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Different patients have different rehabilitation requirements. It is essential to
ensure the safety and comfort of patients at different recovery stages during
rehabilitation training. This study proposes a multi-mode adaptive control
method to achieve a safe and compliant rehabilitation training strategy. First,
patients’ motion intention and motor ability are evaluated based on the average
human–robot interaction force per task cycle. Second, three kinds of
rehabilitation training modes—robot-dominant, patient-dominant, and safety-
stop—are established, and the adaptive controller can dexterously switch
between the three training modes. In the robot-dominant mode, based on
the motion errors, the patient’s motor ability, and motion intention, the
controller can adaptively adjust its assistance level and impedance parameters
to help patients complete rehabilitation tasks and encourage them to actively
participate. In the patient-dominant mode, the controller only adjusts the training
speed. When the trajectory error is too large, the controller switches to the
safety-stop mode to ensure patient safety. The stabilities of the adaptive
controller under three training modes are then proven using Lyapunov theory.
Finally, the effectiveness of the multi-mode adaptive controller is verified by
simulation results.
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1 Introduction

In recent years, the number of patients with movement disorders caused by stroke and
spinal cord injury has increased rapidly, as has the corresponding rehabilitation demand.
Traditional rehabilitation strategies rely on therapists to help patients participate in
training, and there are some problems such as long rehabilitation cycle and low
efficiency of rehabilitation which make it difficult to meet the growing recovery needs
(Luo et al., 2019). As a new way of rehabilitation training, rehabilitation robots can
effectively save medical resources and improve the efficiency of rehabilitation training.
Therefore, this has received wide attention and recognition (Adhikari et al., 2023).

The control method plays a crucial role in the rehabilitation effect (Zhou et al., 2021) as
the patient has been interacting with the robot during the training process. Traditional
control methods may subject the patient to excessive torque, which increases the risk of
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secondary injury. In contrast, control methods based on
human–robot interactive information can have good
rehabilitation training effects (Guo et al., 2021). Such methods
can not only effectively avoid potential injuries but also help
improve recovery. Therefore, it is important to design a safe,
natural, and compliant human–robot interaction control method
for rehabilitation robot systems (Masengo et al., 2023; Bergmann
et al., 2023; Li Z. et al., 2024; Lu et al., 2023).

For patients with weak motor ability, rehabilitation robots should
provide enough assistive force to help complete training tasks. However,
too much assistance may make patients slack off, and too little
assistance will not help patients implement training tasks—both may
reduce rehabilitation effects. In order to realize efficient rehabilitation
training, human–robot interactionmethods need to follow the assisted-
as-need (AAN) principle (Li N. et al., 2024). At present, impedance
control is usually used to implement the AAN strategy (Han et al.,
2023). Mao et al. (2015) established a force field controller which
constructs a virtual tunnel with impedance characteristics around the
desired trajectory to assist the patient’s movement. Jamwal et al. (2016)
built an impedance controller for an ankle robot to assist patient
compliance. Due to individual differences, it is difficult to obtain
optimal impedance parameters. In addition, the interaction force
and motion speed change over time, and fixed impedance
parameters usually cannot meet the practical needs. The dynamic
relationship between motion and interaction force can be adjusted
according to the actual task by using time-varying impedance control;
thus, good dynamic interaction performance can be achieved (Liang
et al., 2022). Asl et al. (2020) constructed an AAN impedance controller
which utilizes velocity tracking errors to adjust impedance parameters
online. However, only the damping parameter is adjusted in this study,
and its adaptive adjustment ability is relatively limited. Han et al. (2023)
proposed an AAN control strategy for rehabilitation robots based on
patients’motor intention and task performance. The learning efficiency
of impedance parameters and the auxiliary level were adaptively
adjusted according to the assessment results of interaction force and
patient performance. The experimental results show that this method
can motivate patients to increase their engagement.

For patients with a partial recovery of motor function or strong
motor ability, interference with their movement should be reduced
to provide sufficient freedom of movement (Han et al., 2023; Zhang

and Cheah, 2015). Higher freedom of movement does not mean that
patients can move without restriction. When the position and speed
of robots reach a certain level, patients may be exposed to the
potential risk of secondary injury (Gao et al., 2023). To ensure
patient safety, control methods should have safety features such as
emergency stops or motion position limitations.

Tomeet the needs of patients at different recovery stages and ensure
their safety, multi-mode control strategies have been proposed (Zhang
andCheah, 2015; Li et al., 2021; Yang et al., 2023; Xu et al., 2019; Li et al.,
2017a,b). Zhang and Cheah (2015) proposed a multi-mode control
method for upper limb rehabilitation robots. The training mode is
chosen based on the position error to realize safety assistance. Li et al.
(2021) and Yang et al. (2023) also designed multi-mode control
strategies and switched control modes according to the tracking
error. These methods switch control modes according to the
position errors, which will partly limit the movement freedom of
patients with strong motor ability. To solve this problem, a patient’s
bioelectrical or interactive force signals can be used as the basis for
switching training modes. Xu et al. (2019) proposed a multi-mode
adaptive control strategy for a sitting lower limb rehabilitation robot.
The human–robot interaction torque is estimated by using an EMG-
driven impedance model. Based on the estimated human–robot
interaction torque, a smooth transition between the robot-dominant
and human-dominant modes can be achieved. Compared with
bioelectrical signals, interaction force signals are more reliable. Li
et al. (2017a) proposed an adaptive control method to smoothly
switch the training modes between robot- and human-dominant
modes based on the human–robot interaction force to realize safe
interaction between humans and robots. Since this method ignores
trajectory errors, the trajectory errors in the human-dominant mode
may be large, which will lead to a reduction in the training effect. In the
multi-mode control strategy, relying on only a single signal cannot
provide the most suitable rehabilitation training mode for patients. Li
et al. (2017b) proposed a multi-mode control strategy in which the
tracking error and human-robot interaction force are taken as the basis
for mode switching. Based on the tracking error, the controller can
switch flexibly between human- and robot-dominant modes.When the
human–robot interaction force exceeds the safety threshold, the
controller will switch to the safety-stop mode to ensure the patient’s
safety. Thismethod still uses the tracking error as the basis for switching

FIGURE 1
Multi-mode adaptive control block diagram.
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between human- and robot-dominated modes, which will also limit the
movement freedom of patients with strong motor ability. In addition,
the interaction force signals cannot fully indicate the patients’
motor ability.

