin Based on the results, protein-rich animal goods like meat and seafood are
protected, and their freshness is tracked using gelatin, chitosan, and curcumin

nanofiber packing, which has a lot of promise

Duan et al. (2023)

Chitosan Nanocellulose While maintaining water vapor permeability, adding nanocellulose increased the
material’s thermal stability and oxygen barrier. The chitosan/nanocellulose films’
increased tensile strength and Young’s modulus indicated improved mechanical
characteristics. These films showed fungicidal action against Candida albicans as
well as bactericidal impact against both Gram-positive and Gram-negative

bacteria

Costa et al. (2021)

Chitosan/gelatin Green synthesized zinc
oxide (ZnO)

-The hybrid films reinforced with ZnO NPs had better compactness, elongation-
at-break, and thermal stability

-The produced hybrid nanocomposite films can be used as a biodegradable
substitute for fresh fruit and vegetable postharvest packaging

Kumar et al. (2020b)

Chitosan Peppermint essential oil and
berberis extract

The turkey breast meat treated with a chitosan solution containing berberis
extract and peppermint essential oil showed significantly reduced bacterial

counts and oxidation levels under refrigeration

Yuceer and Caner
(2014)

Chitosan/gelatin AgNPs The produced composite films were considered a biodegradable and
biocompatible food packaging material and a substitute for petroleum-based
plastics since they had all the necessary qualities for packaging material,

including mechanical strength, flexibility, barrier properties, and antimicrobial
activity, according to the results

Ediyilyam et al.
(2021)

Chitosan/gelatin Apple Peel NPs The outcomes showed that the films made of chitosan/gelatin and apple peel
extract had strong antioxidant qualities, suggesting they could be developed as a

bio-nanocomposite food packaging material for the food sector

Riaz et al. (2020)

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Yarahmadi et al. 10.3389/fbioe.2024.1397668

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1397668


temperature (20°C–25°C). To preserve their fluidity, gelatin
solutions can be cast at somewhat higher temperatures
(30°C–40°C) (Acierno et al., 1999; Aniunoh et al., 2006; Biscarat
et al., 2015). It might be necessary to wash chitosan films with
distilled water or a neutralizing solution such as sodium hydroxide
to eliminate any remaining solvent and balance the pH (Kim et al.,
2006; Chang et al., 2019).

5.1.2 Extrusion method
The extrusion technique is commonly employed in polymer

processing for producing polymeric films. This procedure
modifies the composition of the substances and enhances the
physical and chemical properties of the extruded material. The
extrusion process typically consists of three main stages: (i)
feeding, (ii) kneading, and (iii) heating as the exits the
machine. Initially, the film-forming mixture is introduced into
the feeding zone and compacted with air assistance. This
procedure is commonly called a dry process due to its limited
use of water or solvents. Plasticizers like sorbitol or polyethylene
glycol are employed in concentrations ranging from 10% to 60%
by weight to enhance the flexibility of the film. During the
kneading process, there is an elevation in the strain,
temperature, and density of the mixture. Ultimately, during
the heating phase, the thermal energy fluctuates within the
temperature range of 120°C–170°C. This procedure relies on
the thermoplastic nature of polymers, which occurs when
plasticization and heating occur above the glass transition
temperature under low moisture conditions (Fitch-Vargas
et al., 2016; Suhag et al., 2020). The extrusion method is
indeed utilized for producing films of chitosan and gelatin.
This method offers advantages such as continuous production,
uniform film thickness, and scalability for industrial applications.
However, specific considerations must be made due to the
thermal sensitivity and properties of chitosan and gelatin.
High temperatures have the potential to degrade both gelatin
and chitosan. For these biopolymers, the 120°C–170°C
temperature range usually employed for polymer extrusion
may be too high (Aider, 2010; Pelissari et al., 2011; Hanani
et al., 2012; Krishna et al., 2012).

5.1.3 Electrospinning method
The electrospinning technique produces a nonwoven mesh

composed of micro- or nanofibers. This method involves the
application of high-voltage electricity to a liquid solution and a
collector, resulting in the extrusion of the solution from a nozzle to
form a jet. During the drying phase, the fibers generated by the jet
are accumulated on the collector. Electrospinning represents a
rapid and efficient method for producing micro- or nanoscale
polymer fibers. The presence of polymers in the electrospinning
solution results in modifications to its viscosity, molecular weight,
surface tension, conductivity, concentration, solvent, and various
other characteristics, all of which play a crucial role in influencing
the electrospinning process. During the electrospinning process,
the dispersed fibers undergo self-assembly due to electric charges,
which are controlled by mechanical forces and geometric
conditions. Electrospinning was employed to fabricate nanofiber
polymers, including chitosan, collagen, alginate, cellulose,
polyesters, and polyurethanes (Nayak et al., 2012; Yang et al.,

2020). The methods of preparing packaging films are shown
in Figure 3.

