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Objective: Polyvinylpyrrolidone (PVP) is a commonly used biomedical polymer
material with good water solubility, biocompatibility, low immunogenicity, and
low toxicity. The aim of this study is to investigate the antioxidant mechanism and
clinical potential of PVP modified selenium nanoparticles (PVP-Se NPs) as a new
radioprotective agent.

Methods: A laser particle size analyzer and transmission electron microscope
were used to characterize PVP-Se nanoparticles prepared by chemical reduction.
Human umbilical vein endothelial cells (HUVECs) were used to evaluate the
radiation protective effects of PVP-Se NPs. SD rats were employed as an in vivo
model to identify themost effective concentration of PVP-SeNPs and assess their
potential radioprotective properties. Western blot (WB) was used to detect the
expression of nuclear factor kappa-B (NF-κB) and mitogen-activated protein
kinase (MAPK) signaling proteins in human umbilical vein endothelial cells
(HUVECs) and rat liver and kidney tissues.

Results: PVP-Se NPs could reduce the oxidative stress injury and inflammatory
response caused by X-ray irradiation in HUVECs and rats, and inhibit cell
apoptosis by modulating NF-κB and MAPK signaling pathways. PVP-Se NPs
could increase HUVECs viability, reduce apoptosis, inhibit inflammatory
factors IL-1β, IL-6 and TNF-α, improve the survival rate of rats, promote
antioxidant enzyme activities in cells and rats, reduce malondialdehyde
concentration in serum, and reduce the expression of inflammatory factors
such as IL-1β, IL-6 and TNF-α in cell supernatant and liver and kidney tissues.
PVP-Se NPs could significantly reduce the phosphorylation levels of NF-κB
and MAPK pathway-associated proteins in HUVECs and rat liver and kidney
tissues (p < 0.05).

Conclusion: PVP-Se NPs can protect against radiation-induced oxidative
damage by modulating NF-kB and MAPK pathways, providing a theoretical
basis and experimental data for their use as an effective radioprotective agent.
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Introduction

Radiation refers to the phenomenon of energy release and
propagation (Du et al., 2023). Radiation can be categorized as
either ionizing or non-ionizing. Ionizing radiation has greater
energy, causing atoms or molecules in a substance to be ionized,
leading to DNA damage, gene mutations, cell death, or
carcinogenesis (Liu et al., 2023; Ortega et al., 2023). Radiation
protection aims to take various measures to reduce or avoid the
harm of radiation to human health and the environment. At present,
radiation protection consists mainly of three approaches: physical
protection, chemical protection, and biological protection (Yang
et al., 2020). Among them, chemical protection is the use of specific
compounds or elements to enhance organisms’ tolerance to
radiation and reduce the harm caused by radiation (Andrady
et al., 2023; Javadi et al., 2023).

Selenium (Se) plays a significant role in many physiological
functions such as antioxidants, immune regulation, and thyroid
hormone synthesis, as described in the report (Li et al., 2021a; Wu
et al., 2021; Rao et al., 2022). Research has shown that Se
downregulates inflammatory mediators TNF-α, IL-1β and IL-6
gene expressions via TLR2, NF-κB and MAPK signaling pathway
in S. aureus-stimulated bMECs, which may be responsible for the
anti-inflammatory effect of Se (Wang et al., 2018). As early as 1964,

selenium compounds were discovered to have radiation protection
effects. It protects organisms from radiation damage through
mechanisms such as clearing free radicals, maintaining
glutathione levels, and regulating signaling pathways (Shimazu
et al., 1964). However, the bioavailability and activity of selenium
are influenced by factors such as its chemical form, dosage, and
distribution within the organism (Ragini and Arumugam, 2023). For
example, In the form of organic selenium compounds, selenium
exhibits radiation protection effects only at moderate
concentrations, while higher concentrations are toxic to cells
(Ragini and Arumugam, 2023). Moreover, selenium compounds
demonstrate a combination of preventive (effective before exposure
to ionizing radiation) and mitigating (effective after exposure to
ionizing radiation, prior to the development of the first clinical signs
of radiation sickness), demonstrating their multiple characteristics.
Therefore, the development of efficient, safe, and stable selenium-
based radiation protection agents is of critical significance.