To solve such problems, a multi-mode adaptive control strategy
for repetitive rehabilitation tasks is here proposed. The
human–robot interaction force evaluation factor is introduced to
assess a patient’s motor ability and motor intention online (Han
et al., 2023). Based on the evaluation result of the patient’s motor
ability and trajectory errors, the trainingmode can be freely switched
between robot-dominant, patient-dominant, and safety-stop modes.
In the robot-dominant mode, the robot’s assistance level and the
learning efficiency of impedance parameters are periodically
adjusted according to the trajectory error, speed error, the
assessed motor ability, and the motion intention, so as to provide
appropriate assistance for patients with different motor abilities. In
the patient-dominant mode, the controller allows the patient to
modify the reference speed so that patients with higher motor ability
have enough freedom of movement. When the trajectory error
exceeds the safe range, it switches to safety-stop mode to ensure
patient safety. The proposed method is not only suitable for patients
at different stages of recovery and with different motor abilities but
can also stimulate their enthusiasm to participate in rehabilitation
training, further enhancing the rehabilitation effect.

2 Dynamic model of the human–robot
hybrid system

During the rehabilitation training, the lower limb rehabilitation
robot is in close contact with the patients’ affected limb, forming a
human–robot hybrid system. The hybrid system’s dynamic model is
shown as Eq. 1.

M q( )€q + C q, _q( ) _q + G q( ) � τr + τh, (1)
where q � [q1/qi]T represents the robot’s joint angle, and i denotes
the number of the robot’s joints. _q and €q represent the angular speed

and angular acceleration, respectively. M(q), C(q, _q) and G(q)
denote the inertia matrix, the Coriolis and centrifugal matrix,
and the gravity vector, respectively. τr and τh respectively
represent the actuation torque and interaction torque exerted by
patient. In this paper, the interaction force Fh is exerted on the robot
end, give by Eq. 2.

τh � JT q( )Fh, (2)
where J(q) represents the Jacobian matrix.

3 Multi-mode control method

The functions and designs of the three control modes are briefly
introduced in this section. For repetitive tasks, when the patient does
not have enough motor ability to independently complete the
training task, the robot-dominant mode runs. Adaptive assistance
is then provided according to the patient’s motor ability and motion
intention. For patients with weak motor ability, the assistance level
will be periodically increased. For patients with a certain motor
ability but who cannot yet complete the task independently, the
assistance intensity will reduce appropriately to encourage more
active participation in the training task. When the patient has
recovered part of the motor function and can complete the
training task independently, the patient-dominant mode runs. In
this case, only movement speed is adjusted to provide the patient
with a high degree of freedom of movement. When the patient’s
movement is abnormal or the task is too difficult, the robot’s
trajectory may exceed the safe range. In this case, the safety-stop
mode runs to ensure patient safety.

3.1 Design of human–robot interaction
force evaluation factor andmode shift factor

According to the functional requirements of the three control
modes, a unified control law is established that includes the

FIGURE 2
Training modes.
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reference term, impedance learning term, sliding term, and
compensation term, as shown below.

τr � M€qref + C _qref + G︸��������︷︷��������︸
reference term

+ α K t( )e +D t( ) _e( )︸�������︷︷�������︸
impedance learning term

+ L t( )s︸��︷︷��︸
sliding term

+ τc t( )︸��︷︷��︸
compensation term

(3)

where M, C, and G are abbreviations of M(q), C(q, _q), and G(q),
respectively. K(t) and D(t) denote variable stiffness and damping,
respectively. L(t) denotes the sliding control gain, while e = qd − q
represents the trajectory error between the desired qd and actual
trajectory q. s � _qref − _q denotes the sliding vector. _qref � (1 −
β)( _qd + αAe + (1 − α) _qh) denotes the reference speed, where A is
a symmetric positive definite matrix, _qh is the modified speed
determined by the interaction torque, α is the robot–patient

mode shift factor determined by the patients’ motor ability, and
β is the stop-mode shift factor, determined by the trajectory error.
Before analyzing the change pattern of these two mode shift factors,
the human–robot interaction force evaluation factors rparj and rortj

are introduced to assess the patients’ motor ability and motion
intention (Han et al., 2023) as shown in Eqs 4, 5.

rparj � 1
T
∫tj

tj−1
Fpar
h dt � 1

T
∫tj

tj−1
FT
h

_xd, _yd[ ]T�������
_x2
d + _y2

d

√ dt, (4)

rortj � 1
T
∫tj

tj−1
Fort
h dt � 1

T
∫tj

tj−1
FT
h

− _yd, _xd[ ]T�������
_x2
d + _y2

d

√ dt, (5)

where Fpar
h represents the human–robot interaction force parallel to

the desired trajectory. Fort
h represents the human–robot interaction

force perpendicular to the desired trajectory. ( _xd, _yd) represents the
desired speed at the robot end. Fh can be obtained by the interaction
force estimation methods (Lu et al., 2023; Liang et al., 2023). j
denotes the jth training task, T denotes the task period. tj, and tj−1
represent the initial moments of the jth and (j − 1)th task,
respectively.