To get the required viscosity for electrospinning, gelatin is
usually dissolved in acetic acid-containing aqueous solutions or
in a mixture of water and ethanol. Concentrations typically vary
from 10% to 20% w/v, contingent upon the gelatin’s molecular
weight. Typically, chitosan is dissolved in 1%–2% v/v diluted acetic
acid solutions to get the necessary electrospinnable viscosity
(Ohkawa et al., 2004; Choktaweesap et al., 2007; Habibi and
Hajinasrollah, 2018).

6 Chitosan and gelatin in
microencapsulation technology

Microencapsulation is a novel technological advancement
that involves safeguarding diverse food components or
functional constituents from different processing conditions
by encapsulating them within a polymeric or nonpolymeric
substance. This encapsulation method enables the controlled
release of these components under specific circumstances.
Furthermore, it improves the sensory attributes of food
products by concealing undesirable tastes, aromas, and flavors
while bolstering food safety by suppressing microbial growth
(Choudhury et al., 2021). The effectiveness of the capsule is
contingent upon the characteristics of both the wall and base
materials. Significant outcomes can be achieved by utilizing a
blend of the wall material to formulate the microcapsules. The
primary active constituents in Turkish oregano extract, carvacrol
and rosmarinic acid, have demonstrated enhanced release in
laboratory settings when encapsulated with gelatin, Tween 20,
gum arabic, and cyclodextrin as coating agents (Baranauskaite
et al., 2019). Chitosan possesses characteristics that render it a
suitable material for encapsulating a diverse range of bioactive
compounds. This characteristic renders it valuable across various
sectors, including food, biomedical, pharmaceutical, agricultural,
environmental, and industrial (Ho et al., 2021). This polymer is
utilized to encapsulates multiple substances such as food
ingredients, medications, vitamins, lipids, essential oils,
vaccines, hemoglobin, and microbial metabolites (Raza et al.,
2020). Chitosan and its encapsulated derivatives are extensively
employed in agriculture with various environmentally friendly
products, including biopesticides, organic fertilizers, seed
treatments, soil conditioners, and growth-promoting agents
(Ambaye et al., 2022). Chitosan has been employed as a co-
encapsulation agent for curcumin and resveratrol in various
studies (Chen et al., 2020). Chitosan is used in the creation of
nanocomposite active substances incorporated into films to
suppress the proliferation of fungi like A. niger, Aspergillus
parasiticus, A. flavus, and Penicillium chrysogenum, thereby
facilitating the management and suppression of these harmful
microorganisms (Hossain et al., 2019). Non-toxic chitosan has
been extensively employed for the encapsulation of
anthocyanins. Anthocyanin-chitosan NPs are created through
the establishment of non-covalent interactions, such as weak
ionic bonding and hydrogen bonding (Sreerekha et al., 2021).
According to the findings, applying a dual coating comprising
chitosan and a polyanionic polysaccharide to stabilize
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anthocyanins resulted in a notable increase in encapsulation
efficiency. This approach also conferred resistance against
auto-oxidation, ascorbic acid degradation, exposure to heat,
and neutral environmental conditions (Tan et al., 2021). The
covalent bonds established between proteins and polysaccharides
play a crucial role in increasing stability and preventing the
release of anthocyanins in challenging conditions (Gonçalves
et al., 2018). Overall, gelatin and chitosan show promise as
polymeric matrices for microencapsulation.

The following specific techniques are commonly used for
producing gelatin and chitosan particles.

6.1 Emulsification-solvent
evaporation method

Using this procedure, a polymer solution is created by dissolving
biopolymers in an organic solvent (such as dichloromethane or ethyl
acetate). This solution is used to disperse or dissolve the active
component, creating an emulsion (water-in-oil or oil-in-water).
After that, the emulsion is agitated to allow the solvent to
evaporate and solid particles containing the active component to
form (Watts et al., 1990; Yang et al., 2001; Essa et al., 2020).

6.1.1 Ionic gelation method
Chitosan is well-suited for this approach because of its

polycationic properties. The process entails the interaction of

chitosan with an anionic polymer or cross-linker (such as
sodium tripolyphosphate or alginate) to create NPs or
microspheres (Fan et al., 2012; Desai, 2016).