Nanotechnology refers to the technology of utilizing nanoscale
substances or structures to achieve novel functions or performance
(El-Morsy et al., 2022). Nanotechnology has a wide range of
potential uses in radiation protection due to its unique optical,
electronic, magnetic, catalytic, and biological characteristics (Pan
et al., 2022). For example, ZnO and TiO2 nanoparticles demonstrate
effectiveness in shielding against ultraviolet radiation by absorbing

FIGURE 1
Physicochemical properties of PVP Se NPs (A). The particle size distribution of PVP Se NPs; (B). Transmission Electron Microscopic Observation of
PVP-Se NPs.
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and blocking it, thus hindering its penetration into the tissues and
cells of human (Cai et al., 2013; Khan et al., 2023). Moreover,
another study has shown that CeO2 nanoparticles protect
gastrointestinal epithelial cells and human lymphocytes from
ionizing radiation by reducing oxidative stress and inflammatory
reactions (Tarnuzzer et al., 2005; Niu et al., 2007). These findings
emphasize the potential of nanoparticles in safeguarding normal
cells and tissues from radiation-induced harm. In recent years, nano
selenium (Se NPs) has attracted much attention as a new type of
selenium-based radiation protection agent. Se NPs exhibit
remarkable antioxidant properties, capable of neutralizing free
radicals induced by radiation, thereby reducing oxidative stress
and protecting cells from damage (Pereira et al., 2022).
Moreover, Se NPs has been reported to inhibit radiation-induced
cell apoptosis, mitigating direct cellular damage caused by radiation
exposure (Gudkov et al., 2023). Furthermore, Se NPs effectively
mitigate radiation-induced inflammatory responses, thereby
reducing cell death and tissue damage resulting from
inflammation (Zahran et al., 2017). However, Se NPs also have
some shortcomings, such as easy oxidation, instability, and difficulty
controlling particle size (Carroll et al., 2020). Surface modification of
Se NPs is therefore one of the most effective ways to enhance their
radiation protection properties.

Polyvinylpyrrolidone (PVP) is a commonly used biomedical
polymer material with good water solubility, biocompatibility, low
immunogenicity, and low toxicity (Ruiz-Fresneda et al., 2023). PVP
can be used as an ideal surface modifier to improve the stability,
dispersibility, and bioavailability of Se NPs. Previous studies have
shown that treating rats with 5 or 10 Gy X-rays and then detecting
their cardiopulmonary structure and physiological function can
better describe the natural history of this injury (Ghosh et al.,
2009). In this study, PVP-Se NPs are prepared by a chemical
reduction method and tested in vitro and in vivo on human
umbilical vein endothelial cells (HUVECs) and SD rats,

respectively, for radiation protection. Meanwhile, Western
blotting was conducted to measure the effects of PVP-Se NPs on
HUVECs andMAPK-NF-κB pathway-related proteins in rats’ livers
and kidneys, to provide novel preventive measures for radiation
protection. These research results will contribute to a deeper
understanding of PVP-Se NPs’ radiation protection potential.

Materials and methods

Materials and reagents

Chitosan (CTS) and ascorbic acid (Vc) were acquired from
Tokyo Chemical Industry in Japan; Human umbilical vein
endothelial cells (HUVECs) were obtained from the ATCC
cell bank (Cat. NO.AC337632), and cells were cultured in
H-DMEM (Hyclone, US) supplemented with 10% fetal bovine
serum (Exocell, China), 1% antibiotics (Hyclone, US) at 37°C
with 5% CO2. Cells were passaged every 3 days or when
confluent. Fetal bovine serum (FBS), Dulbecco’s modified
Eagle’s medium (DMEM), and SD rats from the Guangdong
Provincial Experimental Animal Center were purchased from
Gibco Corporation in the United States. CCK8 and Annexin-V/
PI kits were acquired from Shanghai Biyuntian Biotechnology
Co., Ltd.; CAT(Cat. NO. A007-1, GSH-Px (Cat. NO. A005-1,
SOD (Cat. NO. A001-3), MDA (Cat. NO. A003-1) kits were
acquired from Nanjing Jiancheng Biotechnology Research
Institute; IL-6 (Cat. NO. EK106/2-48), IL-1β (Cat. NO.EK101-
48), TNF-α (Cat. NO.EK182-48) ELISA kits were purchased from
Lianchuan Biotechnology Co., Ltd.; P-IκB (Catalog: AF2002), IκB
(Catalog: AF5002), NF-κB (Catalog: AF0874), p-p65 (Catalog:
AF3389), p65 (Catalog: AF5006), p-JNK (Catalog: AF3318), JNK
(Catalog: AF6318), p-ERK (Catalog: AF1015), ERK (Catalog:
AF0155), p-p38 (Catalog: AF6455), and p38 (Catalog: AF6456)
antibodies were acquired from Affinity Corporation. Secondary
antibodies used in Western blot analysis were acquired
from Abcam.

