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Objective: We endeavor to develop a novel deep learning architecture tailored
specifically for the analysis and classification of tongue features, including color,
shape, and coating. Unlike conventional methods based on architectures like
VGG or ResNet, our proposed method aims to address the challenges arising
from their extensive size, therebymitigating the overfitting problem. Through this
research, we aim to contribute to the advancement of techniques in tongue
feature recognition, ultimately leading to more precise diagnoses and better
patient rehabilitation in Traditional Chinese Medicine (TCM).

Methods: In this study, we introduce TGANet (Tongue Feature Attention
Network) to enhance model performance. TGANet utilizes the initial five
convolutional blocks of pre-trained VGG16 as the backbone and integrates an
attention mechanism into this backbone. The integration of the attention
mechanism aims to mimic human cognitive attention, emphasizing model
weights on pivotal regions of the image. During the learning process, the
allocation of attention weights facilitates the interpretation of causal
relationships in the model’s decision-making.

Results: Experimental results demonstrate that TGANet outperforms baseline
models, including VGG16, ResNet18, and TSC-WNet, in terms of accuracy,
precision, F1 score, and AUC metrics. Additionally, TGANet provides a more
intuitive and meaningful understanding of tongue feature classification models
through the visualization of attention weights.

Conclusion: In conclusion, TGANet presents an effective approach to tongue
feature classification, addressing challenges associated with model size and
overfitting. By leveraging the attention mechanism and pre-trained
VGG16 backbone, TGANet achieves superior performance metrics and
enhances the interpretability of the model’s decision-making process. The
visualization of attention weights contributes to a more intuitive
understanding of the classification process, making TGANet a promising tool
in tongue diagnosis and rehabilitation.
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1 Introduction

Traditional Chinese Medicine (TCM) practitioners monitor the
rehabilitation process by carefully observing and analyzing the
patient’s tongue. This method not only aids in determining the
progression of the illness but also provides crucial clues for
rehabilitation Du et al. (2024). Tongue diagnosis plays a pivotal
role in the rehabilitation process as changes in the tongue can reflect
the overall health condition of the patient. By monitoring features
such as the color, shape, and moisture of the tongue, TCM
practitioners can assess the progress of the patient’s rehabilitation
and adjust treatment plans accordingly. Tongue features such as
color, shape, and coating can be utilized to determine if a patient has
an underlying health condition. Traditional Chinese tongue
diagnosis Solos and Liang (2018) typically involves observations
in the following aspects: 1. Tongue color: Different tongue colors
may indicate various health issues. For example, a pale red tongue is
often associated with good health, while a deep red tongue may
suggest insufficiency of vital energy and blood; 2. Tongue shape: The
shape of the tongue can also provide information about the patient’s
health. For instance, an excessively large tongue, known as a fat and
enlarged tongue, often accompanied by tooth imprints, may indicate
the insufficiency of both the spleen and the kidney; 3. Tongue
coating: The tongue coating, a thin layer of film on the tongue
surface, is closely related to the intensity of dampness heat syndrome
in TCM theory. Medical studies have shown a correlation between
greasy tongue coating and various diseases, such as gastrointestinal
disorders, and more recently, the novel coronavirus disease
(COVID-19) Pang et al. (2020).