When rparj is positive, the patient’s movement speed is greater
than the desired speed, and the robot is driven by the patient along
the desired trajectory. On the other hand, when rparj is negative, the
patient is driven by the robot along the desired trajectory. |rortj |> 0
means that the patient intends to deviate from the desired trajectory.
The greater the rparj , the stronger the patient’s motor ability. The
larger |rortj | is, the stronger the patient’s intention to move away from
the desired trajectory.

The change pattern of α and β is designed as follows:

β � 1, e‖ ‖ ∈ a,+∞( )
0, e‖ ‖ ∈ 0, a[ ]{ , (6)

α �
1, β � 0 and rparj ∈ −∞, c( ]
0, β � 0 and rparj ∈ c,+∞( )
0, β � 1

⎧⎪⎨⎪⎩ , (7)

where a and c are given values. ‖e‖ denotes the Euclidean norm of e.
If ‖e‖> a, then the task is too difficult or the patient’s movement is

FIGURE 3
Schematic diagram of the compensation principle. When
|θh,s|< θς , τh is retained. When θς ≤ |θh,s|≤ π

2, τh is compensated to sς1 or
sς2. When π

2≤ |θh,s|, τc is utilized to neutralize τh.

FIGURE 4
Schematic diagram of the boundary set Ω.
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abnormal, which will lead to excessive trajectory errors or even
secondary injury to the patient. The controller will then switch to
safety-stop mode to ensure patient safety. If ‖e‖≤ a, then the patient
is able to complete training task either with the robot’s assistance or
independently. The controller will then switch to either robot-
dominant or patient-dominant mode based on the value of α. If
rparj > c, then the patient can complete the task independently, and it
will switch to patient-dominant mode. If rparj ≤ c, the patient’s motor
ability is insufficient to complete the training task, and it will switch
to the robot-dominant mode. In practice, c can be set to a constant
close to 0. If the patient has good control over the affected limb, c can
be slightly reduced, allowing the controller to easily enter and
maintain the patient-dominant mode. If the patient has poor
control over the affected limb, c can be slightly increased so that
the controller is always in robot-dominant mode so that the robot
can help the patient complete the training task and correct their
wrong movements.

The control diagram is shown in Figure 1. To ensure patient
safety, the safety-stop mode has the highest priority among the three
modes, which is reasonable in practical applications. To ensure the
smoothness of the mode switching process, transition intervals are
added to Eqs 6, 7, and then the change pattern of α and β is modified
as Eqs 8, 9.

β �

1, e‖ ‖ ∈ a,+∞( )
e‖ ‖2 − a2( )4 − b2 − a2( )4[ ]4

b2 − a2( )16 , e‖ ‖ ∈ b, a( ]

0, e‖ ‖ ∈ 0, b[ ],

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(8)

α �

1, β ≠ 1 and rparj ∈ −∞, d( ]

1 − sin2
rparj − d( )π
2 c − d( )

⎛⎝ ⎞⎠, β ≠ 1 and rparj ∈ d, c( ]

0, β ≠ 1 and rparj ∈ c,+∞( )
0, β � 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

where b and d are given values. The modified α and β change
smoothly as rparj and e change. According to the patient’s motor
ability and trajectory error, the controller switches freely between the

three modes (Figure 2). However, rparj is periodically adjusted, and it
will cause α to be discontinuous in time. When α changes at t1, the
changed α is expressed as α1 = α(t1), and we have

α t( ) � αs + α1 − αs( )sin2 t − t1( )π
2Tsmo

( )t ∈ t1, t1 + Tsmo[ ] , (10)

where αs = α(t1 − ts), ts is the sampling time, and Tsmo is the
smoothing time. Thus, α is smooth in time.

Although Eq. 10 can ensure the continuity of α, Tsmo may also
cause a lag in mode switching. Therefore, the value of Tsmo should
not be too large in practical applications.

3.2 The Robot-dominant mode

When α = 1, β = 0, the controller is in the robot-dominant mode.
In thismode, the human–robot interaction torque is described as Eq. 11
(Han et al., 2023; Yang et al., 2011):

τh t( ) � τ0 t( ) + Kh t( )e +Dh t( ) _e, (11)
where the stiffness parameters Kh(t), damping parameters Dh(t),
and compensating torque τ0(t) are assumed to vary with time. The
minimum quantities of stiffness, damping, and compensating
torque are assumed to be Km(t), Dm(t), and τm(t), respectively, and

∫t

t−T
− sT σ( )Km σ( )e σ( ) + sT σ( )Dm σ( ) _e σ( ) + sT σ( )τm σ( )[

+ sT σ( )τh σ( )]dσ ≤ 0. (12)

In this mode, Eq. 3 can be written as Eq. 13.

τr � M€qref + C _qref + G + K t( )e +D t( ) _e + L t( )s + τc t( ), (13)

where the update rules of K(t), D(t), L(t), and τc(t) adhere to the
following principles. 1) When rparj is negative and its absolute value

FIGURE 5
Simplified structure of a lower limb rehabilitation robot.

TABLE 1 Initialization parameters in simulation.

