
DENOISING: Dynamic
enhancement and noise
overcoming in multimodal neural
observations via high-density
CMOS-based biosensors

Xin Hu1, Brett Addison Emery1, Shahrukh Khanzada  1 and
Hayder Amin1,2*
1Group of Biohybrid Neuroelectronics (BIONICS), German Center for Neurodegenerative Diseases
(DZNE), Dresden, Germany, 2TU Dresden, Faculty of Medicine Carl Gustav Carus, Dresden, Germany

Large-scale multimodal neural recordings on high-density biosensing
microelectrode arrays (HD-MEAs) offer unprecedented insights into the
dynamic interactions and connectivity across various brain networks.
However, the fidelity of these recordings is frequently compromised by
pervasive noise, which obscures meaningful neural information and
complicates data analysis. To address this challenge, we introduce
DENOISING, a versatile data-derived computational engine engineered to
adjust thresholds adaptively based on large-scale extracellular signal
characteristics and noise levels. This facilitates the separation of signal and
noise components without reliance on specific data transformations. Uniquely
capable of handling a diverse array of noise types (electrical, mechanical, and
environmental) and multidimensional neural signals, including stationary and
non-stationary oscillatory local field potential (LFP) and spiking activity,
DENOISING presents an adaptable solution applicable across different
recording modalities and brain networks. Applying DENOISING to large-scale
neural recordings from mice hippocampal and olfactory bulb networks yielded
enhanced signal-to-noise ratio (SNR) of LFP and spike firing patterns compared
to those computed from raw data. Comparative analysis with existing state-of-
the-art denoising methods, employing SNR and root mean square noise (RMS),
underscores DENOISING’s performance in improving data quality and reliability.
Through experimental and computational approaches, we validate that
DENOISING improves signal clarity and data interpretation by effectively
mitigating independent noise in spatiotemporally structured multimodal
datasets, thus unlocking new dimensions in understanding neural connectivity
and functional dynamics.
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1 Introduction

The intricate exploration of computational neural dynamics
investigated through the coordinated activity of interconnected
neural populations, especially within the hippocampus and
olfactory bulb, has been a cornerstone of contemporary
neuroscience research (Vyas et al., 2020). These regions, central
to spatial contextual learning, episodic memory, and olfactory
processing, demonstrate remarkable neuroplasticity and are key
to understanding the complex interplay of neural circuits in
cognitive functions (Bird and Burgess, 2008; Mori et al., 1999).
The hippocampus, a hub for information flow and synaptic
plasticity, is crucial for the formation and retrieval of memories.
Its ability to undergo structural and functional modifications in
response to stimuli underscores the dynamic nature of neural
networks (Lisman et al., 2017). Similarly, the olfactory bulb (OB)
serves as the initial stage of olfactory processing, transforming
odorant signals into neural representations through its intricate
layers and diverse neuronal interactions. The regions’ unique
capacity for adult neurogenesis offers a window into the
mechanisms underlying sensory perception and memory
integration (Kempermann et al., 2018; Lepousez et al., 2013).