6.1.2 Coacervation method
This procedure, which includes phase separation, frequently uses

gelatin.Warmwater dissolves the gelatin, and the active component is
then mixed into the mixture. To cause phase separation, an
appropriate coacervating agent (such as gum arabic or gelatinized
starch) is applied (Veis and Aranyi, 1960; Burgess and Carless, 1985).

6.1.3 Spray drying
Using this method, the active component and a solution or

suspension of gelatin or chitosan are atomized and placed into a
heated chamber to dry quickly. Microcapsules of the encapsulated
item are left behind as the solvent swiftly evaporates (Bruschi et al.,
2003; Estevinho et al., 2013).

7 Chitosan and gelatin in
water treatment

Water serves as the fundamental cornerstone for supporting and
sustaining life on the planet Earth. Access to clean drinking water is
considered a basic human right; however, the issue of water scarcity
has become a significant global challenge in contemporary times. This
is primarily attributed to the swift expansion of industries, agriculture,

FIGURE 3
Methods of preparation of packaging films.
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and technology, driven by the increasing world population. This
phenomenon has resulted in the excessive utilization and pollution
of current freshwater reservoirs (Kumar et al., 2014; Zhang et al.,
2016a). According to a report published by the World Health
Organization, the implementation of fundamental water hygiene
and sanitation practices has the potential to reduce waterborne
illnesses such as diarrhea by 35% (Pendergast et al., 2011; Sen
Gupta et al., 2023). Inadequate sanitation can result in the
introduction of new pathogens like the Ebola virus and the more
recent SARS-CoV-2 into water systems, thereby presenting potential
health risks for individuals (Quilliam et al., 2020; Lahrich et al., 2021).
Two-thirds of the world’s population is predicted to live in water-
stressed areas with intermittent or persistent freshwater shortages by
2050, according to another analysis (Lee et al., 2016; Samantaray et al.,
2018). In almost every facet of human existence, including sanitation,
industry, agriculture, power production, building, and transportation,
freshwater is required (Chelu et al., 2023). Even in minute
concentrations, heavy metals including lead, nickel, copper,
cadmium, zinc, mercury, arsenic, chromium, bismuth, cobalt, and
iron are detrimental to the environment and public health (Engwa
et al., 2019). It is crucial to remove numerous dangerous pollutants
from wastewater, including paints, heavy metals, medicines,
healthcare products, detergents, derivatives, and industrial by-
products, since they not only contaminate water but also pose a
toxic risk to the ecosystem (Ethaib and Zubaidi, 2022; Chelu et al.,
2023). The GelYst biosorbent, used to enhance the extraction and
biosorption of Cr (VI) from water, is made of yeast and gelatin. The
use of this biosorbent in the treatment of water has proven effective
(Mahmoud, 2015). Because of their numerous natural qualities,
hydrogels based on natural polysaccharides are now employed as
coagulants and adsorbents in the filtration of drinking water (Chelu
et al., 2023). Chitosan-based hydrogels are promising matrices for
treating contaminated waters because of their low cost, excellent
chemical stability, mechanical solid and heat resistance, and ease of
recovery—reusing the hydrogel and the contaminants (Chelu et al.,
2023). Moreover, the mechanical strength of hydrogels based on
chitosan can be increased by crosslinking with synthetic or
biopolymers or by incorporating NPs. Through hydrogen bonding
and electrostatic interactions, chitosan may readily adsorb various
contaminants (such as heavy metals and dyes) because of its
abundance of hydroxyl and amino groups (Luo et al., 2022).
Chitosan has drawn a lot of interest in water treatment
applications because of its unique qualities, which include cationic,
high adsorption capacity, macromolecular structure, low cost, and
abundance as compared to other commercial adsorbents (Ahmed
et al., 2020). It has been claimed that chitosan or different variations of
this biopolymer may successfully remove various metals and other
contaminants (Russo et al., 2021). Furthermore, a gelatin/chitosan
composite has been created and applied to pesticide wastewater
samples, demonstrating a high level of atrazine and fenitrothion
removal effectiveness (Attallah et al., 2021).