Traditional Chinese tongue diagnosis heavily relies on the
subjective judgment and clinical experience of TCM practitioners,
resulting in outcomes that lack objective indicators Miao et al.
(2023). The adoption of computer-aided tongue feature
recognition models allows for an objective and quantitative
diagnosis of tongue conditions, establishing a quantifiable
relationship between tongue features and diseases Zhang et al.
(2006). With significant advancements in computer vision (CV),
research on automatic tongue diagnosis systems based on image
processing and feature recognition has become more prevalent. For
instance, Zhang et al. (2015) extracted 20 color features and
20 texture features from tongue diagnosis images, including
energy, entropy, contrast, and correlation, primarily describing
tongue color and coating thickness. Qi et al. (2016) classified
four different tongue colors, employing the ICC profile method
for color correction to enhance image consistency. Subsequently,
support vector machine (SVM) and random forest (RF) were
employed for classification. Pang et al. (2004) introduced a
computerized tongue diagnosis method based on a Bayesian
network classifier, focusing on quantitative analysis of tongue
color and texture features for diagnostic purposes. Song (2020)
proposed a cascade classifier based on Local Binary Pattern (LBP)
features to address the issue of irrelevant information interference,
such as lips and cheeks in traditional Chinese tongue diagnosis
images. This method utilized LBP features to describe tongue texture
and employed the AdaBoost algorithm to construct the cascade
classifier. Yamamoto et al. (2011) utilized a hyperspectral imaging
system to acquire tongue images, identifying the most clinically
relevant component vectors through Principal Component Analysis

(PCA), offering an alternative approach for tongue diagnosis.
Additionally, Gao et al. (2007) employed image processing
algorithms to extract quantitative features of the tongue,
including color and texture features, and SVM was employed for
tongue classification.

However, the complexity of multiple features and variations in
tongue image acquisition conditions, such as environmental factors
and angles, often render traditional CV algorithms ineffective Xie
et al. (2021); Li D. et al. (2022). With the rapid advancement of deep
learning (DL), research on automatic tongue diagnosis programs
based on DL models has gained prominence. DL methods typically
exhibit stronger generalization and higher feature recognition
accuracy compared to traditional computer vision algorithms,
circumventing the manual feature extraction drawbacks
associated with traditional machine learning methods. Most DL
automatic tongue diagnosis systems encompass DL models for both
tongue segmentation and tongue feature recognition. Segmentation
commonly utilizes models based on U-Net Huang et al. (2020),
while tongue feature recognition employs pre-trained models such
as ResNet or VGGTammina (2019). For instance, Yan J. et al. (2022)
aimed to distinguish different tongue textures, such as the toughness
or softness of the tongue body, through the analysis of tongue image
textures. They employed the DeepLab v3+ deep learning semantic
segmentation model to segment the tongue image, separating the
tongue from the background. Subsequently, a ResNet101-based
tongue image texture classification model was constructed.
Experimental results demonstrated that using
ResNet101 achieved better classification performance compared
to traditional tongue image texture classification methods. In
another study, Yan B. et al. (2022) proposed a convolutional
neural network based on semantic modeling for tongue
segmentation. Different feature extraction networks (AlexNet,
VGG16, ResNet18, and DenseNet101) were compared for their
effectiveness in extracting tongue color features. Combining
U-Net, Inception, and dilated convolutions, Wei et al. (2022)
introduced a new tongue image segmentation method called
IAUNet. They designed a network named TCCNet for tongue
color classification, incorporating technologies such as ResNet,
Inception, and Triplet-Loss. Experimental results showed that
TCCNet achieved favorable results in tongue color classification,
achieving higher F1-Score and mAP compared to other baselines.
Lastly, Li J. et al. (2022) employed UENET for tongue segmentation,
using ResNet34 as the backbone network to extract features and
perform classification from tongue photos, with overall accuracy
surpassing 86%. Wang et al. (2022) develop a GreasyCoatNet model
based on ResNet, which can recognize and classify different degrees
of tongue greasy coating.

These above researches on tongue feature classification are
mostly built based on VGG or ResNet Zhuang et al. (2022);
Huang et al. (2023); Li J. et al. (2022); Wang et al. (2020).
However, due to its large size, VGG or ResNet demands
substantial computational resources and memory. Additionally,
training directly with VGG or ResNet may lead to overfitting,
especially when tongue images are challenging to collect and
training data is limited. Therefore, our proposed TGANet (Togue
Feature Attention Network) utilizes the pretrained VGG16’s initial
five convolutional blocks as the backbone. Furthermore, we integrate
an attention mechanism Fukui et al. (2019) into the backbone,
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aiming to mimic human cognitive attention. The primary objective
is to focus model weights on crucial parts of the image. For example,
in tongue coating classification, the coating is usually concentrated
at the root of the tongue. If the model can prioritize local features
related to coating, similar to human attention, it enhances efficiency
and accuracy. Moreover, the allocation of attention weights during
the learning process aids in interpreting causal relationships in the
model’s judgments. Our proposed architecture TGANet is primarily
based on the foundation of Yan et al. (2019).

