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The escalating prevalence of diabetes has accentuated the significance of
addressing the associated diabetic foot problem as a major public health
concern. Effectively offloading plantar pressure stands out as a crucial factor
in preventing diabetic foot complications. This review comprehensively examines
the design, manufacturing, and evaluation strategies employed in the
development of diabetic foot insoles. Furthermore, it offers innovative insights
and guidance for enhancing their performance and facilitating clinical
applications. Insoles designed with total contact customization, utilizing softer
and highly absorbent materials, as well as incorporating elliptical porous
structures or triply periodic minimal surface structures, prove to be more
adept at preventing diabetic foot complications. Fused Deposition Modeling is
commonly employed for manufacturing; however, due to limitations in printing
complex structures, Selective Laser Sintering is recommended for intricate insole
designs. Preceding clinical implementation, in silico and in vitro testing
methodologies play a crucial role in thoroughly evaluating the pressure-
offloading efficacy of these insoles. Future research directions include
advancing inverse design through machine learning, exploring topology
optimization for lightweight solutions, integrating flexible sensor
configurations, and innovating new skin-like materials tailored for diabetic
foot insoles. These endeavors aim to further propel the development and
effectiveness of diabetic foot management strategies. Future research avenues
should explore inverse design methodologies based on machine learning,
topology optimization for lightweight structures, the integration of flexible
sensors, and the development of novel skin-like materials specifically tailored
for diabetic foot insoles. Advancements in these areas hold promise for further
enhancing the effectiveness and applicability of diabetic foot
prevention measures.
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1 Introduction

Diabetic foot represents a severe condition characterized by
infection, ulceration, or tissue destruction in the foot of individuals
with diabetes, often concomitant with lower extremity neuropathy,
peripheral artery disease (particularly lower extremity arterial
disease) (Jodheea-Jutton et al., 2022), or Charcot foot. According
to the comprehensive analysis conducted by Zhang et al. (2017), the
aggregated global prevalence of diabetic foot ulceration stands at
6.3% (95% confidence intervals: 5.4%–7.3%). This prevalence is on a
continual rise, mirroring the escalating numbers of individuals

afflicted by diabetes and those at risk, thereby establishing the
diabetic foot as a burgeoning global public health challenge (van
Netten et al., 2020; Edmonds et al., 2021).

The surge in diabetic foot cases has intensified the demand for
effective prevention and treatment strategies. Diabetic foot ulcers
(DFU), infections, or soft tissue damage often evade early detection,
particularly in neuropathic feet, as the typical indicators of local
infection, such as redness, pain, or tenderness, may be absent
(Edmonds et al., 2021). Complicating matters, diabetic patients
with deep foot infections may not exhibit traditional signs like an
elevated white blood cell count and temperature, leading to delayed

FIGURE 1
Schematic diagram of design, manufacture, and evaluation of diabetic foot insoles (D’Amico et al., 2021; Nouman et al., 2021; Mondal et al., 2023;
Claybrook et al., 2022; Khandakar et al., 2022; Abbott et al., 2019; Chatwin et al., 2020; Aliberti et al., 2011; Alafaghani et al., 2017; Abdulhameed
et al., 2019).
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diagnosis and treatment (Apelqvist, 2012; Yu et al., 2022). Common
imaging tests prove effective primarily in diagnosing diabetic foot
conditions in the presence of bone alterations, abscess formation,
and soft tissue destruction, missing the optimal window for
intervention (Senneville et al., 2020; Yufeng and Yanwu, 2021).

Treatment and care pose challenges, including intricate cures,
high recurrence rates, and elevated treatment costs (Kerr et al., 2019;
Edmonds et al., 2021). The 5-year mortality and direct care costs for
patients with diabetic foot complications rival those of cancer
(Armstrong et al., 2020). Lack of awareness about prevention
further compounds the issue, making treatment more challenging
once diagnosed. In the initial stages of diabetic foot, lower limb pain
during walking may be alleviated or disappear after resting, leading
high-risk groups to neglect prevention services, increasing the
likelihood of severe ulcers or amputations (Chatwin et al., 2020).
Therefore, early prevention and intervention during the initial stages
of disease development are crucial for diabetic foot patients (Lim
et al., 2017). The utilization of specialized therapeutic insoles
emerges as a commendable preventive measure (Schaper et al.,
2020). These insoles are widely employed to mitigate plantar
pressure peaks or optimize pressure distribution, effectively
reducing the likelihood of complications and amputations
(Korada et al., 2020). Nevertheless, challenges persist in further
optimizing pressure offloading performance, enhancing comfort,
and streamlining the design and manufacturing cycle and cost of
customized insoles (Collings et al., 2021).

In the realm of diabetic foot insoles, notable advancements in
design approaches and manufacturing techniques have brought
about significant transformations, leading to a marked
improvement in their performance, as illustrated in Figure 1. The
triad of design, manufacturing, and performance evaluation stands
as a critical nexus within the domain of diabetic foot insoles, with
each facet exerting a profound influence on the others. Advanced
manufacturing technologies now facilitate the creation of diabetic
foot insoles boasting intricate structures, including honeycomb
porous configurations and triply periodic minimal surface
(TPMS) structures. These elaborate structures encounter
challenges in precision and production costs when subjected to
conventional manufacturing methods such as hand forming or
numerical control techniques. Concurrently, the evaluation of
diabetic foot insole performance serves as a driving force behind
advancements in manufacturing and design. Thus, the current study
offers a comprehensive review of the design, manufacturing, and
performance evaluation of diabetic foot insoles, aiming to propel
further breakthroughs in this dynamic field.