8 Chitosan and gelatin in drug delivery

Since drug distribution affects a therapeutic agent’s safety and
effectiveness, it is a crucial component of modern medicine.
Targeted medication distribution is a challenging process that has

to get past several obstacles, such as the liver and kidneys’ capacity to
eliminate drugs, the bloodstream’s quick breakdown, and biological
membranes’ limited permeability. A suitable carrier or vehicle is
required to protect the drug from degradation, prolong its
circulation, and improve its localization at the target site. The
optimum drug delivery vehicle should have numerous critical
traits, such as biodegradability, biocompatibility, and controlled
release properties (Homayun et al., 2019). Biocompatibility
assures that the delivery vehicle has no adverse effects on the
body. In contrast, biodegradability ensures that it may be safely
metabolized and eliminated from the body once its job is complete.
Drugs with controlled release qualities release the medication in a
regulated way over a predetermined time, maintaining therapeutic
levels and minimizing dose frequency (Kantak and Bharate, 2022).
The distinct attributes of gelatin and chitosan make them popular
choices for medication delivery applications (Sethi and Kaith, 2022).
Chitosan is authorized for use in tissue engineering and medication
delivery applications by the FDA and is categorized as “Generally
Recognized as Safe” (GRAS) (Kantak and Bharate, 2022). According
to the results of several acute toxicity tests, chitosan has an LD50 of
more than 16 g/kg when given orally to mice, and it is safe to use
throughout the body (Kean and Thanou, 2010). One of chitosan’s
main advantages is its adaptability; it can be made into various
dosage forms, each with unique qualities and uses (Desai et al.,
2023). According to research on rabbit eyes by Zhang et al. (2016b),
chitosan does not irritate the eyes. Santhi et al. (2017) employed
spontaneous emulsification and a cross-linking strategy to generate
fluconazole-loaded chitosan NPs. Using the cup-plate approach,
they evaluated these NPs’ antifungal properties in comparison to
those of conventional eye drops. The average size of these particles
was 152.85 ± 13.7 nm. It was found that every drug-loaded NP had
an ideal (50%) drug-loading capacity. After their investigation, they
concluded that the fluconazole-formulated chitosan NPs were a
functional drug loading, antifungal efficacious, and delayed release
delivery method for fluconazole (Santhi et al., 2017). Gelatin
capsules can regulate medicine dosage, effectively increase drug
use, and improve drug consumption and storage convenience
(Gullapalli et al., 2017). Gelatin readily binds to medication
molecules due to its high water solubility (Yildirim et al., 2023).
Ramanathan et al. (2022) released 5-fluorouracil (5-FU), which is
very hydrophilic, and methotrexate (MT), which is less hydrophilic,
using polyhydroxy butyric acid/gelatin nanofibers. When the release
of two distinct drug classes with varying hydrophilic characteristics
was evaluated, the highly hydrophilic 5-FU was released first and at a
faster pace thanMT. MT and 5-FU showed a steady release rate after
24–96 h, which may efficiently satisfy the requirements of various
medications in the postoperative management of cancer
(Ramanathan et al., 2022). Furthermore, by increasing
hydrophilicity, gelatin may alter other anticancer drug delivery
vehicles, improving the stability in vivo. Li et al. (2022) created a
gelatin, chitosan, and doxorubicin NP by loading doxorubicin (DOX)
into chitosan and utilizing gelatin to crosslink it. When compared to
chitosan/DOX NPs, gelatin, which functions as the nanoshell of the
NPs, efficiently enhances the loading of DOX and exhibits high
stability in vivo. It can also speed up how cancer cells absorb
drugs (Li et al., 2022). Similarly, by hydrophobic interactions on
the graphene surface, gelatin may also be employed to improve the
durability of graphene structures in vivo (Hasanin et al., 2022). Many
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pharmaceuticals have been found to work better when chitosan is
added. Using chitosan as the polymer, rifampicin, an antitubercular
medication, was developed as a powdered dry NP inhalation. This
structure showed that the medication may be released continuously
for up to 24 h without endangering any cells or organs (Rawal et al.,
2017). Debnath et al. (2018) administered prothionamide, an
antitubercular drug, via the lungs as chitosan-coated NPs. The
drug’s inhalation half-life in the lungs was extended by this

modification. The antifungal medicine itraconazole has limited oral
solubility; hence, Jafarinejad et al. (2012) created chitosan NPs for the
antifungal agent’s pulmonary administration in a dry powder format.
By including chitosan NPs, lactose, mannitol, and leucine in the
formulation, they improved the drug’s aerosolization properties.
There was a consequent rise in the pulmonary deposition of
itraconazole. Table 3 provides an overview of many popular
chitosan/gelatin-based delivery methods.

TABLE 3 Chitosan/gelatin-based systems for biomedical and pharmaceutical applications.