Parameter Value Parameter Value

a π/12 Qτc [30, 0; 0, 30]

b π/18 smin 0.008

c −0.1 θς 4π/9

d −0.4 rpar1 −1

L0 [4, 0; 0, 4] rort1 0

rparmin
−2 A [10, 0; 0, 10]

rparmax −1 m1 8

rortmin 0.1 m2 8

rortmax 0.5 l1 0.5

QK [50, 0; 0, 50] l2 0.6

QD [10, 0; 0, 10] lc1 0.3

T 10 lc2 0.4

Mim [120, 0; 0, 60] Tsmo 1.7

Bim [60, 0; 0, 30]
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is large, the patient’s motor ability is insufficient to complete the
desired training task. In this case, the robot should increase its
assistance level to help the patient complete training task. When rparj

is negative and its absolute value is small, then, although the patient
does not have the ability to complete the training task
independently, the degree of active participation in the training is
relatively high. In this case, the robot should reduce its assistance
level to encourage the patient to further improve training
enthusiasm. 2) The impedance parameters and torque
compensation terms are adjusted adaptively by iterative learning.
When the absolute value of rortj is large, the learning speed increases
to quickly correct the patient’s movement. When the absolute value
of rortj is small, the learning speed slows down.

The update law for L(t) is designed as follows:

L t( ) � 1 + ηj( )L0

ηj � 1 + η( ) 1 + ηj−1( ) − 1,
(14)

where

η � 0, rparmin ≤ rparj ≤ rparmax

−1< η< 0, rparj > rparmax

0< η< 1, rparj < rparmin,

⎧⎪⎪⎨⎪⎪⎩ (15)

where η0 = 0. L0 is a positive definite matrix. In this mode, L(t) is
periodically adjusted according to the value of rparj as shown in
Eqs 14, 15. rparmin and rparmax are given constants, and their values are
smaller than c and d. In practice, these two parameters can be
adjusted according to the patient’s motor ability. If their motor
ability is weak, rparmin and rparmax can be set to smaller values so that
the controller can more easily detect the patient’s effort and
reduce the robot’s assistance level.

The update law for K(t), D(t), and τc(t) are given as follows:

ΔK t( ) � K t( ) − K t − T( ) � QK seT − 1 + γj( )K t( )( )
ΔD t( ) � D t( ) −D t − T( ) � QD s _eT − 1 + γj( )D t( )( )
Δτc t( ) � τc t( ) − τc t − T( ) � Qτc s − 1 + γj( )τc t( )( )

⎧⎪⎪⎨⎪⎪⎩ (16)

where γj is updated as shown in Eq. 17.

γj � 1 + ζ( ) 1 + γj−1( ) − 1,

ζ � 0, rortmin ≤ rortj

∣∣∣∣∣ ∣∣∣∣∣≤ rortmax

−1< ζ < 0, rortj

∣∣∣∣∣ ∣∣∣∣∣> rortmax

0< ζ < 1, rortj

∣∣∣∣∣ ∣∣∣∣∣< rortmin

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (17)

where γj ∈ (−1, 1) denotes the iterative learning factor, and ζ

denotes the update rate. γ0 = 0. QK, QD, and Qτc are symmetric
positive definite matrices. During the first task cycle, K(t) = 0i×i,
D(t) = 0i×i, and τc(t) � 0i×1.

In this mode, based on the assessment of motor ability and
motor intention, L(t) and γj are periodically adjusted to provide
adaptive assistance for patients at different recovery stages.

3.3 The patient-dominant mode

When α = 0, β = 0, the controller is in the patient-dominant
mode. In this mode, Eq. 3 can be written as Eq. 18.

τr � M€qref + C _qref + G + L t( )s + τc, (18)

where L(t) is given in Eq. 19.

L t( ) � L0, j � 1 or λLlast < λL0
Llast, j> 1 and λLlast ≥ λL0
{ , (19)

where Llast denotes the last updated value of L(t) before entering this
mode. λLlast denotes the smallest eigenvalue of Llast, and λL0 denotes
the smallest eigenvalue of L0. From the definition of _qref and s, we

FIGURE 6
Evaluation results of the human–robot interaction force under different task cycles.
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derive s � _qref − _q � _qd + _qh − _q. In this mode, _qh can be obtained
by using the following impedance equation:

τh � Mim€qh + Bim _qh (20)
where Mim and Bim denote the inertia and damping parameters,
respectively.

To ensure the stability of human–robot interactions and
encourage active patient participation, τc was utilized to
appropriately compensate τh (Zhang and Cheah, 2015). When
the absolute value of the angle θh,s between τh and s is smaller
than θς and θς ∈ (0, π2), then the patient exerts an interactive force to
drive the robot close to the reference speed—that is, the patient’s

motion intention can be seen as correct. In this case, τh is retained.
When θς ≤ |θh,s|≤ π

2, then the patient’s motion intention cannot be
seen as quite correct. In this case, τh is compensated to its nearest
unit vector sς1 or sς2 to ensure that the angle between the
compensated torque and s is equal to θς. When |θh,s|> π

2, the
patient’s motion intention cannot be seen as correct. In this case,
τc is utilized to neutralize τh—that is, τc + τh = 0. The schematic
diagram of the compensation principle is shown in Figure 3. In this
mode, τc + τh can be expressed as Eqs 21−23

τc + τh � μ s( )c τh( ), (21)
where

FIGURE 7
Entire simulation results of hip and knee joints. (A) Desired and actual trajectories. (B) Absolute values of trajectory errors.