2 Review methods

2.1 Literature search strategy and
selection criteria

We conducted searches in English-language databases,
including PubMed, Web of Science, Elsevier ScienceDirect,
SpringerLink, and Wiley Online Library. The search terms used
were “diabetic foot” OR “"diabetic feet” OR “diabetic foot ulcer” OR
“diabetic foot problem” AND “insoles” OR “smart insoles” OR
“orthotic”; “diabetic foot insoles” OR “diabetic foot ulcer” AND

“design” OR “biomechanics” OR “finite element” OR “pressure
offloading”; “diabetic foot insoles” OR “diabetic foot ulcer” AND
“manufacturing” OR “additive manufacturing”; “diabetic foot
insoles” AND “evaluation”. We did not restrict the study design
or the geographic level (national or regional) of the studies. All
databases were searched from January 2000 to January 2023. We
also reviewed the references of all included articles to identify other
potentially relevant surveys.

The study inclusion criteria were as follows: firstly, the data
needed to be presented in English; secondly, detailed methodology
for the design, manufacturing, and evaluation of diabetic foot insoles
needed to be described; thirdly, the study had to provide sufficient
information to enable the design of diabetic foot smart insoles. If
multiple articles were based on the same methodology, only the
study with the most complete data was included. Furthermore,
abstracts meeting the inclusion criteria were also included. The
study exclusion criteria were as follows: firstly, duplicate
methodologies needed to be excluded; secondly, studies without
objective or quantitative data needed to be excluded; finally, studies
lacking design and analysis details, or accurate conclusions needed
to be excluded. The PRISMA flow diagram of identifying studies via
databases is shown in Figure 2.

In case of disagreement during the study selection process, we
followed pre-established inclusion and exclusion criteria to
minimize subjectivity and improve consistency. If consensus
could not be reached, we consulted relevant experts. Inclusion
and exclusion criteria were reconsidered if necessary to ensure
appropriateness and consensus for final selection.

2.2 Results of searching

The number of studies included about 18 studies on the topic of
“Introduction”; about 62 studies on the topic of “Design of Diabetic
Foot Insoles”; about 26 studies on the topic of “Additive
Manufacturing of Diabetic Foot Insoles”; and about 21 studies on
the topic of “Performance Evaluation of Diabetic Foot Insoles”.
There were 12 studies that contained multiple topics, so they were
included twice. Among the general participants in these included
studies, researchers in Europe and North America were more active
than those in other regions. Some major research centers and
laboratories are located in countries such as the US, UK,
Germany, and the Netherlands. Additionally, many researchers
included in the studies are affiliated with international
organizations and associations, such as the International Diabetic
Foot Association and the European Association for the Study of
Diabetes Foot.

3 Design of diabetic foot insoles

The development of diabetic foot is not solely linked to
neuropathy and changes in blood glucose but is also influenced
by biomechanics (Asghar and Naaz, 2022). The plantar pressure
distribution in healthy individuals versus diabetic foot patients
differs significantly, as depicted in Figure 3A (Deschamps et al.,
2013; Fernando et al., 2016; Bus et al., 2021). Moreover, variations
exist in pressure conditions across different plantar areas, as
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illustrated in Figure 3B (Perren et al., 2021). Ground pressure,
excessive plantar shear stress (Jones et al., 2022), and
compressive stress from shoes or adjacent toes collectively impact
diabetic foot development (Allan et al., 2016). Designing specialized

insoles for diabetic foot patients becomes imperative due to these
complexities. Diabetic foot insoles can be broadly categorized into
two groups: pressure offloading insoles and smart
monitoring insoles.

FIGURE 2
Identification of studies via databases.
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FIGURE 3
Comparison of the plantar pressure: (A) Comparison of peak plantar pressure in a healthy subject and a neuropathic diabetic subject (Bus et al.,
2021), and (B) Different regions with different plantar pressures (Perren et al., 2021).
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3.1 Design of pressure offloading diabetic
foot insoles

Local lesions exacerbate foot ulcers when certain sole parts are
over-pressed (Singh et al., 2021). Therefore, offloading plantar
pressure or optimizing pressure distribution effectively prevents
and treats diabetic foot (Bellomo et al., 2022). Enhancing the
pressure offloading performance involves optimizing the insole’s
shape, material, and structure (Haris et al., 2021). Additionally, the
comfort levels of insoles with different shapes, materials, and
structures vary. Considering that diabetic patients may need to
wear insoles for extended periods, discomfort significantly affects
their regular usage, potentially compromising prevention or
treatment effectiveness.

The finite element (FE) method has emerged as a key tool in
designing diabetic foot insoles (Moayedi et al., 2021). These
simulations aim to enhance our understanding of foot mechanics
in health and disease, guiding the design of personalized insoles
(Erdemir et al., 2012). The FE model for insole design is depicted in
Figure 4. Through finite element analysis (FEA) (Zeng et al., 2021),
we can predict the pressure offloading performance of insoles with
different shapes, materials, and structures, optimizing their design
for improved diabetic foot insole performance (Ghassemi et al.,
2015). However, these simulations have limitations, and future
research needs to consider additional biomechanical variables.
Complex processes involving the interaction and response of
various foot tissues, such as bones, muscles, and fascia,
necessitate the consideration of biomechanical variables like joint
angles, moments, muscle activity, skeletal stress, and strain for a
comprehensive evaluation of foot motion, stability, muscle
coordination, functionality, and the prediction of foot disease risks.