Type of
system

Overview Method of
preparation

Key attributes/Features Reference

Tablets To regulate medication release, enhance
stability and shelf life, and improve the
mechanical qualities of tablets, they are
utilized as a matrix material during tablet

manufacture

- Wet granulation
- Direct compression

- Ability to produce oral mucoadhesive pills
- Extends the profile of medication release

- increases the gastric stability of
medications taken orally

-A smooth, appealing coating that made
swallowing the pills easy and appealing to

the user

Badwan et al. (2015),
Al-Nimry et al. (2021)

Microspheres The particles are round and range in
diameter from 10 μm to 1,000 μm. Variants
that enable modification of the release
profile include hollow, core-shell, and

fibrous microspheres

-Spray drying
-Coacervation/precipitation

-Ionotropic gelation
-Emulsion or thermal cross-

linking

-High effectiveness of trapping and drug
loading

-Sustained drug release
-Adaptability in the administration’s path
-Stabilizes trapped biomolecules physically

Esposito et al. (1996),
Saranya et al. (2018)

NPs Because of their variable size (1–100 nm)
and capacity for surface modification, these
particulate systems are used as flexible

platforms for the targeted administration of
medications, DNA, and proteins

-Cross-linking and
emulsification

-Desolvation technique
-Polyelectrolyte
complexation

-Modified ionic gelation
-Reverse micellization
-Emulsion-Solvent

Evaporation

-High site-specific medication localization
(in cancer) by improved permeability and
retention effect or by using targeting ligands
-Adaptable to produce stimuli-triggered

medication release (pH, redox, temperature)
-Enables the co-delivery of pharmaceutical

compounds

Sahoo et al. (2015), Garg
et al. (2019)

Nanofibers They are a unique platform in which the
medication is linked to or enclosed in fibers
that have nanometer-sized dimensions.
Nanofibers’ high surface area to volume
ratio qualifies them for regenerative
medicine and controlled drug release

applications

-Templating
-Melt/solution blowing

-Electrospinning

-Their large surface area about their volume
enables effective release and substantial drug

loading
-By changing the concentration and

composition of polymeric materials, drug
release may be modified

-Bilayered or trilayered nanofibers can be
manufactured to combine several medicines

Al-Jbour et al. (2019), Arun
et al. (2021)

Hydrogels These are chains of cross-linked polymers
that come together to form a 3D network
that can hold a lot of water. Hydrogels with

specific physicochemical qualities for
various biomedical applications can be
made more accessible by the molecular

control of the gelation chemistry involved

-Physical and chemical
crosslinking

-Enzymatic crosslinking
-Photo-crosslinking

-Excellent biocompatibility,
biodegradability, and injectability

-It is possible to regulate the degradation of
the platform better and, therefore, the rates
of drug release by making molecular-level

alterations
-It is possible to include in situ forming

qualities
-Has a hydrating effect when used in tropical

climates

Peers et al. (2020), Akın
Şahbaz (2023)

Membranes They are pliable, thin sheets that may be
formed to precise measurements and serve
as a dose form. They also make it easier for
medications to be released directly into

biological settings

- Hot pressing
- Solvent casting

- co-electrospinning

- Chitosan enhances the way polar
medications are transported across epithelial

surfaces
- Chitosan is a polymer that has the potential
to bind cells and attract negatively charged

cell surfaces because of its cationic
polyelectrolyte structure

Al-Baadani et al. (2021),
Trombino et al. (2021)

Microgranules/
powder

These are subclasses of solid dosage forms
made of gelatin and polymeric chitosan

combined with non-uniform micron-sized
drug particles

- Salt-/Organic solvent-
induced precipitation

- Gelation
- Spray drying

- Simpleness of usage, management, and
preparation

- Enhances the chemical stability of
integrated medications

- Powders and granules with small particle
sizes dissolve quickly in the body, improving

their bioavailability
- Useful for large-dose, bulky medications

Singh et al. (2012)
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9 Chitosan and gelatin in tissue
engineering