2 Methods

The overall framework for classifying tongue features
classification is illustrated in Figure 1. Initially, the U-Net is
employed to segment the input tongue images to obtain the
tongue boundary. Subsequently, the masked image derived from
the tongue boundary is followed by a data augmentation process.
Specifically, the masked image undergoes sequential random
rotation, shifting, and adding noise. Following this augmentation,
both the masked images and their augmented counterparts are fed
into the TGANet to execute the classification of tongue features. In
the classification phrase, three kinds of tongue features are classified:
tongue color, tongue shape, and tongue coating.

2.1 Dataset Construction

The publicly available BioHit image dataset comprises
300 tongue images with dimensions of 567 × 768 pixels. We

annotated this original dataset with diagnostic labels. The image
annotation process involves three steps. Firstly, domain experts
engaged in discussions to establish diagnostic criteria for each
category within the three types of tongue features. The detail of
the three categories and their class labels is shown in Table 1.
Subsequently, two well-trained TCM practitioners from the
Guangzhou University of Chinese Medicine independently
assessed each tongue image to distinguish the class labels for
each tongue feature. A third TCM professional with 20 years of
expertise joined the deliberations to collectively resolve any disputes
and achieve a final consensus. Images with unanimous agreement
were then incorporated into the dataset for the development of a
deep learning-based tongue feature recognition model.

2.2 Image segmentation

The aim of tongue image segmentation is to enhance the
effectiveness of tongue feature classification by eliminating
extraneous information in the image, such as interference from
the human jaw or background details, which can disrupt the
classification process. To achieve this, we employed the deep
convolutional neural network U-Net for tongue segmentation.
U-Net is widely utilized in image segmentation, drawing
inspiration from semantic segmentation tasks and designed to
deliver high-resolution, precise segmentation results.The overall
architecture of the U-Net dedicated to segmenting the contour
images of the tongue is illustrated in Figure 2. U-Net adopts an
encoder-decoder structure. The encoder is responsible for
sequentially extracting features from the input tongue image

FIGURE 1
The framework for tongue color recognition encompasses four key stages: Dataset Construction, Segmentation, Data Augmentation, and
Classification.
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through convolution and pooling operations, progressively reducing
spatial resolution. The decoder gradually restores spatial resolution
through upsampling and deconvolution operations. U-Net
incorporates skip connections by linking the output of the last
convolutional layer of each encoder block to the corresponding
layer in the decoder. This helps retain more detailed information at
different resolutions, overcoming potential information loss in deep
networks. The final segmentation output is generated in the last
layer using a 1 × 1 convolutional layer. The training utilizes the
cross-entropy loss function to measure the difference between the
model’s output and the actual segmented image. By leveraging
U-Net, we obtain the masked tongue image by acquiring the
tongue segmentation contour mask from the input tongue image.

2.3 Image augmentation

Due to the limited number of samples in medical images and the
imbalance in the number of samples for each category, data
augmentation is applied to the samples before image classification.
This ensures that the quantity of each category in tongue feature
classification remains consistent, maintaining an equal number of
samples for both the training and validation sets. The commonly
employed method to balance categories involves setting the upper
limit based on the category with the maximum sample count and
augmenting samples from categories with fewer samples.