3.1.1 Shape of the diabetic foot insole
In designing the insole, determining the insole’s shape is crucial.

Due to individual foot differences, custom-molded shapes are
critical for reducing peak plantar pressure in diabetic foot insoles
(Martinez-Santos et al., 2019). Jafarzadeh et al. (2021) optimized

insole shape using Python and MATLAB programming, starting
from a 25.0 mm flat insole. ABAQUS was then used for contact
pressure analysis, revealing a 25% reduction in maximum plantar
pressure compared to the flat insole. Studies indicate that total
contact insoles offer more benefits to diabetic foot than flat insoles
(Ahmed et al., 2020; Shim et al., 2021). El-Hilaly et al. (2013) found
the efficacy of total contact insoles in offloading foot pressures in
diabetic patients following partial first-ray amputations, leading to
significant pressure reduction compared to flat insoles during
standing and walking. D’Amico et al. (2021) compared Computer
Aided Design-Computer Aided Manufacturing (CAD-CAM) and
traditional total contact customized insoles (TCCI), showing both
reduced risk areas and optimized plantar pressure distribution
compared to flat insoles (Figure 5). Arch-supported insoles were
found beneficial for diabetic feet with a high arch, while total contact
insoles were less favorable for flat feet (Niu et al., 2020). Table 1
summarizes studies on the shape of diabetic foot insoles.
Multidisciplinary design methods incorporating computational
and mathematical approaches have been explored for insole
design. Shalamberidze et al. (2021) applied integral curves of
solutions to Dirichlet singular boundary differential equations
(Rachůnková et al., 2013) to accurately describe the geometric
shapes of overpressure regions. A computer program based on
this mathematical algorithm designed individualized orthopedic
insoles, offering new avenues for future research.

3.1.2 Material of the diabetic foot insole
Mechanical property differences among materials affect the

pressure offloading performance of customized insoles (Nouman
et al., 2019; Haris et al., 2021). Telfer et al. (2014) identified footwear
material elasticity as the most influential factor in pressure
offloading. Studies comparing pressure offloading performance
across different insole materials (Ma et al., 2019; Nouman et al.,
2019; Tang et al., 2019; Chhikara et al., 2022) provide practical
information for clinical prevention, guiding the design of more
suitable insoles for diabetic patients. Soft insole materials, such as
PORON Medical 4,708 and Nora Lunalastik EVA, outperformed

FIGURE 4
The FE foot model with customized insole and ground (Nouman et al., 2023).
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rigid materials like Nora Lunalight A fresh and Pe-Lite in plantar
pressure offloading for diabetic elderly individuals (Shi et al., 2022).
Additionally, uniform softening of a homogeneous insole led to a
30% decrease in peak plantar pressure (Jafarzadeh et al., 2021).
Nouman et al. (2021) found that a combination of soft and hard
materials achieved a more uniform distribution of contact pressure

(Figure 6). Table 2 provides a comparison of materials used in
diabetic foot insoles.

Commonly used plastic, rubber, and silicone-based diabetic foot
insoles are non-degradable, non-absorbent, and lack comfort due to
their inclusion of magnetic protrusions (Ning et al., 2022). To
address these shortcomings, researchers focus on developing new

FIGURE 5
Comparison of pressure redistribution effects of three different shapes of insoles–flat insoles (FI), total contact customized insoles (TCCI), Computer
Aided Design-Computer Aided Manufacturing (CAD-CAM) insoles (D’Amico et al., 2021).
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materials with high comfort and superior mechanical performance.
Chanda and Unnikrishnan (2018) proposed a novel customized
insole made of a synthetic skin material, demonstrating increased
effectiveness in stress offloading at ulcers compared to conventional
materials. Polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC)
based magnetic hydrogels exhibited improved flexibility and tensile
strength over conventional materials, providing enhanced comfort

(Patwa et al., 2020). Material choice significantly influences insole
pressure-offloading capabilities and comfort (Lo et al., 2014; Park
et al., 2014) found that materials with low-density structures and
large foam cell sizes were suitable for direct contact with the foot,
and Rajan et al. (2016) investigated air and water vapor permeability,
as well as thermal properties, relative to the porosity of spacer fabric
insoles. Porosity influenced air and water vapor permeability.

TABLE 1 Key literature on the shape of diabetic foot insoles.

Representative
study

Shape Method Main findings and conclusion

Jafarzadeh et al. (2021) Optimized insole shape based
on a flat insole

Using Python and Matlab
programming

The maximum plantar pressure decreased by 25% compared to the flat insole

El-Hilaly et al. (2013) Total contact insole Measuring plantar pressure Showing a 49% pressure change when standing, 54% change in the M3 area,
and only 27% change when walking with the flat insole

D’Amico et al. (2021) CAD-CAM total contact
customized insoles

Personalized foot data-
driven design

The CAD-CAM approach performed better than the TCCIa with a mean
pressure reduction of 37.3 kPa (15.6%) vs. FI

Niu et al. (2020) arch-supported insole Finite element analysis Reducing the peak pressure from 208.86 to 160.02 kPa; be beneficial to
diabetic foot with a high arch, but unfavorable to flat feet

aTCCI: total contact customized insoles, M3: mid metatarsal area.