Extracellular neural recordings have long been a fundamental
tool in neuroscience, offering insights into the electrical activity of
neurons in their native environment (Buzsáki et al., 2012). The
evolution of microelectrode arrays (MEAs) has expanded the scope
of these observations, facilitating the simultaneous recording of
multiple neural signals. Among the MEA technologies, high-
density CMOS-based biosensing platforms (HD-MEAs) stand out
due to their unparalleled technical capabilities (Berdondini et al.,
2009; Müller et al., 2015). With the capacity to feature thousands of
electrodes, these arrays can simultaneously capture a detailed
panorama of neural activity across extensive networks, providing
a dense sampling of electrical signals with high spatial and temporal
resolution. This dense array structure allows for an in-depth analysis
of neural interactions, offering a window into the synchronous and
asynchronous patterns that underlie dynamical processes and
functional connectome in multimodal neural networks and
circuits (Hu et al., 2022; Emery et al., 2023a; Amin et al., 2016;
Amin et al., 2017a; Amin et al., 2017b). This technology has
facilitated a shift from the study of isolated neural pathways to
an integrative view of brain’s functional networks, bridging gaps in
our knowledge of how neuronal ensembles coordinate to produce
complex behaviors and cognitive functions (Buzsáki, 2004). HD-
MEAs significantly enhance brain slice studies, merging ex vivo
biosensing precision with brain tissue complexity. This approach
allows for detailed exploration of electrical spiking activity and
rhythmic dynamics of local field potentials (LFPs) under
controlled conditions, thus enabling researchers to investigate
environmental factors, apply pharmacological agents, or
introduce genetic modifications to elucidate their effects on
neural activity (Hu et al., 2022; Emery et al., 2023a; Amin et al.,
2017b; Rossi et al., 2023; Emery et al., 2022; Emery et al., 2023b).

Despite advancements in these electrophysiological
technologies, capturing the full spectrum of neural patterns
within these complex networks remains challenging. The fidelity
of extracellular neural recordings is frequently susceptible to a range
of independent noise sources, including electrical interference from

the recording equipment, mechanical vibrations caused by external
or internal laboratory factors, and environmental noise, such as
electromagnetic fields. Removing noise from extracellular neural
recordings poses several challenges due to the complex nature of
neural signals and the non-stationary characteristics of noise. Neural
signals often exhibit irregular firing patterns and non-Gaussian
distributions, while noise can vary in amplitude and frequency
content over time (Harris et al., 2000). Additionally, the presence
of overlapping signals from multiple neuronal ensembles further
complicates the task of noise removal. Several classical denoising
strategies typically focused on temporal, spatial, or transform
domains (i.e., Wavelet or Fourier) (Patil, 2015), which often fall
short due to oversimplified assumptions about signal and noise
characteristics (Donoho, 1995; Starck et al., 2002). The limited
adaptability of these methods inadequately addresses the
complexity and heterogeneity in large-scale neural recordings.
This limitation not only impedes practical data analysis but also
restricts our understanding of essential neural mechanisms.

Moreover, unsupervised denoising methods may introduce
additional bias, as they might inadvertently emphasize or
suppress certain signal features without ground truth verification,
potentially leading to incorrect scientific inferences by distorting the
underlying neural processes (Kay, 2022). Despite existing classical
methods for denoising, current strategies do not effectively address
the unique challenges posed by large-scale neural recordings
captured by HD-MEAs. This gap underscores the critical need
for new denoising approaches designed explicitly for HD-MEA
data, which can dynamically adapt to its complexity, minimizing
bias and significantly enhancing signal clarity for robust and
accurate neural analysis.

In response to these challenges, we introduce DENOISING, a
computational framework developed to transcend the limitations of
conventional denoising techniques. Leveraging insights from recent
studies highlighting the intricate dynamics and plasticity within the
hippocampus and OB, DENOISING employs an adaptive engine to
enhance the clarity and reliability of multidimensional neural
recordings. Our method dynamically adjusts to the specific
spatiotemporal characteristics (i.e., firing pattern statistics,
network synchrony, burst, and waveform shapes) of extracellular
signals and independent noise, facilitating a more nuanced
separation of signal and noise components. Our approach is
based on a deep understanding of the spatial and temporal
structures of neural activity, informed by the complex interplay
of vast neuronal ensembles within these critical brain regions. These
dynamics are well-documented in the hippocampus (Lisman, 2005;
Buzsáki, 1989; Scharfman, 2007; Bathellier et al., 2008; Luo and Katz,
2001) and the OB (Czanner et al., 2015; Gustafsson, 1996; Krishnan
and Seelamantula, 2013) using various recording methodologies.
This understanding supports the DENOISING method in
identifying similar regions of activity as expected in both the
hippocampus and the OB.