Methods

Preparation and characterization of PVP-
Se NPs

Dissolve 0.5 g of CTS and 1.6 g of ascorbic acid (Vc) in 100 mL
of 1% (w/w) acetic acid. Incorporate 10 mL of sodium selenite
solution containing 0.4 g/10 mL slowly, stirring at 800 rpm/min
for at least 8 h at room temperature. Mix the colloid with
acetone solution, centrifuge at 12,000 rpm/min for 5 min, and
discard the supernatant. Then put the nanomaterials into a
dialysis bag, add deionized water for dialysis for 24 h, change the
water every 1 h within the first 6 h, and change the water at 12 and
18 h respectively. Remove the nanomaterials, centrifuge at
12,000 rpm/min for 5 min, and remove the supernatant. Vacuum
dry and weigh at 50°C to obtain nano-selenium samples. We
examined the particle size, morphology, and distribution of PVP-
Se NPs utilizing a laser particle size analyzer (DLS) and transmission
electron microscopy (TEM).

FIGURE 2
Effects of different concentrations of PVP-Se NPs and doses of
X-rays on the viability of HUVECs cells Data are expressed as mean
+standard deviation (n = 6), **p < 0.01.
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In vitro biological evaluation of PVP-Se NPs

Screening of the optimal concentration and X-ray
dose of PVP-Se NPs

Inoculate HUVECs onto a 96-well plate and divide them into a
control and experimental group. For the control group, cells were
treated with 0, 18, 36, and 72 μg/mL PVP-Se NPs respectively for
24 h, followed by no X-ray treatment. The experimental group was
split into eight subgroups: Cells were treated with 0, 18, 36, and
72 μg/mL PVP-Se NPs for 24 h and then subjected to radiation
treatment using X-ray doses of 5 Gy and 10 Gy, respectively. Then
add 10 μL CCK-8 reaction solution to each hole. Incubate for 2 h,
and measure the absorbance at 450 nm using an enzyme-linked
immunosorbent assay.

Flow cytometry
Flow cytometry (ThermoFisher Attune NxT, United States) is

used to detect cell apoptosis. Set up a control group and an
experimental group according to the optimal concentration and
X-ray dose selected above. Inoculated HUVEC cells were
cultured overnight in a 6-well plate. As a control group, PVP-
Se NPs were administered at a concentration of 0 g/mL, and as an
experimental group, PVP-Se NPs were utilized. After 24 h, all
cells were subjected to X-ray irradiation. Each group’s cells were
collected and washed twice with PBS after 48 h. Apoptosis was

detected immediately after 15 min of double staining with
Annexin V-FITC and PI.

Detection of cellular oxidative stress levels
The methodology employed for the grouping treatment

followed the same protocol as described in “Detection of cell
apoptosis level”. Subsequently, the concentrations of catalase
(CAT), glutathione peroxidase (GSH-Px), superoxide dismutase
(SOD), and malondialdehyde (MDA) in the cellular supernatant
were quantified using a specialized reagent kit.

Detection of cellular inflammatory factor content
This treatment is the same as “Detection of cell apoptosis level,”

using an ELISA kit and following the instructions to determine the
absorbance (OD) value at 450 nm using an enzyme-linked
immunosorbent assay (ELISA). In the end, the levels of
interleukin-1 β (IL-1β), tumor necrosis factor- α (TNF-α) and
interleukin-6 (IL-6) in the supernatant of each cell group were
determined according to a standard curve.

Western blot analysis
Proteins from each group of cells, the liver and kidney tissues of

rats are extracted and quantified using the BCA method. They are
separated by SDS-PAGE electrophoresis, and membranes are
transferred. After blocking for hours, they were incubated with

FIGURE 3
PVP Se NPs inhibit HUVECs cell apoptosis (A). The apoptosis rate was detected using Annexin V-FITC/PI double staining method; (B). Statistical
analysis of cell apoptosis rate.
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the primary antibody at 4°C overnight and the secondary antibody at
room temperature for 1 h. Finally, chemiluminescence development
was carried out.