FIGURE 6
The contact pressure (MPa) distribution with soft material to stiffer material and its combinations (Nouman et al., 2021).
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3.1.3 Structure of the diabetic foot insole
The structure and material of diabetic foot insoles are closely

intertwined. Single-layer insoles prioritize comfort, dual-layer
insoles combine soft and rigid materials for both comfort and
support, and multi-layered insoles use diverse materials for
comprehensive support, control, and comfort. Different
structures and materials yield varied effects on insole
performance. Changing material alone may not simultaneously
meet requirements for pressure offloading, comfort, and air
permeability, necessitating structural optimization. Designing
different porous structures within the insole can enhance
pressure unloading and air permeability, offering adjustable
parameters for personalized insoles. The internal structure of the
insole also impacts the manufacturing process, constituting a crucial
aspect of insole design.

Porous structures have gained traction in recent years for
diabetic foot insole design. Tang et al. (2019) established
relationships between equivalent modulus and structural
parameters, enabling adjustable mechanical properties through
various porous structure characteristics. Elliptical porous
structural units, as proposed by Ma et al. (2019), demonstrated
flexibility in adjusting geometric parameters and effective modulus
for designing diabetic foot insoles (Shi et al., 2021). The honeycomb
structure, employed for diabetic foot insoles, provides high stiffness
and load-bearing capacity (Panda et al., 2018). Chen et al. (2021)
developed an insole with a honeycomb and auxetic structure,
effectively reducing pressure in the forefoot and rearfoot areas.
Claybrook et al. (2022) suggested using a Split P TPMS structure
to mimic medical-grade foams in diabetic foot orthoses, offering a
range of compressive strengths by adjusting porosity. This structure
can create a new generation of diabetic foot insoles adaptable to
unique loading conditions. Compared to other porous structures,
the elliptical porous structure and TPMS structure exhibit superior
flexibility in adjusting geometric parameters, effective modulus, and
porosity, facilitating personalized diabetic foot insole design. Table 3
summarizes representative porous structures.

Given the unique foot shape and condition of each individual,
standardized pressure offloading diabetic foot insoles may not
suffice to meet every patient’s specific needs. Personalized insole
design tailored to individual foot characteristics is crucial to
minimizing the risks of pain and injury. Additionally, assessing
other mechanical indicators, such as pressure gradient angle,
pressure time integral, pressure mean value, and pressure
fluctuation index (Lung et al., 2016), alongside peak plantar
pressure, can offer a more comprehensive evaluation of diabetic
foot in future research.

3.2 Design of smart monitoring diabetic
foot insoles

Advancements in intelligent and informative technology have
paved the way for combining emerging technologies with traditional
medical interventions for diabetic foot prevention and management
(Lung et al., 2020). Smart insole systems, a prominent technology in
this domain (Majumder and Deen, 2019; Macdonald et al., 2021),
monitor plantar pressure or temperature and transmit data to the
user’s smartphone or watch via Bluetooth. Users receive alerts to
reduce pressure by adjusting posture or gait, offering a convenient
self-monitoring and prevention method (Lee et al., 2017; Macdonald
et al., 2021).

Several studies have proposed smart insoles for monitoring
dynamic plantar foot forces in diabetic patients to aid in
preventing diabetic foot complications. Ha Van et al. (2017)
introduced a wireless pressure-sensitive insole, FeetMe One, for
plantar pressure monitoring, calculating plantar pressure maps and
multiple gait patterns. Wang et al. (2022) proposed the portable
Insole (SLIPS) system, equipped with 64 tri-axial force sensors, for
continuous monitoring of plantar pressure and shear stress. In
addition to pressure, temperature monitoring has garnered
interest due to its association with an increased risk of ulceration
in diabetic patients (Hernandez-Contreras et al., 2016; Martín-

TABLE 2 Comparison of materials for diabetic foot insoles.

Materials for diabetic foot insoles Characteristics Refs

Soft material PORON Medical
4708

Be beneficial to reduce the mean peak pressure Park et al. (2014), Nouman et al. (2021),
Shi et al. (2022)

Nora
Lunalastik EVA

Better reduction of peak contact pressure; Be a notable reduction of frictional
stress under the first metatarsal head

Amfit Be suitable for pressure offloading in the forefoot area

Rigid material Nora Lunalight A
fresh

Rigid materials are less effective than soft materials in offloading plantar
pressure

Nouman et al., 2019 (2021), Haris et al.
(2021)

Pe-Lite

TPU

Combination of soft and rigid
materials

EVA and TPU;
Amfit and TPU

Have a beneficial effect on plantar pressure reduction and redistribution for a
diabetic foot with neuropathy

Nouman et al. (2021)

Fabric High porosity Higher air and water vapor permeability than other materials Rajan et al. (2016), Li et al. (2022)

New skin-like materials Synthetic skin
material;
PVA/CMC

Higher flexibility and tensile strength than conventional materials Chanda and Unnikrishnan (2018),
Patwa et al. (2020)
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TABLE 3 Summary of different types of porous structures.