In the following sections, we detail our method’s effectiveness
through its use in analyzing large-scale neural LFP and spike data
from complex hippocampal-cortical and olfactory networks. This
includes demonstrating significant signal-to-noise ratio (SNR)
(Czanner et al., 2015) enhancement, mapping topographical
propagation features, classifying patterns based on their initiation
and transmission, and waveform characteristics. Furthermore, we
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benchmark DENOISING against traditional methods,
demonstrating our approach’s capacity to enhance data quality
and reliability.

Our study illuminates the path toward more accurate and
comprehensive analyses of HD-MEA’s extracellular recordings,
highlighting the potential to unlock new dimensions in our
understanding of large-scale neural connectivity and functional
dynamics and opening new avenues for exploring the
mechanisms of learning, memory, and sensory processing.

2 Materials and methods

2.1 DENOISING framework

We employed an adaptive waveform-based thresholding
technique designed specifically for processing signals captured by
high-density CMOS-based microelectrode arrays. This involves
setting customized thresholds for noise removal based on
multiple signal waveform characteristics, including amplitude
variations, frequency content, and waveform shape irregularities.
The thresholding process is dynamically adjusted in real-time,
leveraging the dense data acquisition capabilities of the arrays to
detect and isolate noise components from true neural signals. The
operational framework employed a composite of these signal
features to define noise versus signal criteria, which are applied
instantaneously to each waveform detected across the array’s
multiple recording channels. This method ensures a robust noise
reduction while preserving the integrity of the biological signal,
making it highly suitable for environments with variable noise
conditions often encountered in high-density array recordings.
To facilitate the application of our DENOISING method, the
complete script, along with example datasets, is available
on our GitHub repository (https://github.com/HayderAminLab/
DENOISING). This resource includes detailed instructions for
running the DENOISING method on both LFP-based and spike-
based data acquired from HD-MEA systems, ensuring that other
researchers can readily implement and validate our approach in
their own studies.

2.2 Animals and acute brain slice preparation

Our study utilized 12-week-old female C57BL/6j mice (Charles
River Laboratories, Germany), and ensured all procedures complied
with European and national animal welfare regulations
(Tierschutzgesetz), with approval license (Landesdirektion
Sachsen; 25–5131/476/14). Brain slices were prepared according
to our previous report (Hu et al., 2022; Emery et al., 2023a).
Following anesthesia with 0.05% inhaled isoflurane (Primal,
Germany), mice were decapitated, and their brains were
extracted and submerged in a chilled sucrose solution for slicing.
Using a Leica Vibratome VT1200S (Leica Microsystems, Germany),
we prepared 300 μm thick horizontal brain slices, cut at 0°C–2°C in
aCSF solution saturated with 95% O2 and 5% CO2 (pH = 7.2–7.4) of
a high sucrose solution containing in mM: 250 Sucrose, 10 Glucose,
1.25 NaH2PO4, 24 NaHCO3, 2.5 KCl, 0.5 Ascorbic acid, 4 MgCl2,
1.2 MgSO4, 0.5 CaCl2. Furthermore, hippocampal and OB slices

were incubated for 45 min at 32°C and then allowed to recover for at
least 1 h at room temperature before recording with HD-MEAs in a
recording aCSF solution containing in mM: 127 NaCl, 2.5 KCl,
1.25 NaH2PO4, 24 NaHCO3, 25 Glucose, 1.2 MgSO4, 2.5 CaCl2, and
the solution was aerated with 95% O2 and 5% CO2.