FIGURE 8
The controller leaves the safety-stop mode at approximately 4.44 s. (A) Desired and actual trajectories. (B) At approximately 4.44 s, ‖e‖< a.
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μ s( ) �
1, s‖ ‖≥ smin

sin2 s‖ ‖π
2smin
( ), s‖ ‖< smin

⎧⎪⎪⎨⎪⎪⎩ (22)

and

c τh( ) �

τh, θh,s
∣∣∣∣ ∣∣∣∣ ∈ 0, θς[ )

sς τh‖ ‖cos2 θh,s
∣∣∣∣ ∣∣∣∣ − θς( )π
2

π

2
− θς( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, θh,s
∣∣∣∣ ∣∣∣∣ ∈ θς,

π

2
[ ]

0, θh,s
∣∣∣∣ ∣∣∣∣ ∈ π

2
, π( ],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(23)

where smin is a small positive number. μ(s) ensures the smoothness
of τc + τh at s = 0. sς equals sς1 or sς2.

In this mode, the impedance learning term is removed, and the
sliding mode control term is converted to a speed control term. In
addition, the patient can modify the reference speed, improving
compliance with and the flexibility of rehabilitation training. τc is

used to compensate τh appropriately. Compared with the robot-
dominant mode, the patient-dominant mode further improves the
patient’s freedom of movement.

3.4 The safety-stop mode

When α = 0, β = 1, the controller is in the safety-stop mode. In
this mode, Eq. 3 can be written as Eq. 24.

τr � M€qref + C _qref + G + L t( )s + τc, (24)

where L(t) is given as Eq. 25.

L t( ) � L0, j � 1 or λLlast < λL0
Llast, j> 1 and λLlast ≥ λL0.
{ (25)

τc is utilized to neutralize τh—that is, τc + τh = 0. From the definition
of _qref and s, we derive s � _qref − _q � − _q.

FIGURE 9
The controller is in the robot-dominant mode, and the robot assisted the patient to complete the rehabilitation task. (A) ηj and γj. (B) Absolute values
of trajectory errors. (C) K(t). (D) D(t).
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In this mode, the impedance learning term is removed, and the
sliding mode control term is converted to a damping control term.
The robot stops moving to ensure the patient’s safety.

4 Stability analysis

In this section, the Lyapunov stability theorem is used to
establish the stability of the human–robot interaction process.
Specifically, in the robot-dominant mode, s is limited to a certain
bound. Under the assumption of Eq. (12), the learning errors of
impedance parameters and torque compensation terms are bounded
(Han et al., 2023). In the patient-dominant mode, the robot’s speed
converges to _qd + _qh. When it switches to the safety-stop mode, the
robot’s speed decreases to zero.

The Lyapunov candidate function is chosen as Eq. 26.

V t( ) � V1 t( ) + V2 t( ) � 1
2
sT Ms + 1

2
∫t

t−T
α~ΨT

σ( )Q−1 ~Ψ σ( )dσ, (26)

where

~Ψ t( ) � Ψ t( ) − Ψ* t( ) � vec ~K t( )( )T, vec ~D t( )( )T, ~τc t( )T[ ]T, (27)
~K t( ) � K t( ) −Km t( )
~D t( ) � D t( ) −Dm t( )
~τc t( ) � τc t( ) − τm t( ),

⎧⎪⎨⎪⎩ (28)

Ψ t( ) � vec K t( )( )T, vec D t( )( )T, τc t( )T[ ]T
Ψ* t( ) � vec Km t( )( )T, vec Dm t( )( )T, τm t( )T[ ]T
Q � diag I ⊗ QK, I ⊗ QD,Qτc( ),

⎧⎪⎪⎨⎪⎪⎩ (29)

where vec(·) represents the column vectorization operator. ⊗
represents the Kronecker product.

FIGURE 10
Controller switches from robot-dominant to patient-dominant mode and remains in the patient-dominant mode. (A) Desired and actual
trajectories. (B) Absolute values of the trajectory errors. (C) Desired angular speed, reference angular speed, and actual angular speed.
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FIGURE 11
Controller switches from patient-dominant to robot-dominant mode and remains in the robot-dominant mode. (A) Absolute values of trajectory
errors. (B) ηj and γj. (C) K(t). (D) D(t). (E) τc(t).
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4.1 Stability analysis in the robot-
dominant mode

In this mode, the system is stable if V(t) is non-growing in each
task cycle (Han et al., 2023).

ΔV � V t( ) − V t − T( )≤ 0. (30)
Taking the derivative of V1(t), we derive

_V1 t( ) � sTM _s + 1
2
sT _Ms. (31)

Since _M − 2C is an antisymmetric matrix, we can obtain Eq. 32.

_M
T + _M � 2 _M � 2CT + 2C. (32)

Combining Eq. 31 and the definition of s, we then have

_V1 t( ) � sT M€qref −M€q( ) + 1
2
sT CT + C( )s

� −αsTK t( )e − αsTD t( ) _e − sTL t( )s − sTτc t( ) − sTτh t( ).
(33)

Since α = 1, β = 0, Eq. 33 can be expressed as Eq. 34.

_V1 t( ) � −sTK t( )e − sTD t( ) _e − sTL t( )s − sTτc t( ) − sTτh t( ). (34)
Then, we can get Eq. 35

ΔV1 � ΔV1 t( ) − ΔV1 t − T( )
� ∫t

t−T − sTK σ( )e − sTD σ( ) _e − sTL σ( )s − sTτc σ( ) − sTτh σ( )dσ .
(35)

Since L(t) is periodically adjusted, the following inequality can
be obtained:

ΔV1 ≤∫t

t−T
− sTK σ( )e − sTD σ( ) _e − sTλLs − sTτc σ( ) − sTτh σ( )dσ,

(36)
where λL is the smallest eigenvalue of L(σ).