Tissue engineering is an emerging field of study that integrates
technologies from various research disciplines, such as biology,
engineering, medicine, chemistry, material science, and pharmacy
(Biswal, 2021). In light of the present health concern of organ and
tissue failure, this interdisciplinary field may offer a medicinal
substitute. According to recent reports from the United States
(US) government, 107,000 individuals are waiting for organ
transplants, and up to 17 people on these lists pass away every
day. In Europe, six new patients are added to the waiting list every
hour, with an estimated 18 individuals succumbing daily while
awaiting medical care (Lukin et al., 2022). In this line, tissue
engineering is to advance the utilization of biomaterials, such as
scaffolds, in facilitating effective tissue regeneration and restoration.
These are formations characterized by pores of diverse sizes and
shapes, which may be interconnected or isolated. These attributes
are determined based on the specific cell type of the tissue or organ
in which a scaffold is intended to be utilized (Naghieh et al., 2018;
Rahmani Del Bakhshayesh et al., 2018; Rider et al., 2018). Natural
polymers such as gelatin, collagen, and chitosan are favored in tissue
engineering due to their low antigenicity, ability to degrade
naturally, compatibility with biological systems, and resemblance
to the standard ECM Figure 4 (Khalilimofrad et al., 2023). Utilizing a

blend of polysaccharide and protein, exemplified by chitosan and
gelatin, has demonstrated efficacy as a viable approach in emulating
the characteristics of the native ECM. Consequently, this
combination is a promising alternative for fabricating scaffolds
intended for tissue engineering applications (Cheng et al., 2014;
Rosellini et al., 2018; Ghaee et al., 2019). The limited mechanical
strength of biomaterials derived from pure chitosan restricts their
potential applications. Hence, chitosan has been frequently
combined with other polymers to leverage their synergistic
properties. Chitosan can readily be integrated into a hybrid
composite material with various natural polymers like gelatin,
silk, DNA, cellulose, proteins, and wool, owing to the presence of
hydroxyl and amino groups, which facilitate compatibility and
interaction between the components (Khalilimofrad et al., 2023).
Combining chitosan with gelatin is a successful approach due to an
Arg–Gly–Asp (RGD)-like sequence in the protein, which enhances
cell adhesion and migration. This interaction results in the
formation of a polyelectrolyte complex with the polysaccharide
(Huang et al., 2005; Thein-Han et al., 2009; Kumar et al., 2017;
Rajasree et al., 2020). Xu et al. (2021b) created scaffolds utilizing
gelatin, chitosan. They decellularized ECM through freeze-drying,
demonstrating notable biocompatibility, effective antibacterial
properties, and suitable mechanical characteristics conducive to
applications in skin tissue engineering. Zhang et al. (2020)
constructed sandwich-like scaffolds using polycaprolactone,

FIGURE 4
Use of chitosan and gelatin biomaterials for tissue regeneration.
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gelatin, and chitosan through electrospinning and lyophilization
techniques. The resultant scaffold exhibited favorable
biocompatibility and demonstrated the ability to enhance blood
clotting, thereby facilitating guided periodontal tissue regeneration.
Chitosan-derived biomaterials have been shown to exhibit various
beneficial impacts on the regeneration of the heart and blood vessels.
In particular, hydrogels containing chitosan demonstrated efficacy
in mitigating adverse cardiac remodeling and enhancing cardiac
performance in experimental models of cardiomyopathy and
myocardial infarction (Domengé et al., 2021; Beleño Acosta et al.,
2023). Additionally, specific composite chitosan formulations
effectively facilitate electrical conduction, a critical factor in the
regeneration of myocardial tissue (Jiang et al., 2019). Chitosan
exhibits significant promise in skin regeneration and wound
healing due to its antimicrobial and hemostatic characteristics
(Ahmed et al., 2018; Abourehab et al., 2022). Gelatin
methacryloyl (GelMA) hydrogels containing cell-responsive
arginyl-glycyl-aspartic acid (RGD) and matrix metalloproteinases
peptide sequences are commonly utilized in tissue engineering due
to their flexible mechanical properties, excellent processing
capabilities, and exceptional biocompatibility characteristics.
Hydrogel microstructures derived from GelMA can be accurately
manipulated through contemporary manufacturing methods like
3D printing and electrospinning. Various GelMA hydrogels with
diverse microarchitectures have been developed and investigated to
replicate the characteristics of the native ECM and regulate the
growth, movement, and specialization of different cell populations
(Zhang et al., 2022c).

Spinal cord injuries are treated with chitosan-based scaffolds with
neural stem cells (NSC). The formation of neurofilament between the
scaffold and host tissue was seen by the researcher, which bodes well
for further research in the long run (Parvizifard et al., 2020). Thanks to
its characteristics, chitosan is frequently employed in products like
garakani as an extender or to enhance mechanical and rheological
qualities. By combining chitosan, agarose, and cartilage ECM,
Garakani created a unique system with sufficient qualities for the
tissue engineering of nasal cartilage (Wang et al., 2008).