In vivo efficacy evaluation of PVP-Se NPs

Screening of the optimal concentration of PVP-Se
NPs for radiation protection in rats

A total of 32 6–8 weeks SD rats were randomly divided into four
groups, each containing eight rats. Whole-body 10 Gy (2 Gy/min)
X-ray irradiation was performed following intraperitoneal injection
of 200 μL of PVP-Se NPs at concentrations of 0, 18, 36, and 72 μg/
mL. Once the rats had been irradiated, they were placed in a clean
box and returned to the barrier laboratory for cage feeding.
Throughout the 15-day period, the number of survivors was
counted regularly, and the survival rate was calculated. The
optimal concentration of PVP-Se NPs was selected. This study is
approved by the Ethics Committee of the Affiliated Nanhua
Hospital, University of South China (NO. 2022-ky-21). All
animal studies were conducted in accordance with animal care
standards, and all experiments were conducted in accordance
with the guidelines of the institutional animal ethics committee.

HE staining and IHC
At the optimal concentration selected in “In vivo efficacy

evaluation of PVP-Se NPs,” we set up a control group and an
experimental group respectively. On the 15th day after radiation, the
rats were euthanized by the cervical dislocation method, and the
liver and kidney tissues were quickly removed. They were fixed in
4% formaldehyde for 24 h, and paraffin sections were routinely
prepared. An optical microscope was used to observe and
photograph them following HE staining.

For IHC, sections of the liver and kidney tissues were treated
with xylene and graded alcohol and then subjected to antigen
retrieval in 0.01 M citrate buffer. Hydrogen peroxide was used
for blockage. The sections were incubated with goat serum for
30 min and then with anti-IL-1β, anti-IL-6 and anti-TNF-α
antibodies overnight at 4°C. Subsequently, slides were incubated
with biotin-linked secondary antibody and peroxidase-labelled
streptavidin followed by a diaminobenzidine (substrate of
peroxidase) revelation and counterstaining with Mayer’s
hematoxylin. Slices were analyzed under a microscope.

Detection of oxidative stress levels
Grouping processing is the same as “HE staining and IHC”. The

control group received intraperitoneal injection of 200 µL PVP-Se

FIGURE 4
Effect of PVP-Se NPs on oxidative stress damage and inflammatory factor secretion in HUVECs cells (A). MDA content; (B)CAT content; (C). GSH-Px
content; (D). SOD content; (E). IL-6 content; (F). IL-1β content; (G). TNF- α content. The data is represented as mean ± standard deviation (n = 3), *p <
0.05, **p < 0.01.
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NPs without X-ray irradiation; The experimental group was
intraperitoneally injected with 200 µL of PVP-Se NPs and
subjected to whole-body 10 Gy (2 Gy/min) X-ray irradiation.
Collect serum from rats for 15 days and detect the expression
level of oxidative stress.

TUNEL staining
The grouping treatment is the same as that described in “HE

staining.” TUNEL staining was performed after 15 days in order to
identify inflammatory factors in the liver and kidneys of the rats. The
stained slices were microscopically magnified (×400, Axiovert 25C;
Carl Zeiss, Germany) and colored photomicrographs were taken
using a digital camera (Canon Eos 1000D, Japan). Pictures were
standardized (“autocontrast” function, Adobe Photoshop
CS5 Extended, United States) and the number of TUNEL-
positive cells was counted in particular grids within VCN
(0.22 mm × 0.17 mm), the fusiform layer of DCN (0.16 mm ×
0.1 mm), and the ICC (0.45 mm × 0.33 mm).

Statistical analysis

Statistical analysis was performed using SPSS 22.0, and
measurement was defined as mean ± SD. The groups were
compared by using one-way ANOVA and Dunnett’s test.
Statistics are significant when they have p < 0.05.

Results

Physicochemical properties of PVP-Se NPs

The average particle size of PVP-Se NPs observed by a laser
particle size analyzer was 278.4 nm (Figure 1A). Through
transmission electron microscopy, it was observed that PVP-Se
NPs were hemispherical in shape, with a smooth surface and no
obvious aggregation phenomenon (Figure 1B).