According to Eqs 12, 28, 36, we thus obtain Eq. 37

∫t
t−T − sTK σ( )e − sTD σ( ) _e − sTλLs − sTτc σ( ) − sTτh σ( )dσ

� ∫t
t−T −sT ~K σ( )e − sT ~D σ( ) _e − sTλLs − sT~τc σ( )[
−sTKm σ( )e − sTDm σ( ) _e − sTτm σ( ) − sTτh σ( )]dσ

≤∫t
t−T −sT ~K σ( )e − sT ~D σ( ) _e − sTλLs − sT~τc σ( )[ ]dσ,

(37)

that is,

ΔV1 ≤∫t

t−T
−sT ~K σ( )e − sT ~D σ( ) _e − sTλLs − sT~τc σ( )[ ]dσ. (38)

According to Eqs 27–29, we obtain

ΔV2 � ΔV2 t( ) − ΔV2 t − T( )
� 1
2
∫t

t−T
tr ~K

T
σ( )Q−1

K
~K σ( ) − ~K

T
σ − T( )Q−1

K
~K σ − T( ){ }︸��������������������︷︷��������������������︸

Item a

+ tr ~D
T
σ( )Q−1

D
~D σ( ) − ~D

T
σ − T( )Q−1

D
~D σ − T( ){ }︸��������������������︷︷��������������������︸

Item b

+ ~τc
T σ( )Q−1

τc
~τc σ( ) − ~τc

T σ − T( )Q−1
τc
~τc σ − T( )︸������������������︷︷������������������︸

Item c

dσ.

(39)
Since Km(t), Dm(t), and τm(t) are periodic, Eq. 16 can be

written as Eq. 40.

FIGURE 12
Speed and absolute values of trajectory errors when controller switches again from robot-dominant to patient-dominant mode.
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ΔK t( ) � K t( ) − K t − T( ) −Km t( ) +Km t − T( )
� Δ ~K t( ) � QK seT − 1 + γj( )K t( )( )

ΔD t( ) � D t( ) −D t − T( ) −Dm t( ) +Dm t − T( )
� Δ ~D t( ) � QD s _eT − 1 + γj( )D t( )( )

Δτc t( ) � τc t( ) − τc t − T( ) − τm t( ) + τm t − T( )
� Δ~τc t( ) � Qτc s − 1 + γj( )τc t( )( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(40)

Since Q−1
K is symmetric, Item a in Eq. 39 can be expressed thus:

tr ~K
T
σ( )Q−1

K
~K σ( ) − ~K

T
σ − T( )Q−1

K
~K σ − T( ){ }

� tr ~K σ( ) − ~K σ − T( )[ ]TQ−1
K

~K σ( ) + ~K σ − T( )[ ]{ }
� tr Δ ~K σ( )TQ−1

K 2 ~K σ( ) − ~K σ( ) − ~K σ − T( )( )[ ]{ }
� tr −Δ ~K σ( )TQ−1

K Δ ~K σ( ) + 2Δ ~K σ( )TQ−1
K
~K σ( ){ }

� −tr Δ ~K σ( )TQ−1
K Δ ~K σ( ){ } + 2tr seT − 1 + γj( )K σ( )( )TQT

KQ
−1
K
~K σ( ){ }

� −tr Δ ~K
T
σ( )Q−1

K Δ ~K σ( ){ } + 2tr seT − 1 + γj( )K σ( )( )T ~K σ( ){ }
� −tr Δ ~K

T
σ( )Q−1

K Δ ~K σ( ){ } + 2sT ~K σ( )e − 2 1 + γj( )tr KT σ( ) ~K σ( ){ }.
(41)

Similarly, Item b and Item c in Eq. 39 can be expressed as
follows:

tr ~D
T
σ( )Q−1

D
~D σ( ) − ~D

T
σ − T( )Q−1

D
~D σ − T( ){ }

� −tr Δ ~D
T
σ( )Q−1

D Δ ~D σ( ){ } + 2sT ~D σ( ) _e
−2 1 + γj( )tr DT σ( ) ~D σ( ){ } (42)

and
~τc

T σ( )Q−1
τc
~τc σ( ) − ~τc

T σ − T( )Q−1
τc
~τc σ − T( )

� −Δ~τcT σ( )Q−1
τc
Δ~τc σ( ) + 2sT~τc σ( ) − 2 1 + γj( )τcT σ( )~τc σ( ).

(43)
By bringing Eqs 41–43 into Eq. 39, we obtain

ΔV2 � ΔV2 t( ) − ΔV2 t − T( )
� −1

2
∫t

t−T
Δ~ΨT

σ( )Q−1Δ~Ψ σ( )dσ + ∫t

t−T
sT ~K σ( )e + sT ~D σ( ) _e

+ sT~τc σ( )dσ − 1 + γj( )∫t

t−T
~ΨT

σ( )Ψ σ( )dσ.
(44)

By bringing Eqs 38, 44 into Eq. 30, we obtain Eq. 45.
ΔV � ΔV1 t( ) + ΔV2 t( )

≤∫t
t−T −

1
2
Δ~ΨT

σ( )Q−1Δ~Ψ σ( ) − sTλLs − 1 + γj( )~ΨT
σ( )Ψ σ( )dσ .