Zhang et al. (2021) created a thermosensitive hydrogel for skin
wound healing by combining oyster peptide microspheres (OPM),
β-sodium glycerophosphate (β-GP), and catechol-functionalized
chitosan. As per the findings, the hydrogel that has been
described quickens the migration of fibroblasts and also speeds
up the development of collagen and new blood vessels surrounding
the lesion. Additionally, the scientists observed increased total
protein (TP) synthesis, suggesting a quicker regeneration process.

An injectable hydrogel with a gelatin foundation that heals itself
was created by Vahedi et al. (2020). In particular, combining
amylopectin aldehyde groups with gelatin amino groups
produced hydrogels that could regain their structure and
rheological characteristics. Furthermore, they verified their
suitability for scaffolds with osteoinductive qualities in the
regeneration of bone tissue (Vahedi et al., 2020).

Tavares et al. (2020) created chitosan/zein composite films with
ellagic acid to treat skin infections and speed skin healing. The films
that were made had a sufficient thickness that ranged from 133 ± 51 to
283 ± 75 µm. They also demonstrated a sustained drug release of up to
6% after 48 h and a high percentage of water absorption between
114.44 ± 8.07 and 227.94 ± 25.88%. Additionally, films showed

antibacterial properties against P. aeruginosa and S. aureus in vitro
(Tavares et al., 2020). To promote wound healing, Maged et al. (2019)
created crosslinked-chitosan scaffolds that contained rosuvastatin and
were then filled with mesenchymal stem cells (MSCs). Scaffolds
demonstrated improved human fibroblast cell proliferation,
excellent porosity, and prolonged drug release for 60 hours. An in
vivo study on Albino rats showed the superiority of MSC-laden
scaffolds over plain ones in encouraging wound closure and cell
proliferation. Additionally, a histological investigation indicated that
scaffolds loaded with stem cells promoted proper collagen distribution
in the epidermal layer (Maged et al., 2019).

Miranda et al. (2011) utilized a chitosan-gelatin composite as a
framework for cultivating 3D bone marrow mesenchymal stem cells
(BMMSCs). The glutaraldehyde crosslinking technique created the
porous biocomposite, which enhanced cell adherence, spreading,
and vitality. The scaffold exhibited favorable biocompatibility and
gradual degradation in vivo following its implantation in the tooth
sockets of the rat model. The implant remained in situ for the full
35 days that the bone healing process took. The chitosan-gelatin
composites that are crosslinked exhibit interconnected pores,
leading to a reduction in pore size when compared to the gel
composites that are not crosslinked. The maximum amount of
gelatin needed to achieve 90% cell viability was around 25%; at
concentrations more significant than this, such as 50% and 100%,
cell viability dropped to less than 40%. Crucially, the crosslinking
process boosted the mechanical strength, improved chemical
stability, and delayed degradation of the composite scaffolds, all
of which improved cell survival (Miranda et al., 2011).

Bio-ink is a substance utilized in 3D printing, comprising living
cells and biomaterials designed to replicate the ECM environment.
This bio-ink facilitates cell adhesion, proliferation, and differentiation
post-printing (Li et al., 2019b; Shen et al., 2020). The extensive usage
of chitosan bio-ink in the bioprinting process is demonstrated by the
use of the material in the bioprinting of artificial human organs and
structures, such as liver or heart valves (Lee et al., 2018; Pisani et al.,
2020; Ghahremanzadeh et al., 2021), neural connections
(Maturavongsadit et al., 2021), cartilage tissue (Zhao et al., 2020),
and bone tissue (Ramirez Caballero et al., 2019).