Type of porous structures Representative
study

Main
findings

Advantages and disadvantages Refs

Elliptical porous structure The elliptical
porous
structure
meets the
mechanical
requirements
of diabetic
foot insoles

Flexibility in adjusting its geometric and mechanical parameters; Mechanical properties are influenced by
eccentricity

Ma et al. (2019)

Honeycomb structure A novel insole
with a

honeycomb
and auxetic
structure can
optimize
stress

distribution

High stiffness and can be used for carrying the load Chen et al. (2021), Mondal et al.
(2023)

Split P TPMS structures Split P TPMS
structure

could be used
to mimic the
properties of
medical-

grade foams
for diabetic
orthoses

A wider range of compressive strengths and cushioning afforded Claybrook et al. (2022)
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Vaquero et al., 2019; Gordon et al., 2020). Khandakar et al. (2022)
presented an intelligent insole system that measured both plantar
pressure and temperature (Figure 7A). This system enabled real-
time monitoring of foot pressure and temperature, aiding in the

early detection of foot problems. Yavuz et al. (2020) designed
Temperature and Pressure Monitoring and Regulating Insoles
(TAPMARI), emphasizing the combined benefits of temperature
monitoring and plantar pressure offloading in preventing Diabetic

FIGURE 7
Smart monitoring insole. (A) The smart insole for monitoring plantar pressure and temperature with Force Sensitive Resistor (FSR) and Flexible
Thermistor (Khandakar et al., 2022), (B) The sursense Rx smart insole system for monitoring plantar pressure (Abbott et al., 2019), and (C) An intelligent
biofeedback system for older adults (Subramaniam et al., 2022).
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Foot Ulcers (DFU). Addressing the high recurrence rate of DFUs
with standard nursing methods, smart insole systems like
SurroSense Rx (Orpyx Medical Technologies Inc., Calgary,
Canada) have been employed (Figure 7B) (Najafi et al., 2017;
Abbott et al., 2019). Abbott et al. (2019) demonstrated the
efficacy of the SurroSense Rx system in reducing DFU recurrence
by providing continuous feedback on plantar pressure and alerting
users to adjust pressure throughout daily life via a smartwatch.
Moreover, the integration of an intelligent biofeedback system and
smart insoles contributes to the development of a telemedicine
service system, efficiently diagnosing, managing, and treating
patients based on various gait characteristics (Figure 7C). A
compilation of research on intelligent monitoring of diabetic foot
insoles is presented in Table 4.

Beyond monitoring pressure and temperature, it is crucial to
consider the impact of humidity and acidity in diabetic foot care.
Diabetic patients exhibit a diminished capacity to manage elevated
heat and humidity compared to non-diabetic counterparts. The
escalation of foot humidity during exercise or in higher ambient
temperatures amplifies the risk of diabetic foot complications
(Kularathne et al., 2019). Moreover, bacterial proliferation in
ulcers can lead to increased wound acidity, contributing to the
development of foot ulcers (Salvo et al., 2017b). Addressing these
concerns, Kularathne et al. (2019) innovatively designed a device
that seamlessly connects to any diabetic shoe, monitoring patients’
steps, weight, foot temperature, and humidity. In a parallel effort,
Salvo et al. (2017a; Salvo et al., 2017b) developed a wearable sensor
capable of tracking temperature and acidity changes in foot ulcers of
diabetes patients over a week. Nevertheless, the existing literature
lacks sufficient reporting on insoles designed explicitly for
monitoring and mitigating foot humidity and acidity,
underscoring the need for further research and evidence in this
critical domain.

Despite the proven efficacy of intelligent monitoring in
preventing and treating diabetic foot conditions, ensuring
patient compliance is paramount. Prolonged wearing and
continuous connection requirements for data uploading
underscore the necessity for maintaining compliance to ensure
accurate data collection and preserve the effectiveness of diagnosis
and treatment.

4 Additive manufacturing of diabetic
foot insoles

Traditional customized foot orthotics have historically been
crafted through subtractive manufacturing processes, involving
the carving or milling of materials to achieve the desired orthotic
shape (Newman et al., 2015). This method, however, tends to be
time-consuming, labor-intensive, and generates waste through
excess material removal (Paris et al., 2016). In contrast, additively
manufactured foot orthoses offer advantages such as high precision,
customization, rapid production, and environmental sustainability.
These attributes contribute to enhanced biomechanical control,
comfort, risk reduction for pressure points, and shortened
delivery times, ultimately expanding patient access to customized
orthotics (Jin et al., 2015; Chen et al., 2016; Paris et al., 2016).

As a burgeoning technology, additive manufacturing (AM) is
gradually finding application in the production of diabetic foot
insoles (Srivastava and Gaur, 2020). AM constructs three-
dimensional objects by incrementally adding thin layers of
materials guided by digital models (Wong and Hernandez,
2012). Its adoption streamlines production processes with short
development cycles, and it is extensively utilized in the biomedical
field (DebRoy et al., 2018). There are various additive
manufacturing (AM) technologies, encompassing Selective Laser
Sintering (SLS), Selective Laser Melting (SLM), Stereolithography
(SLA), Fused Deposition Modeling (FDM), and 3D Printing (3DP)
(Chen et al., 2016; Abdulhameed et al., 2019). Notably, FDM and
SLS predominantly manufacture customized insoles for diabetic
foot patients, as depicted in Figures 8A, B. FDM is the most
commonly used technology for crafting customized insoles for
diabetic feet, creating three-dimensional structures by depositing
thermoplastic material onto a substrate in layers through a
temperature-controlled printhead (Winarso et al., 2022).
Research by Davia-Aracil et al. (2018) comparing traditional
subtractive techniques to FDM for manufacturing anatomical
insoles found FDM to be 43% more cost-efficient and time-
effective. Ma et al. (2019) employed material extrusion
techniques, including FDM and fused filament fabrication
(FFF), to print adjustable modulus porous structures for
diabetic foot insoles, demonstrating their mechanical

TABLE 4 Key literature on different smart monitoring diabetic foot insoles.