(45)

FIGURE 13
The controller switches to the safety-stop mode. (A) At approximately 263.92 s, ‖e‖> a. (B) Desired and actual trajectories. (C) Actual angular speed.
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Since ~Ψ(σ) � Ψ(σ) − Ψ*(σ), we can obtain Eq. 46

ΔV ≤∫t
t−T −

1
2
Δ~ΨT

σ( )Q−1Δ~Ψ σ( ) − sTλLs

− 1 + γj( )~ΨT
σ( )~Ψ σ( ) − 1 + γj( )~ΨT

σ( )Ψ* σ( )dσ.
(46)

A sufficient condition for ΔV to be non-positive definite is

sTλLs + 1 + γj( )~ΨT
σ( )~Ψ σ( ) + 1 + γj( )~ΨT

σ( )Ψ* σ( )
≥ λL s‖ ‖2 + 1 + γj( )‖~Ψ‖2 − 1 + γj( )‖~Ψ‖ Ψ*‖ ‖︸�����������������︷︷�����������������︸

Item d

≥ 0. (47)

When Item d in Eq. 47 is equal to zero, we obtain

s‖ ‖2
1 + γj( ) Ψ*‖ ‖2/4λL +

‖~Ψ‖ − Ψ*‖ ‖/2( )2

Ψ*‖ ‖2/4 � 1. (48)

According to LaSalle’s theorem, ‖s‖ and ‖~Ψ‖will converge on the
invariant set Ωi of ΔV = 0. Based on Eq. 48, a boundary set Ω can be
designed as Eq. 49:

Ω � s‖ ‖, ‖~Ψ‖( ), s‖ ‖2
1 + γj( ) Ψ*‖ ‖2/4λL +

‖~Ψ‖ − Ψ*‖ ‖/2( )2

Ψ*‖ ‖2/4 ≤ 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

(49)
Since ‖s‖, ‖~Ψ‖, and ‖Ψ*‖ are non-negative and 1 + γj and λL are

positive numbers, the boundary set Ω is in the first quadrant, as
shown in Figure 4.

From the inequality (Eq. 47), ‖s‖ and ‖~Ψ‖ will converge on the
invariant set Ωi of ΔV = 0, and Ωi ⊆Ω. γj and L(t) can be used to
regulate the boundary set Ω. If λL increases, then a smaller ‖s‖ is
allowed, which means an increase in motion accuracy. If λL
decreases, the system will allow for larger motion errors.

4.2 Stability analysis in the patient-
dominant mode

In this mode, α = 0, β = 0. V(t) and its derivative are expressed
as follows.

V t( ) � V1 t( ) � 1
2
sTMs (50)

and

_V t( ) � _V1 t( ) � −sTL t( )s − sT τc + τh( ) (51)

By the definition of L(t), it is positive definite. From the
definition of τc + τh, the angle between τc + τh and s is less than
or equal to π

2—that is sT(τc + τh)≥ 0. Hence, we can get _V(t)≤ 0, and
V(t)≤V(0). Since V(0) is bounded, s is bounded.

To determine the consistent continuity of _V(t), Eq. 51 is derived
as Eq. 52:

€V t( ) � €V1 t( )
� −sTL t( ) _s − _sTL t( )s − sT _L t( )s − _sT τc + τh( ) − sT _τc + _τh( ),

(52)

where _L(t) � 0. Due to the human motion ability limitation, τh and _τh
can be assumed to be bounded. The boundedness of μ(s) and c(τh)
ensures that τc + τh is bounded. _τc + _τh can be expressed as Eq. 53

_τc + _τh � _μ s( ) _sc τh( ) + μ s( ) _c τh( ) _τh. (53)
The boundedness of s suggests the boundedness of _qref and _q.
Since _qref is bounded, _qh is too. According to Eq. 20, the
boundedness of τh ensures that €qh is bounded, so that €qref is
also bounded. The _τc + _τh is bounded due to the boundedness of
_μ(s), _s, c(τh), μ(s), _τh, and _c(τh). Therefore, €V(t) is bounded.
According to Barbalat’s lemma, lim

t→∞
_V(t) → 0, which means that if

t→∞, s→ 0. From the definition of s, the robot’s speed converges
to _qref—that is, _qd + _qh.

4.3 Stability analysis in the safety-stop mode

When the trajectory error is too large, it will switch to the
patient-dominant mode—α = 0, β = 1.V(t) and its derivative are the
same as Eqs 50, 51. In this mode, L(t) is positive definite and τc +
τh = 0; thus, we obtain _V(t)≤ 0, and V(t)≤V(0). Since V(0) is
bounded, s is bounded. The derivation of _V is given as Eq. 54

€V t( ) � €V1 t( ) � −sTL t( ) _s − _sTL t( )s − sT _L t( )s, (54)
where _L(t) � 0. The boundedness of τr + τh ensures the
boundedness of €q and _s. Therefore, €V(t) is bounded. According
to Barbalat’s lemma, lim

t→∞
_V(t) → 0, so that if t → ∞, s → 0. From

the definition of s, the robot will stop moving.

5 Simulations

A two-degree-of-freedom lower limb rehabilitation robot is used
to verify the effectiveness of the proposed method. As shown in
Figure 5, m1 and m2 represent the mass of the thigh and calf,
respectively. l1 and l2 represent the length of the thigh and calf,
respectively. lc1 denotes the distance from the hip joint to the center
of mass of the thigh. lc2 denotes the distance from knee joint to the
center of mass of the calf. The dynamic model of this hybrid system
is described as Eq. 55

M11 M12

M21 M22
[ ] €q1

€q2
[ ] + C11 C12

C21 C22
[ ] _q1

_q2
[ ] + G1

G2
[ ]

� τr,1
τr,2
[ ] + τh,1

τh,2
[ ], (55)

where M11 � I1 + I2 +m2l
2
1 + 2m2l1lc2cos(q2). I1 � m1l

2
c1 and I2 �

m2l
2
c2 represent the inertia of the thigh and calf, respectively.