Effects of PVP-Se NPs and X-rays on the
viability of HUVECs cells

To determine the optimal level of PVP-Se NPs and the optimal
dose of X-rays, the CCK-8 experiment was conducted. The results
showed (Figure 2) that in the absence of radiation treatment, the
activity of HUVECs cells decreased as the concentration of PVP-Se
NPs increased; After radiation treatment, PVP-Se NPs can
significantly increase the cell viability of HUVECs, and with the
increase of PVP-Se NPs concentration, the cell viability increases
(p < 0.01). At two X-ray doses of 5 Gy and 10 Gy, 36 μg/mL PVP-Se
NPs showed the best protective effect, and at the same
concentration, the cell activity of 10 Gy was higher than that of
5 Gy. Therefore, choose 36 μg/mL concentration and 10 Gy dose for
subsequent experiments.

FIGURE 5
Western blot was performed to detect NF-κB and MAPK-associated proteins in HUVECs.
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PVP-Se NPs resist HUVECs cell apoptosis
in vitro

It was found that treated cells with 36 g/mL PVP-Se NPs
displayed a lower apoptosis rate than control cells; however, the
difference was not statistically significant (Figure 3).

PVP Se NPs inhibit oxidative stress damage
and inflammatory factor levels in
HUVECs cells

The levels of oxidative stress factors and inflammatory factors were
assessed using an ELISA kit. The findings depicted in Figure 4 indicated
that the PVP-SeNPs group exhibited a notable decrease inMDA, IL-6, IL-
1β, and TNF-α content, when compared to the control group. Conversely,
the levels of CAT, GSH-Px, and SOD were significantly elevated in the
PVP-SeNPs group (p< 0.05). This indicates that PVP SeNPs can alleviate
radiation-induced oxidative stress and inflammation.

PVP-Se NPs inhibit the expression of
HUVECs cell related proteins

The expression levels of proteins related to the NF-κB and
MAPK signaling pathways were determined by Western blot
analysis. The results indicated that in comparison with the

control group, PVP Se NPs significantly inhibited the activity of
p-IκB-α, p-p65 in the NF-κB pathway, and inhibited the activity of
p-JNK, p-ERK, and p-p38 in the MAPK signaling pathway (p <
0.05), thereby exerting a radiation protective effect (Figure 5).

Screening of the optimal concentration of
PVP-Se NPs in vivo and improvement of
radiation damage in rats.

Without radiation treatment, 0, 18, and 36 μg/mL of PVP Se NPs
did not significantly affect the survival rate of rats, 72 μg/mL of PVP
Se NPs inhibits rat survival, indicating 36 μg/mL PVP Se NPs is
relatively safe for rats, so this concentration was selected for
subsequent experiments (Figure 6A).

HE staining shows (Figure 6B) diffuse mild vacuolar degeneration
of liver cells in the control group (blue arrow). Mild mononuclear
inflammatory cell infiltration can be seen around the central vein and
portal vessels (black arrow). No vascular or bile duct hyperplasia was
observed in the portal area; In the PVP-Se NPs treated group, the liver
cell cords were arranged neatly, and the hepatic sinuses were clearly
visible. Interlobular arteries, veins, and interlobular bile ducts in the
portal area do not exhibit dilation or proliferation; no inflammatory
cells are infiltrated, and fibrous tissue does not proliferate. The control
group showed multifocal mild mononuclear inflammatory cell
infiltration in the urinary tubulointerstitium (black arrow). Mild
fibrous tissue hyperplasia around blood vessels (blue arrow); In the

FIGURE 6
Screening of the optimal concentration of PVP-Se NPs for
radiation protection in rats (A) 15 days survival rate of rats; (B). HE
staining observation of pathological changes in liver and kidney
tissues (400 ×).

FIGURE 7
Antioxidant stress effect of PVP-Se NPs in rats (A). MDA content;
(B). CAT activity; (C). GSH-Px activity; (D). SOD activity. Mean and
standard deviation are used to represent the data (n = 4), *p < 0.05,
**p < 0.01.
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PVP-SeNPs treated group, there was no edema or degeneration of renal
tubular epithelial cells, and no exudate or tubular type was found in the
lumen. Interstitial blood vessels in the kidney did not dilate or become
inflamed with inflammatory cells.

PVP-Se NPs improve radiation-induced
oxidative stress damage in rats

Based on the study results (Figure 7), the PVP-Se NPs group’s
MDA content was significantly lower than the control group’s (p <
0.05), whereas levels of CAT, GSH-Px, and SOD were significantly
higher (p < 0.01). This indicates that PVP Se NPs can reduce
radiation-induced oxidative stress.