Representative
smart insoles

Monitoring data Data feedback to users Main findings Refs

FeetMe One Plantar pressure Plantar pressure maps and multiple gait
patterns

The maximum pressure threshold for these
patients with the device was reduced to less than

80% of its previous level

Van Natten
et al. (2020)

SLIPS System Continuous plantar
pressure and shear stress

Plantar pressure and shear stress maps Comfortable (mean score = 4.3/5), caused some
awareness of the insole (mean score = 2), did not

impede natural gait (mean score = 4.3)

Wang et al.
(2022)

SurroSense Rx Continuous plantar
pressure

Dynamic offloading guidance The intervention group who wore the device had
an 86% reduction in the incidence of ulcers

Abbott et al.
(2019)

A Smart Insole System Plantar pressure and
temperature

Pressure map during different phases of
the gait cycle; temperature Map during

the stance position

The temperature measuring range is 20°C to 50°C;
the generated maps can be used for early
detection of diabetic foot complication

Khandakar
et al. (2022)

TAPMARI Temperature and pressure Regulate foot temperatures at or below
the target temperature

Providing approximately 4°C temperature relief
between the contralateral feet (27.5°C vs. 31.6°C).

Yavuz et al.
(2020)
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effectiveness. Peker et al. (2020) implemented an upgraded FDM
system to manufacture diabetic foot insoles with reduced
production time.

While FDM is the most economical technique for creating
entirely geometric customized insoles (Vyavahare et al., 2019), it
has limitations. Interlayer bonding characteristics in FDM result in
printed parts with highly anisotropic mechanical properties,

potentially leading to early failure (Rankouhi et al., 2016; Lim
et al., 2021). Additionally, materials used in FDM may exhibit
suboptimal durability and mechanical properties (Hudak
et al., 2022).

Another AM technology used for customized diabetic foot
insoles is SLS, an industrial 3D printing method utilizing a
powder bed to construct 3D objects (Fina et al., 2017). SLS

FIGURE 8
AM process for manufacturing diabetic foot insoles. (A) Illustration of the FDM process (Alafaghani et al., 2017). (B) Illustration of SLS Process
(Abdulhameed et al., 2019).
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involves selectively melting a thin layer of powdered material on a
build platform according to a 3Dmodel using a laser. This process is
repeated layer by layer until the final object is formed (Mazzoli,
2013), allowing the production of complex structures with superior
dimensional accuracy and strength (Awad et al., 2020). Li et al.
(2022) highlighted SLS’s ability to successfully fabricate the unit
array design beneath the insole’s lower surface. In comparison to
FDM, SLS exhibits greater potential for manufacturing insoles with
intricate structures. Table 5 provides a comparative overview of AM
methods for diabetic foot insoles.

5 Performance evaluation of diabetic
foot insoles

The evaluation of diabetic foot insoles encompasses both
objective and subjective assessments. Objectively, evaluations
focus on plantar pressure distribution analysis, gait analysis, and
electromyography, primarily examining the pressure offloading
performance of diabetic foot insoles (Bellomo et al., 2022). Prior
to clinical application, a crucial step involves the performance
evaluation of customized insoles for diabetic feet, ensuring
accurate and efficient feedback to enhance the design (Anderson
et al., 2020; Song et al., 2022).

The in silico method, also known as the numerical method,
employs computational models to numerically evaluate a
product’s performance (Anderson et al., 2021). Once
developed and validated, it efficiently assesses the pressure-
offloading performance of customized insoles (Peng et al.,
2021). Unlike conventional experiments that involve human
participants, in silico approaches, such as FE modeling, offer a
more precise alternative by isolating the effects of specific insole
design variables without the need for physical experiments on

human subjects or models (Behforootan et al., 2017). However,
the current challenge lies in developing valid computational
models. Musculoskeletal models of the foot and foot-insole FE
models have become common computational tools for evaluating
diabetic foot insoles (Keenan et al., 2022). The musculoskeletal
model is crafted to emulate human movement by integrating
rigid bones, muscle fibers, tendons, ligaments, and other
connective tissues crucial for understanding and predicting
human activities (Falisse et al., 2019). Utilizing these models
allows for an assessment of how insole design parameters impact
everyday gait. Chen et al. (2015) introduced a 3D FE
musculoskeletal model of the foot, providing a tool to evaluate
the pressure-offloading performance of insoles made from
different materials and thicknesses. Similarly, Jafarzadeh et al.
(2021) employed a foot-insole FE model to scrutinize the
influence of insole stiffness on shape optimization outcomes.
Despite their utility, developing musculoskeletal models remains
challenging in the current stage of research. These models are
simplified representations, and as such, the boundary conditions
derived from them may lack accuracy and appropriateness. The
complexity of accurately capturing the intricacies of human
biomechanics poses ongoing challenges in refining
musculoskeletal models for robust and reliable evaluations of
insole designs.