Various data augmentation techniques are typically utilized,
including random translation, random rotation, and the addition
of Gaussian noise in different combinations to enhance images. As
shown in Figure 3, we implemented the augmentation in the order of
random translation, followed by random rotation, and then the

addition of Gaussian noise. Specifically, random translation involves
random shifts in both the x and y-axes within the range
from −10 pixels (ps) to 10 ps. Random rotation includes
clockwise rotation within the range from −15° to 15°, and
Gaussian noise is added with a mean of 0 and a variance of 0.1.

2.4 Tongue feature classification

The overall architecture of the TGANetmodel for tongue feature
classification is illustrated in Figure 4. We employ VGG16 as the
model’s backbone, removing all fully connected layers. Input images
sequentially pass through convolutional blocks B1 to B5, extracting
global features from the input images. Intermediate features
(denoted as F) obtained from pooling layers in B2 and B4 are
used to learn attention maps, while the output of the pooling layer
after B5 (denoted as G) represents global features extracted by all
convolutional blocks in the network. Intermediate feature F and
global feature G are jointly input into the Attention Module to
obtain attention feature F:

F′ � Attention F, G( ). (1)
Here, “Attention” represents the operation within the attention
module. Specifically, to match the sizes of intermediate and
global features, F undergoes a convolutional layer to increase its
channel count to 256, and bilinear interpolation aligns its feature
size with G. G undergoes a convolutional layer to compress its
channel count to 256. The transformed F and G are then added
to obtain U:

U � WF p F + UP WG p G( ). (2)

TABLE 1 Tongue feature labels and corresponding descriptions.

Label∖Tongue feature Tongue color Tongue body Tongue coating

0 Pale Red Swollen White Greasy

1 Red Non-Swollen Thin White

2 Dark Red N/A Thin Yellow

3 N/A N/A Yellow Greasy

FIGURE 2
The architecture of U-Net for tongue image segmentation.
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The * symbol denotes convolutional operation, and UP represents
bilinear interpolation.WF andWG are the convolutional weights for
F and G, respectively. Next, U undergoes an operation to transform
into an attention map A:

A � Sigmoid Conv ReLU U( )( )( ). (3)
Subsequently, pixel-wise multiplication of F and A yields the
Attention Feature:

F′ � A p F. (4)

Finally, attention features generated from intermediate features (B2
and B4) are concatenated with global features. The softmax
operation is applied to obtain the final predictions for tongue
features. Specifically, predictions are made for three different
tongue features: tongue color, tongue shape, and tongue coating.
The overall architecture is trained end-to-end.

FIGURE 3
The input tongue images undergo augmentation through the following actions: random shift, random rotation, and the addition of Gaussian noise.

FIGURE 4
The architecture of TGANet.The TGANet employs the VGG16 architecture as its backbone, with all fully connected layers removed. Input images
undergo sequential processing through convolutional blocks B1 to B5, capturing global features from the input data. Intermediate features (denoted as F)
extracted from pooling layers in B2 and B4 are utilized for attentionmap learning. Additionally, the output of the pooling layer following B5 (denoted asG)
represents the global features aggregated by all convolutional blocks within the network.
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2.5 Model evaluation

The model training was conducted on a Windows 11 system
equipped with an NVIDIA 4090 GPU, utilizing Python and
PyTorch. Initial model parameters were initialized with
weights pre-trained on the ImageNet dataset. This transfer
learning strategy endowed the model with robust prior
knowledge, contributing to superior performance.
Subsequently, fine-tuning of the model parameters was
performed using the tongue dataset. The parameters of the
Attention module were initialized using the Kaiming
initialization method, and model optimization employed the
Adam optimizer with a learning rate of 0.0001. Three distinct
tongue feature classifications shared the same model structure,
with the only difference lying in the output of the final fully
connected classification layer, which was adjusted according to
the different categories. During the training process, model
parameter updates were achieved by minimizing the cross-
entropy loss function. All models underwent 20 training
epochs with a batch size of 20, and model parameters were
fixed based on the best performance observed on the
validation dataset. Training and testing the model on the
tongue color, shape, and coating classification respectively
with the 5-fold cross-validation.