2.3 Multimodal extracellular recordings and
LFP/spike events detection

Extracellular neural activity was recorded using HD-MEAs
crafted from complementary-metal-oxide-semiconductor
(CMOS) technology, coupled with a bespoke acquisition system
(3Brain AG, Switzerland). The CMOS chip featured
4,096 electrodes organized in a 64 × 64 array with a pitch of
42 μm, creating an active sensing area of approximately 7 mm2, an
ideal dimension for comprehensive recordings from both
hippocampal-entorhinal cortex and olfactory bulb (OB) tissues
at 14 kHz/electrode sampling frequency (Hu et al., 2022; Emery
et al., 2023a). The on-chip amplification circuit allowed band-pass
filtering from 1 Hz to 5 kHz, sufficient to record slow and fast
neural activity. The hippocampal-entorhinal cortical recordings
spanned six layers: dentate gyrus (DG), Hilus, CA3, CA1,
entorhinal cortex (EC), and perirhinal cortex (PC). Similarly,
OB recordings encompassed neuronal signals across five distinct
layers: the olfactory nerve layer (ONL), glomerular layer (GL),
external plexiform layer (EPL, we referred to as the projection
layer), the olfactory cortex (OCx), and granule cell layer (GCL).
Integration of a modular stereomicroscope (Leica Microsystems,
Germany) allowed for simultaneous acute slice imaging and
extracellular recording, facilitating the correlation of spatial
tissue organization with electrode activity. Event detection for
LFPs and multi-unit spiking activity (MUA) was conducted
using commercial software (3Brain AG), where data was first
refined by applying a low-pass filter (1–100 Hz) for LFPs and a
band-pass filter (300–3,500 Hz) for MUA. Following the filtering,
events were detected using hard thresholding alongside precise
timing spike detection (PTSD) algorithms, respectively (Hu et al.,
2022; Emery et al., 2023a). This sequence ensured that the
frequency components suitable for describing LFPs and spikes
were accurately isolated before event detection, improving the
specificity and accuracy of the detected events.

2.4 Topographical spatiotemporal voltage
maps, CATs, and event incidence

To assess the impact of DENOISING in enhancing dynamical
spatiotemporal information in the hippocampus and OB
subregional networks, we computed averaged LFP and spike
event frequencies across their interconnected layers. By
employing high-resolution, multimodal recordings, we generated
dynamic topographical maps for LFP and spike data within
respective 50 ms and 10 ms time bins. Illustrated in pseudo-
color, these maps demonstrate the spatial distribution of
electrical activity per event, accentuating the enhanced clarity of
neuronal interactions after noise removal. Spatiotemporal activity
propagation was quantified by analyzing the center of activity
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trajectories (CATs) (Hu et al., 2022). Furthermore, we determined
long-range event incidence rates and their distributions, leveraging
simultaneous recordings from extensive subnetworks to clarify
decontaminated initiation sites and their propagation across
layers after employing DENOISING.

2.5 Traditional noise-removal methods

DENOISING was evaluated against established noise reduction
techniques in neural recordings, categorized into signal and
transform domain methods. In the signal domain, we applied
one-dimension causal forward-in-time FIR filtering (Gustafsson,
1996) (https://docs.scipy.org/doc/scipy/reference/generated/scipy.
signal.lfilter.html#scipy.signal.lfilter) and the Savitzky-Golay
algorithm (Krishnan and Seelamantula, 2013) for smoothing the
signal by fitting a polynomial to a segment of neural data points via
least squares regression (https://docs.scipy.org/doc/scipy/reference/
generated/scipy.signal.savgol_filter.html). For transform domain
denoising, we utilized Wavelet (WT) and Fourier Transform (FT)
methods, which transform the recorded signals into different
frequency components, where the noise removal or filtering
operation is applied more effectively. WT denoising involves
convolution with a wavelet function to isolate signal frequencies
computed using the PyWavelets package (https://github.com/
PyWavelets/pywt). FT approaches modify signal frequencies in
the frequency domain before an inverse transformation (https://
numpy.org/doc/stable/reference/generated/numpy.fft.ifft.html).
These methodologies provide a foundation to demonstrate
DENOISING’s performance extracting clean neural signals.