10 Related patents review

Many patents in the field of chitosan and gelatin have been
registered in the world. For instance, Patent CN115007114 Chitosan/
gelatin composite microsphere is an innovation for water pollution
treatment. This innovation highlights the potential of removing heavy
metals from water by chitosan/gelatin composite. Patent EP4285737,
using chitosan as a food preservative has shown that chitosan inhibits
pathogenic and food-spoiling microbes protects food, and increases
the life of food products. Another invention, CN116725941, is a
chitosan/gelatin/citric acid gel, which belongs to the technical field of
drug carriers. This invention uses chitosan and gelatin as cross-linking
monomers and citric acid as a cross-linking agent in conditions where
the acid content Citric is more than or equal to 0.4% and has good
swelling properties, bioavailability, biocompatibility, biodegradability,
safety, effective delivery and slow release of hydrophobic drug
molecules. This invention realizes a massive potential in the aspect
of providing hydrophobic drugs. In patent EP3226923, they made a
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cartilage gel for cartilage repair, comprising chitosan and
chondrocytes. This invention relates to a process for obtaining an
implantable cartilage gel for hyaline cartilage tissue repair, consisting
of particles from the hydrogel of chitosan and cells capable of forming
hyaline cartilage; said process comprises a step of amplification of
primary cells in a three-dimensional structure consisting of particles
from the physical hydrogel chitosan or chitosan derivative, then a step
of redifferentiation and induction of extracellular matrix synthesis by
said amplified cells, within the same three-dimensional structure,
wherein said cells are primary articular chondrocytes and, or primary
mesenchymal stem cells differentiated into chondrocytes. The
invention also relates to the resulting cartilage gel and the various
uses thereof for cartilage repair following a traumatic impact or an
osteoarticular disease such as osteoarthrosis. In another patent,
US20240165291, they designed a superabsorbent wound dressing
using chitosan. This invention provides a superabsorbent dressing
comprising non-woven protonated chitosan fabric/sheet with
superior fluid absorption and retention capacity, enhanced tensile
strength, and coherency. Patent US20230346726 innovation of soft
gelatin capsule that contains ibuprofen drug. This invention relates to
a composition for encapsulation in a soft gelatin shell that comprises
ibuprofen, one or more polyvinyl pyrrolidone, and one or more
polyethylene glycols.

11 Conclusion

The knowledge that has lately become accessible about gelatin
and chitosan and its uses in tissue engineering, biomedical, food,
medicine, water treatment, microencapsulation technology and
pharmaceutical management is highlighted in this study. These
biomaterials hold great potential for product development owing
to their exceptional biodegradability, biocompatibility,
antimicrobial, and antioxidant characteristics. Chitosan is a
biopolymer that shows promise for food packaging applications
due to its capacity to suppress the growth of Gram-negative and
Gram-positive bacteria, yeasts, and food-borne filamentous fungi.
The favorable attributes of gelatin, such as its ability to biodegrade,
biocompatibility, and low toxicity, promote enhanced cell adhesion,
differentiation, and proliferation. The distinct qualities of gelatin
and chitosan make them popular choices for medication delivery
applications. It has been shown that the removal of heavy metals
from water by using these bioabsorbents has been effective in water
treatment. Consequently, the use of chitosan and gelatin, owing to
their distinct attributes, has an extensive range of potential
applications across several domains and can significantly
contribute to environmental conservation and sustainable growth.

12 Future perspectives

Investigating biodegradable polymers, specifically chitosan, and
gelatin, shows significant potential for diverse applications in
multiple disciplines. Further investigation into chitosan-gelatin
composites may result in the creation of sophisticated biomedical
products, such as wound dressings, medication delivery systems, and
scaffolds for tissue engineering (Huang et al., 2005; Fan et al., 2016;
Wang et al., 2016). To satisfy the expanding needs of the healthcare

sector, future research may concentrate on improving biocompatibility,
optimizingmaterial qualities, and investigating cutting-edge production
methods (Bosworth et al., 2019). Using chitosan in packaging
applications can potentially reduce environmental pollution on a
global scale, notwithstanding various limitations related to thermal
stability, barrier properties, mechanical attributes, and manufacturing
expenses. Chitosan, when combined with popular cosmetic ingredients
like algae extracts, fruit extracts, and essential oils in gel formulations,
presents an appealing option for cosmetic products. Chitosan and its
derivatives are recommended for incorporation into pharmaceutical
formulations intended for slimming products, body weight
management, and cosmetics to enhance the efficacy of skin care
products and other applications (Morin-Crini et al., 2019). An
exciting direction for future study is the creation of biodegradable
packaging materials, given the growing emphasis on sustainability and
environmental consciousness. Additional research on the characteristics
and efficacy of chitosan-gelatin films may open the door to creative
packaging options that combine environmental friendliness with
practicality (Kan et al., 2019; Wang et al., 2021). Research
cooperation amongst scientists from several fields, including biology,
materials science, engineering, and food science, will be critical to
developing biodegradable polymer-based products. Multidisciplinary
research initiatives have the potential to stimulate creativity, promote
the sharing of information, and quicken the creation of significant
solutions with practical applications (Yin and Yang, 2020). By utilizing
their unique qualities and investigating new uses, researchers may help
solve urgent social issues, advance sustainability, and enhance human
health and wellbeing (Rai et al., 2021; Mukherjee et al., 2023).
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