The in vitro evaluation method employs laboratory testing to
assess the performance of diabetic foot insoles (Zhang et al.,
2019). This testing utilizes a pressure measurement system to
gauge the plantar pressure of subjects during both gait and
standing (Burns et al., 2019; Anzai et al., 2022). The
experimental results are then compared with FE simulation
results to evaluate the pressure-offloading performance of the
insoles. In its early stages, the F-Scan system served as the
primary pressure measurement system; however, it

TABLE 5 Comparison of the AM methods for diabetic foot insoles.

AM method Representative
study

Main findings Advantages and disadvantages Refs

Fused Deposition
Modeling (FDM)

FDM is commonly used to make
customized insoles for diabetic foot

Advantage: Cost-effective; wide range of
thermoplastic materials available

Disadvantages: High build time cost; low
dimensional accuracy and resolution; limitations in

fabricating complex structures

Ma et al. (2019), Peker
et al. (2020), Kumar
et al. (2022)

Selective Laser
Sintering (SLS)

SLS has higher precision and the future
application potential in the manufacture

of diabetic foot insoles

Advantage: Be able to manufacture complex
structures; varied materials available

Disadvantages: Porous and mechanical weak in
metal sintering components

Salles and Gyi (2012),
Li et al. (2020), Sharma
et al. (2020)
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encountered issues of poor accuracy and repeatability
(Lorkowski et al., 2021). Subsequently, with advancements in
science and technology, the Pedar system, renowned for its
superior performance, has become widely adopted for
pressure measurement (Yamamoto et al., 2020). Numerous
researchers have conducted pressure tests on diabetic foot
insoles using the Pedar system. Nouman et al. (2021), for
instance, utilized the Pedar system to measure peak plantar
pressure in diabetic foot patients while maintaining balance
on level ground. The experimental average peak plantar
pressure was then compared with the peak contact pressure
obtained from FEA for validation. Tang et al. (2019) employed
the Pedar-x insole pressure measurement system (Novel Pedar
System, Germany) to measure contact pressure between feet and
insoles during static standing with arms akimbo, assessing the
insoles’ performance. D’Amico et al. (2021) utilized the Pedar-X
system to measure in-shoe dynamic plantar pressure during

walking in multiple trials along a 15 m walkway in a
laboratory setting. Shi et al. (2022) obtained pressure values
using the Pedar insole measurement system (Novel GmbH,
Munich, Germany) to evaluate four different insoles during
walking. Participants self-selected walking speeds to exhibit
their typical gait characteristics on a 10 m straight sidewalk
while barefoot and wearing insoles. A summary of in vitro
performance evaluations of diabetic foot insoles is presented
in Table 6.

Subjective evaluation primarily involves collecting patient
feedback on comfort, compliance, and overall satisfaction,
typically obtained through randomized trials and
questionnaires. Lavery et al. (2012) conducted a randomized
trial with 299 patients, assessing standard care versus reduced
insoles over 18 months. Patient questionnaires revealed insights
into compliance and durability, impacting the effectiveness of
shear-reducing insoles in preventing diabetic foot ulcers. In

TABLE 6 Key literature on in vitro performance evaluation of diabetic foot insoles.

AM method Representative study Main findings Advantages and disadvantages Refs

Early stage
(approximately before

2010)

F-scan system (Tekscan Inc.,
Boston, USA)

Walking at a self-selected
and comfortable pace

Advantages: Low cost; thin in-shoe sensors; can be
trimmed to fit shoe size and shape

Disadvantages: Poor accuracy and repeatability
Wearing the F-scan system changes gait characteristics

Cheung and Zhang
(2008), Chatwin et al.
(2020)

Nowadays
(approximately 2010 to

present)

Pedar-X (Novel Pedar System,
Germany)

Standing in balance on level
ground or still with arms

akimbo

Advantages: High accuracy and repeatability; Effective
for long-term vertical force measurement

Disadvantages: Less accurate when low pressure is
applied for short periods

Aliberti et al. (2011),
Shi et al. (2022)

TABLE 7 Comparison of advantages and disadvantages of each evaluation method.

Evaluation method Advantages Disadvantages Refs

Objective
evaluation

Pressure
Analysis

In silico: Visually display the plantar pressure
distribution

The FE model is a simplified model, and its
accuracy needs to be improved

Anderson et al. (2021), Peng et al.
(2021)

In vitro: Quantitatively evaluate the change of the
plantar pressure

The walking conditions in the laboratory and
daily life are quite different

Zhang et al. (2019)

Gait Analysis Determining the effect of diabetic foot insoles on
foot biomechanical characteristics

Requires expensive instruments and specialized
technicians

Burns et al. (2019), Anzai et al.
(2022)

Subjective
evaluation

Patient
feedback

Reflect the patients’ experience in everyday life Highly subjective; be affected by many factors,
such as pain and emotion

Lavery et al. (2012), Abbott et al.
(2019), Ming et al. (2019)
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another study, Ming et al. (2019) conducted a 24-month trial
evaluating sensor-equipped insoles for measuring foot
temperature in 300 participants with diabetes and severe
peripheral neuropathy. While objective measurements offer
quantitative data, they may require specialized equipment or
expertise. In contrast, subjective measurements provide
qualitative data and may be more manageable. Combining
both approaches could yield a more comprehensive assessment
of diabetic insole effectiveness. A comparison of the advantages
and disadvantages of each evaluation method is detailed
in Table 7.