2.6 Metric

Accuracy is the proportion of correctly classified samples by the
model on the entire dataset. In model evaluation, accuracy is a
crucial metric for assessing the overall performance of the model.
The calculation of accuracy Acc is the ratio of the number of samples
correctly predicted by the model to the total number of samples:

Acc � Nc

Nt
, (5)

where Nc is the number of correctly predicted samples, and Nt is the
total number of samples.

Precision Ashley (2016) refers to the proportion of actual
positive samples among all the samples predicted as positive by
the model. In some applications, high precision may be a key
objective as it indicates the accuracy of the model in positive
class predictions. Precision P is calculated as:

P � TP

TP + FP
, (6)

where TP represents true positives, indicating the number of
samples correctly predicted as positive by the model, and FP
represents false positives, indicating the number of instances
where the model incorrectly predicted negative class samples
as positive.

F1 Score Goutte and Gaussier (2005) is the harmonic mean of
precision and recall, used to comprehensively consider the model’s
accuracy and recall performance. In some situations, the F1 Score is
used as a balance between precision and recall. The calculation of
F1 Score F1 is given by:

F1 � 2 ×
P × R

P + R
, (7)

where R is recall, also known as sensitivity or true positive rate, is a
metric that measures the ability of a model to capture all positive
instances in the dataset. It is defined as the ratio of TP to the sum of
TP and False Negatives (positive samples incorrectly predicted as
negative). The formula for R is given by:

R � TP

TP + FN
. (8)

AUC Wu and Flach (2005) is the area under the ROC curve,
where the ROC curve illustrates the trade-off between true positive
and false positive rates at different thresholds. A higher AUC value,
closer to 1, indicates better model performance. AUC is commonly
used for performance evaluation in binary classification problems,
especially when dealing with imbalanced datasets. The specific
calculation of AUC is not enumerated here but is typically
obtained by integrating the ROC curve.

3 Results

3.1 Baseline models

Throughout the experiments, we compare the TGANet with the
following models.

1) VGG16: VGG16 Tammina (2019) is a deep convolutional
neural network architecture designed for image classification
tasks. The “16″ in VGG16 refers to the network’s depth.
VGG16 follows a simple and uniform architecture with small
3 × 3 convolutional filters, which helps maintain a consistent
receptive field. It also employs max-pooling layers for spatial
down-sampling. The pre-trained VGG16 weights on large
datasets ImageNet to initialize their models before fine-
tuning for our tongue feature classification tasks.

2) ResNet18 Odusami et al. (2021): short for Residual Network
with 18 layers, is a convolutional neural network
architecture introduced by Kaiming He et al. It is part of
the ResNet family, known for its deep structure and the
incorporation of residual learning blocks. The architecture
includes a stack of residual blocks, where each block
consists of two convolutional layers with batch
normalization and rectified linear unit (ReLU) activation
functions. The key innovation in ResNet architectures is the
use of skip connections or shortcuts that skip one or more
layers, allowing the gradient to flow more easily during
backpropagation. This facilitates the training of very deep
networks and helps alleviate the vanishing gradient
problem. ResNet18 architecture serves as a baseline
model and is widely used in tongue feature classification
tasks due to its effectiveness and efficiency.

3) TSC-WNet Huang et al. (2023): TSC-WNet is a
comprehensive neural network architecture designed for the
classification of tongue size and shape. TSC-WNet consists of
two subnetworks: TSC-UNet and TSC-Net. TSC-Net serves as
the classification backbone, while TSC-UNet is responsible for
tongue segmentation. TSC-Net employs a simple and efficient
architecture with four convolutional layers. By combining both
classification and segmentation features, TSC-WNet shows the
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best validation accuracy and steady performance during
training. TSC-WNet is a well-designed network architecture
that integrates classification and segmentation tasks,
showcasing improved accuracy and robust performance in
the challenging domain of tongue analysis.