PVP-Se NPs inhibit radiation-induced cell
apoptosis in rats

The TUNEL staining results (Figure 8) indicated that compared to
the control group, cells treated with PVP-Se NPs had a lower apoptosis
rate, indicating that PVP-Se NPs significantly inhibited radiation-
induced apoptosis in rats’ liver and kidney tissues (p < 0.01).

PVP-Se NPs inhibit radiation induced
inflammatory factor expression in rats

The expression of inflammatory factor IL-1β, IL-6 and TNF-α in rats’
liver and kidney tissues was determined by immunohistochemistry, as

FIGURE 8
Inhibition of cell apoptosis by PVP Se NPs in rats’ liver and kidney tissues (A). TUNEL staining observation of cell apoptosis in rats’ liver and kidney
(400 ×); (B). Statistical analysis of the apoptosis rate in rat liver tissue cells; (C). Analysis of the apoptosis rate in rat kidney tissue cells. Data are presented as
mean and standard deviation (n = 3), p < 0.05, *p < 0.01.
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illustrated in the figure (Figure 9). Both the control group and PVP-Se
NPs group showed positive expression of diffuse hepatocyte
cytoplasmic IL-1β, but the positive area of liver cells in the
control group was slightly higher than that in the PVP-Se NPs
group. The majority of renal collecting ducts and some distal
convoluted tubules in the kidney control group and PVP-Se NPs
group showed IL-1β positivity, but the levels of positivity in the
control group were higher than those in the PVP-Se NPs
group. No IL-1β positive reaction was observed in the liver of
the control group and PVP-Se NPs group; All kidneys showed IL-
6 positive reaction in the collecting duct, and there was no
difference in the positive area and staining degree. One case of
Kupffer cell TNF-α positive was found in the liver control group,
while no positive reaction was found in all other liver samples;
One case in the PVP-Se NPs group showed no TNF-α positive
reaction in the kidneys, while all other submitted kidneys
revealed TNF-α positive reaction in the collecting duct. There
was no difference in the positive area and staining degree.

PVP-Se NPs inhibit the expression of
oxidative related proteins in rats

Western blots were used to analyze NF-κB andMAPK pathway-
related proteins in rat liver and kidney tissues. It was found that
compared to the control group, PVP-Se NPs significantly inhibited
p-IκB-α and p-p65 in the NF-κB signaling pathway (p < 0.01). The

presence of p-p65 significantly inhibits the expression of p-JNK,
p-ERK, and p-p38 in the MAPK regulatory pathway (p < 0.05),
thereby exerting antioxidant and radiation protective
effects (Figure 10).

Discussion

Finding substances to prevent radiation damage remains one of
the urgent focuses in radiation biology. Although the radiation
resistance effects of a large number of compounds have been
studied (Aygun et al., 2020; Kreusch and Duarte, 2021; Wang
et al., 2023), Existing radiation protection methods still fail to
fully meet the requirements, especially in terms of key
characteristics such as efficiency, action time, flexibility, and
usability (Kapustka, 2022). Due to selenium’s antioxidant
properties, there is growing research focusing on its utilization in
radiation protection. There are many similarities between selenium’s
chemical properties and those of sulfur. Nevertheless, some
selenium derivatives exhibit a significantly higher ability to
scavenge free radicals and peroxides than similar sulfur
compounds. Numerous studies have demonstrated Selenium’s
antioxidant and protective properties. Selenium compounds
protect biological molecules from oxidative stress (Li et al., 2023;
Mamgain et al., 2023). However, conventional Se supplements
present a range of challenges, including low absorption efficiency
and elevated toxicity levels. Therefore, developing innovative

FIGURE 9
Immunohistochemical detection of inflammatory factors in the rat liver and kidney (40×). The blue arrow shows a positive staining of
brownish yellow.
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systems as carriers of selenium compounds to improve selenium
bioavailability and achieve controlled release in vivo is of significant
significance.

Recent research has revealed that nano-modified inorganic
compounds display antioxidant properties (Krishnan Nair
et al., 2023). When utilized as therapeutic agents within the
body, Se NPs can gradually release biologically available
selenium in a controlled manner (Zhang et al., 2001).
Compared to molecular forms of selenium, the toxicity of Se
NPs is reduced by 50–100 times (Gao et al., 2023). In this study,
we synthesized polyvinylpyrrolidone-modified selenium
nanoparticles (PVP Se NPs) and explored their protective
effects against radiation, along with their potential molecular
mechanism. Previous research has suggested that even minimal
concentrations of molecular selenium could pose damage to
cells (Maynar et al., 2018). Hence, initial screening for the
optimal PVP-Se NPs concentration becomes necessary.
Experimental findings reveal that the optimal concentration
of PVP-Se NPs for both in vitro and in vivo is 36 μg/mL.