M12 � I2 +m2l1lc2cos(q2), M21 = M12, M22 = I2, C11 � −C0 _q2,
C12 � −C0( _q1 + _q2), C21 � C0 _q1, C22 = 0, and
C0 � m2l1lc2sin(q2). G1 = (m1lc1 + m2l1)gcos(q1) + m2lc2gcos(q1 +
q2). G2 = m2lc2gcos(q1 + q2). g is the acceleration of gravity. The
desired trajectory is designed as Eq. 56.

qd,1 � π

6
− π

12
cos 0.2πt( )

qd,2 � −π
3
+ π

9
sin 0.2πt( )

⎧⎪⎪⎨⎪⎪⎩ (56)
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The initial angle of the robot is set to q0 � [7π/36,−13π/36]T. The
initial parameters of the proposed method and lower limb
rehabilitation robot are listed in Table 1. The values of η and ζ

are given as Eqs 57, 58

η � 0, −2≤ rparj ≤ − 1
η � −0.2, rparj > − 1
η � 0.2, rparj < − 2,

⎧⎪⎪⎨⎪⎪⎩ (57)

ζ � 0, 0.1≤ rortj

∣∣∣∣∣ ∣∣∣∣∣≤ 0.5

ζ � −0.3, rortj

∣∣∣∣∣ ∣∣∣∣∣> 0.5

ζ � 0.3, rortj

∣∣∣∣∣ ∣∣∣∣∣< 0.1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (58)

The simulation process consists of 28 task cycles, each
lasting 10 s. The results of the human–robot interaction
force evaluation for each task cycle are given in Figure 6,
which shows the patients’ motor ability and motion
intention under different task cycles. The simulation results
are shown in Figure 7.

At the beginning, the controller is in safety-stop mode due to
‖e‖> a. In this mode, τh is neutralized by τc. At approximately 4.44 s,
‖e‖< a. Meanwhile, due to rpar1 � −1, the controller leaves the safety-
stop mode and gradually transitions to the robot-dominant
mode (Figure 8).

In the robot-dominant mode, according to rparj and rortj , the
robot’s assistance level is adaptively adjusted to help the patient
complete the desired task. The change trends of ηj and γj are
shown in Figure 9A. When rparj < rparmin, L(t) increases periodically
with ηj. Although there are fluctuations in the changes of rparj

and rortj , the trajectory error decreases periodically (Figure 9B).
The increase of the eigenvalue of L(t) improves motion accuracy.
When rparmin < rparj < rparmax, ηj remains unchanged. When rparj > rparmax,
L(t) decreases periodically with ηj. It can be observed that |rortj | is
greater than rortmax in the second to seventh task cycle, which
means that the patient intends to move away from the desired
trajectory. γj will then reduce to a lower value to increase the
learning rate of the impedance parameters, thus correcting the
patient’s motion trajectory (Figure 9A). However, with the
gradual reduction of γj, the impedance parameters present a
tendency to decrease periodically (Figures 9C, D). According to
Eq. 16, this phenomenon is attributed to the improvement of
motion accuracy.

When d< rparj ≤ c, the controller breaks away from the robot-
dominant mode and transitions to the patient-dominant mode.
When rparj > c, the controller is in patient-dominant mode. As
the controller switches from robot-dominant to patient-dominant
mode, greater trajectory errors are allowed, which provides greater
freedom of movement (Figures 10A, B). In addition, the robot’s
speed gradually converges to _qd + _qh (Figure 10C). This
phenomenon is consistent with theory.

As rparj decreases, the controller switches again to the robot-
dominant mode. Compared to the patient-dominant mode, the
trajectory error is significantly reduced at this point (Figure 11A).
From 190 to 230 s, ηj does not change. Affected by the vertical
interaction force, γj decreases periodically (Figure 11B). From
Figures 11C–E, the impedance parameter and torque
compensation term increase periodically to correct patient

motion, and the trajectory error is gradually
reduced (Figure 11A).

When rparj > c, the controller switches to the patient-dominant
mode again, where the patient’s freedom of movement increases
and the robot’s speed converges to _qd + _qh (Figure 12). To test the
safety stop function of the controller during rehabilitation training,
the excessive Fpar

h and Fort
h are applied, which will cause ‖e‖ to

increase sharply and ‖e‖> a (Figure 13A). In this case, the
controller switches to the safety-stop mode to ensure patient
safety (Figure 13B), and the actual speed of the robot decreases
rapidly to zero (Figure 13C).

The effectiveness of the proposed method is demonstrated by
the trajectory errors, adaptive change of controller parameters, and
joint angular speed during human–robot interaction in three modes.
In addition, the simulation includes the transition process between
each mode, and the system can still run stably during this
transition process.

6 Conclusion

This study proposes a multi-mode adaptive control method,
including robot-dominant, patient-dominant, and safety-stop
modes. The patient’s motor ability and the system’s trajectory
error are taken as the basis for mode switching. Based on the
patients’ motor ability, the controller can switch between robot-
dominant and patient-dominant modes. Trajectory errors are used
to determine whether to switch to the safety-stop mode. The
proposed control strategy is not only suitable for patients with
different motor abilities and rehabilitation stages but also guarantees
safety during rehabilitation training. Since the transition between
robot-dominant and patient-dominant modes does not depend on
the trajectory errors, the patient-dominant mode allows for greater
trajectory errors than the robot-dominated mode, and the reference
speed can be modified by the patient, improving their freedom of
movement. The stability of the proposed method under three
control modes is analyzed using Lyapunov theory. Numerical
simulations are carried out on a two-degree-of-freedom lower
limb rehabilitation robot to verify the effectiveness of the
proposed method. Our future work will focus on clinical
applications.
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