3.2 Tongue feature classification model
performance

Table 2 presents a comprehensive performance comparison of
various tongue classification models, including ResNet18, TS-
WCNet, and our proposed TGANet. The result is the mean and
standard deviation of the five folds by using 5-fold cross-
validation. The models were evaluated based on different
tongue features: Tongue Color, Tongue Shape, and Tongue
Coating by using 5-fold cross-validation. For the Tongue Color
feature, TGANet outperformed both VGG16, ResNet18, and TSC-
WNet with a remarkable accuracy of 91.88%, precision of 90.53%,
F1 score of 89.87%, and AUC of 96.45%. These results highlight the
superior performance of TGANet in capturing color-related
information for tongue classification. Similarly, when focusing
on the Tongue Shape feature, TGANet demonstrated a
significant improvement in accuracy (92.38%), precision
(94.93%), and F1 score (94.05%) compared to VGG16,
ResNet18, and TS-WCNet. The robustness of TGANet in
extracting shape-related features contributes to its outstanding
performance. In the case of Tongue Coating classification,
TGANet exhibited outstanding results with an accuracy of
94.77%, precision of 95.59%, and F1 score of 95.02%. This
emphasizes the efficacy of TGANet in recognizing and
classifying diverse tongue coating patterns. Additionally, the
uncertainty in the model’s performance is captured through the
standard deviation, providing insights into the stability of the
results across multiple evaluations. The consistent outperformance

of TGANet across different tongue features underscores its
robustness and effectiveness in tongue classification tasks.

3.3 Attention visualization

Attention Visualization is designed to add a visualization of
attention weights (attention map) to input images. Initially, the
input image is transformed from a PyTorch tensor to a NumPy
array, with channel dimensions adjusted to the correct order.
The attention map’s size is adjusted based on an upsampling
factor using bilinear interpolation. The grayscale attention
map is then converted to a heatmap using the JET color
map from OpenCV. Finally, the image and normalized
attention map are blended in a certain proportion, creating
an overlay of attention visualization on the image. This process
visualizes the depth of focus of a deep learning model on the
input. This is particularly helpful in understanding the
decision-making process of a deep learning model in tongue
feature classification, emphasizing regions considered crucial
for tongue segmentation tasks.

As depicted in Figure 5, the attention visualization images for
tongue color classification show that the model primarily utilizes
features from the tip of the tongue in its decision-making process,
which is reasonable given that the color of the tongue tip is typically
more distinct. As shown in Figure 6, the attention visualization
images for tongue coating classification reveal that the model’s
decision-making relies heavily on features from the root of the
tongue, which is sensible as tongue coating is mainly concentrated in
the root area. Figure 7 illustrates the attention visualization images
for tongue shape classification, demonstrating that the model’s
decision-making focuses on the contour features of the tongue.
This aligns with the common practice among practitioners who
assess the thickness and appearance of the tongue’s outline to
determine its texture.

TABLE 2 Comparison of themetrics between our proposed TGANet and the baselines on the three tongue feature classifications (Mean ± SEM). The result is
the mean and standard deviation of the five folds by using 5-fold cross-validation. The best performance is marked in bold.

Model Tongue feature Accuracy (%) Precision (%) F1 score (%) AUC (%)