6 Challenges and future perspectives

In summary, customized insoles for diabetic individuals exhibit
significant potential in effectively offloading plantar pressure,
contributing substantially to early prevention, pain reduction,
and economic burden alleviation. The continuous evolution of
smart insoles for diabetic foot care is paving the way for an
improved remote digital healthcare system (Ahmed et al., 2020).
The ongoing advancement of smart insoles for diabetic foot care is
paving the path toward an enhanced remote digital healthcare
system. Nonetheless, despite the relatively comprehensive
research on diabetic foot insoles, numerous limitations still
require further exploration. Consequently, existing research
encounters several challenges, and the following issues are
underscored, along with corresponding suggestions for the design
and implementation of diabetic foot insoles.

(1) Biomechanical Correspondence: Future studies must
comprehensively consider the biomechanical correspondence
between various tissues in the human foot, including bones,
muscles, and fascia (Allan et al., 2016; Asghar and Naaz, 2022).
Evaluating joint angles, muscle activity, and skeletal stress and
strain is crucial for effective studies on diabetic foot, offering
insights into foot motion, stability, muscle coordination,
functionality, and predicting disease risks.

(2) Personalization in Design: Designing diabetic foot insoles
should prioritize personalization in future studies
(Lorkowski et al., 2021). While current research often
bases designs on typical foot structures, the efficiency of
insoles can be highly individualized due to differences in
foot structure, arch type, or disease characteristics.
Comprehensive consideration of the foot characteristics
and conditions of diabetic patients is essential in the
design and manufacturing process (Chen et al., 2016;
Chhikara et al., 2022; Jin et al., 2015).

(3) Expanded Mechanical Indicators: In addition to peak
pressure and shear force, future evaluations of diabetic foot
should incorporate various mechanical indicators, including
peak pressure gradient, pressure-time integral, pressure mean,
pressure fluctuation index, foot skeletal stress, and contact
area (Lung et al., 2016). These indicators offer a more
comprehensive analysis, guiding the design of diabetic foot
insoles effectively.

(4) Diversified Gait Simulation: To enhance the relevance of findings,
future studies should expand the diversity of gait simulations.

While many studies focus on neutral stationary stances and
normal walking gaits, daily life involves varied and changing
gaits (Nouman et al., 2019). Accounting for this diversity will
reduce errors in pressure analysis results, aligning them more
closely with actual plantar pressure distribution.

(5) Improved Patient Adherence: Enhancing patient adherence is
crucial for the effectiveness of pressure-offloading insoles
(Park et al., 2014). Adequate training on innovative insole
technology is necessary to achieve the expected pressure-
offloading effect of intelligent insoles, emphasizing the need
for comprehensive patient education and support.

Based on the challenges highlighted earlier, several future
research directions for the advancement of diabetic foot insoles
can be outlined. These include:

(1) Reverse Design with Machine Learning: Utilizing machine
learning for reverse design of insoles tailored to different
levels of Diabetic Foot Ulcers (DFU). This involves exploring
data characteristics, model training for parameter
optimization, and selecting optimal insole designs,
significantly reducing the overall design cycle.

(2) Topology Optimization with 3D Printing: Combining
topology optimization technology with 3D printing to
create lightweight insoles with guaranteed mechanical
properties (Davia-Aracil et al., 2018; Awad et al., 2020).
This approach involves designing personalized insoles with
a dot matrix structure to optimize pressure distribution
under the foot.

(3) Integration of Flexible Sensors: Integrating flexible sensors
into smart insoles, utilizing sensors made of flexible materials
that offer good flexibility, elasticity, and bendability (Cheung
and Zhang, 2008; Chatwin et al., 2020). Flexible resistive
pressure sensors can capture real-time information on
plantar pressure changes, contributing to the development
of intelligent and comfortable diabetic foot insoles.

(4) Monitoring Foot Humidity: Considering the monitoring of foot
humidity for diabetic patients. This is particularly relevant given
the reduced ability of individuals with diabetes to cope with high
heat and humidity. Monitoring foot humidity can provide
valuable information for reducing the risk of diabetic foot
development (Ning et al., 2022). Despite this importance,
there is a notable gap in devices reported in existing literature
for addressing foot humidity concerns.

7 Conclusion

This review has provided a comprehensive overview of the
design, manufacturing, and performance evaluation of diabetic
foot insoles. The design phase often employs iterative optimization
methods rooted in biomechanics and FEA, allowing for the
prediction of design parameters associated with insoles that
offer superior pressure offloading effects. The discourse also
delves into the evolving landscape of smart insoles designed
specifically for diabetic foot care. In the realm of
manufacturing, while Fused Deposition Modeling (FDM) stands
out for its cost-effectiveness and efficiency, its limitations in
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printing complex structures necessitate the use of Selective Laser
Sintering (SLS) for intricate insole designs. Insoles featuring total
contact customization, softer and absorbent materials, elliptical
porous structures, or TPMS structures are deemed more fitting for
diabetic foot prevention, taking into account both pressure
offloading performance and comfort. Prior to clinical
application, a thorough evaluation of insole performance
through in silico and in vitro testing approaches is crucial.
Despite the strides made in exploring various facets of diabetic
foot insoles, there are avenues for further research. Future
investigations could explore inverse design strategies leveraging
machine learning, use topology optimization techniques for
lightweight insole development, integrate flexible sensors for
enhanced functionality, and delve into the development of
novel skin-like materials tailored specifically for diabetic foot
insoles. These advancements hold promise for refining the
efficacy, personalization, and innovation of diabetic foot care
technologies.
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