It has reported that ionizing radiation can interact with cellular
molecules, triggering an overproduction of free radicals and reactive
oxygen species such as hydroxyl radicals, hydrogen peroxide, and
superoxide radicals. This cascade of free radicals and reactive oxygen
species induces oxidative stress (Shirazi et al., 2011). Oxidative stress
damages biomacromolecules, disrupting cellular redox balance and
impairing normal cellular function and homeostasis, ultimately
culminating in cell death (Clavo et al., 2019). Additionally,

ionizing radiation also has the ability to prompt the excessive
release of inflammatory factors and activation of inflammatory
signaling pathways (Baselet et al., 2019; Wijerathne et al., 2021).
In this study, we found that PVP Se NPs significantly reduced the
generation of MDA, IL-1, IL-6 and TNF-α increased the generation
of GSH, SOD, CAT, and effectively alleviated cell apoptosis in
HUVECs and rats. These findings collectively suggest that PVP
Se NPs mitigate radiation-induced damage both in vitro and in vivo
by alleviating oxidative stress, inflammatory responses, and
cell apoptosis.

To further investigate the potential molecular mechanisms
underlying the mitigation of radiation damage by PVP-Se NPs,
we utilized Western blot analysis to assess the expression of proteins
associated with the NF-κB and MAPK signaling pathways in
HUVECs and rats. NF-κB serves as a pivotal nuclear
transcription factor implicated in regulating various cellular
processes, including proliferation, immunity, and inflammatory
responses (Thakur and Ray, 2017). A prior study demonstrated
that curcumin mitigates oxidative stress and inflammatory
responses in rats by suppressing NF-κB signaling pathway
activation, thus ameliorating radiation-induced liver damage (Li
et al., 2021b). MAPK functions as a serine/threonine-specific protein
kinase involved in regulating essential physiological and
pathological cellular processes, including growth, differentiation,
apoptosis, and inflammatory responses (Fecher et al., 2008). Ding
et al., 2021 observed decreased Mast1 expression in gastric tissue
irradiated mice. Through genetic manipulation experiments, they

FIGURE 10
Western blot was used to detect NF-κB and MAPK pathway-related proteins in rats’ liver and kidney tissues.
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revealed that Mast1 upregulation inhibits p38 MAPK signaling
pathway activation, thereby alleviating radiation-induced gastric
damage in mice. Our experimental results reveal that PVP-Se
NPs decreased the expression of p-IκB-α and p-p65 in the NF-
κB signaling pathway, as well as p-JNK, p-ERK, and p-p38 in the
MAPK signaling pathway. Consequently, we hypothesize that PVP-
Se NPs might be involved in radiation protection by reducing
oxidative stress and inflammatory factors by inhibiting NF-κB
and MAPK pathways.

Conclusion

In summary, PVP-Se NPs can resist X-ray induced HUVECs
cell damage and rat radiation damage, and have radiation
protective effects both in vivo and in vitro. The mechanism
may be related to reducing oxidative stress, inhibiting
inflammatory factor expression, and regulating NF-κB and
MAPK signaling pathway gene expression. We believe that
future research should prioritize several key areas. Firstly,
there is a need to optimize the synthesis methods of
nanomaterials to enhance the stability and biocompatibility of
PVP-Se NPs in vivo, while also minimizing potential toxicity and
side effects. Secondly, clinical trials should be conducted to assess
the radiation protection efficacy of PVP-Se NPs in humans.
Thirdly, exploration of the potential application of PVP-Se
NPs in protecting against radiation contamination could help
safeguard both humans and ecosystems from radiation hazards.
However, it’s important to acknowledge the limitations of this
study. Firstly, the investigation of the radiation protective effects
of PVP-Se NPs in vitro was limited to only 1 cell line (HUVECs).
Secondly, the evaluation of PVP-Se NPs’ radiation protection
effects in vivo was restricted to the liver and kidney of rats.
Thirdly, the analysis was focused solely on the expression of NF-
κB and MAPK signaling pathway-related proteins in HUVECs
and rats, with no rescued experiments conducted.
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