VGG16 Tongue Color 75.13 ± 4.64 75.43 ± 5.03 69.16 ± 5.96 84.31 ± 3.02

ResNet18 82.37 ± 6.42 82.87 ± 5.40 80.86 ± 5.78 93.49 ± 3.10

TSC-WNet 83.08 ± 4.68 82.76 ± 4.92 79.72 ± 6.45 92.76 ± 3.59

TGANet (our) 91.88 ± 2.65 90.53 ± 3.16 89.87 ± 3.17 96.45 ± 1.94

VGG16 Tongue Shape 91.93 ± 1.70 94.15 ± 2.87 93.55 ± 3.16 96.31 ± 3.04

ResNet18 91.43 ± 2.65 91.15 ± 2.69 90.25 ± 2.89 97.89 ± 1.47

TSC-WNet 89.83 ± 2.00 90.88 ± 1.84 88.83 ± 2.85 94.74 ± 1.80

TGANet (our) 92.38 ± 1.43 94.93 ± 1.63 94.05 ± 2.13 97.55 ± 1.57

VGG16 Tongue Coating 91.69 ± 1.41 94.16 ± 2.40 93.50 ± 2.61 98.46 ± 0.70

ResNet18 90.16 ± 5.17 93.34 ± 3.67 91.92 ± 5.60 98.80 ± 0.62

TSC-WNet 84.62 ± 2.69 87.32 ± 3.47 85.54 ± 3.80 95.87 ± 1.63

TGANet (our) 94.77 ± 1.02 95.59 ± 1.52 95.02 ± 1.72 98.77 ± 1.21
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FIGURE 5
Visualization of TGANet attentionweights for tongue color classification. B2 AttentionMaps are the attentionweights learning from the intermediate
features of B2, and B4 Attention Maps are the attention weights learning from the intermediate features of B4.

FIGURE 6
Visualization of TGANet attention weights for tongue coating classification.

FIGURE 7
Visualization of TGANet attention weights of TGANet for tongue shape classification.
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4 Discussion

TCM practitioners can moniter the patient rehabilitation
process by carefully observing and analyzing the patient’s tongue
feature. For instance, a deep red tongue may suggest a deficiency in
vital energy and blood, a fat and enlarged tongue may indicate the
insufficiency of both the spleen and the kidney, and a thin layer of
film on the tongue surface is closely linked to the intensity of
dampness-heat syndrome in TCM theory. Here, we propose a
framework designed for the classification of three distinct tongue
features. Initially, our expert physicians labeled a publicly available
dataset, BioHit, based on these three different tongue features.
Subsequently, we preprocessed and augmented the images using
image segmentation and augmentation techniques. Then,
employing the TGANet architecture with an attention
mechanism, we classified the three different tongue features. Our
TGANet model outperforms baseline models, achieving the highest
accuracy, precision, F1 score, and AUC metrics.

Additionally, the TGANet, based on the VGG16 architecture
with attention modules, exhibits superior performance. Compared
to the VGG16 without attention modules, the attention modules in
our TGANet were further visualized. It was observed that for
different tongue feature classifications, the neural network’s
attention weights varied. For tongue color classification, attention
weights were concentrated on the tongue tip; for tongue shape
classification, attention weights were focused on the tongue contour;
for tongue coating classification, attention weights were centered
around the tongue base. This alignment with the expertise of
physicians emphasizes the effectiveness of the features learned by
our model. Furthermore, the visualization of attention modules
provides interpretability for deep learning-based tongue
diagnostic models.

In practical applications, establishing a universal model
applicable to various tongue feature classifications is highly
meaningful in tongue diagnosis and rehabilitation. This
contributes to mitigating the overfitting problem. As a result, our
TGANet demonstrates outstanding performance in different tongue
feature classifications compared to baselines, ultimately leading to
more precise diagnoses and better patient rehabilitation in TCM.

5 Conclusion

In conclusion, our study introduces TGANet, a novel DL model
designed for the classification of crucial tongue features in TCM.
Leveraging the initial five convolutional blocks of pre-trained
VGG16 as the backbone and integrating an Attention
mechanism, TGANet outperforms baseline models in accuracy,
precision, F1 score, and AUC metrics for distinguishing tongue
color, coating, and shape. The integration of an attention
mechanism provides interpretability by emphasizing model

weights on significant regions of the tongue image. TGANet
exhibits robust performance, and the visualization of attention
weight further reveals the model’s focus on specific tongue
regions for decision-making, aligning with clinical practices. This
study contributes to advancing automatic tongue diagnosis systems,
providing a foundation for objective and quantitative assessment of
tongue conditions in TCM.
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