2.6 Extracellular waveform characterization
and clustering assessment

We performed unsupervised clustering analysis to group
similar waveform shapes of LFP patterns using principal
component analysis (PCA) clustering with the mean-shift
algorithm (Minka, 2008; Comaniciu and Meer, 2002). PCA was
applied to reduce the dimensionality of the waveform data
while preserving the essential features (https://scikit-learn.org/
stable/modules/generated/sklearn.decomposition.PCA.html). The
mean-shift algorithm was then employed to identify clusters in
the reduced-dimensional space (https://scikit-learn.org/stable/
modules/generated/sklearn.cluster.MeanShift.html). Unlike other
algorithms, such as k-means (Coates and Ng, 2012), mean-shift
does not require the number of clusters to be specified, as it
automatically determines the clusters based on data density.
This approach allowed us to uncover distinct patterns of LFP
activity within the hippocampal and OB slices in raw and
denoised data.

To identify and cluster spiking activity from the recordings, we
employed an unsupervised spike sorting algorithm compatible with
large-scale neural recordings (Hilgen et al., 2017) and available on
GitHub (https://github.com/mhhennig/HS2). The spike sorting
algorithm was modified and implemented to extract various
features, such as spike waveforms, spike amplitudes, and spike
timing, to isolate individual spikes and group them into distinct

clusters corresponding to different neuronal units estimated from
multimodal large-scale neuronal ensembles. This process enabled
us to differentiate between different types of firing electrodes
and discern their spiking patterns within the hippocampal and
OB slices.

Furthermore, we computed silhouette coefficients (SC) to assess
the quality of the clustering results obtained from both LFP
waveform shapes and multi-unit spiking activity (Rousseeuw,
1987). Silhouette coefficients measure the coherence and
separation of clusters, providing a quantitative measure of
clustering quality (https://scikit-learn.org/stable/auto_examples/
cluster/plot_kmeans_silhouette_analysis.html). Higher silhouette
coefficients indicate better-defined and more distinct clusters,
while negative coefficients suggest overlapping or poorly
separated clusters. By computing silhouette coefficients, we could
objectively evaluate the effectiveness of our DENOISING method
through clustering algorithms in capturing the underlying structure
of the neural activity data compared to raw noise-contaminated
data. This highlights the only actual partition of waveforms from the
firing electrodes without the bias of the clustering algorithm used to
obtain them.

2.7 Performance benchmark analysis

To evaluate the performance of DENOISING, we employed
three metrics–a normalized signal-to-noise ratio difference (SNRDR)
(Czanner et al., 2015), SNR distribution (Lecoq et al., 2021) and root
mean square noise (RMS) (Hyndman and Koehler, 2006). SNRDR

offers a normalized measure of improvement, facilitating
meaningful comparisons even when baseline SNR levels vary
widely between recordings. This metric highlights the relative
gains achieved by our denoising method, providing insights into
its efficiency in enhancing signal quality relative to the initial noise
level. SNR distribution evaluates the performance of the denoising
method across the entire large-scale network with high channel
counts. It demonstrates the method’s general applicability and
effectiveness under diverse experimental conditions. RMS is a
statistical measure that quantifies the magnitude of signal
variation, assessing the effectiveness of noise reduction. This
metric further quantifies improvements in signal quality,
complementing the SNR metrics by offering a direct measure
of the denoising impact on signal magnitude. The dynamic range
of the SNR using the logarithmic decibel scale (SNRS) is
defined as:

SNRdB
Signal � 10 log10 SNRSignal( )

The normalized SNRDR is defined as the normalized difference
between the (SNR) of the denoised signal and the SNR of the raw
signal, given as:

SNRDR � SNRdB
denoised − SNRdB

raw( )
SNRdB

raw

× 100

In addition, to determine the distribution of SNR in large-
scale recordings, we computed SNR as the ratio of mean firing
activity in all active channels to standard deviation across the
time domain.
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Furthermore, the RMS measures the magnitude of the varying
components of biosignals. It provides a single number that
represents the noise level in a way comparable across raw and
denoised conditions. The RMS is defined as:

RMSnoise �

������∑N
i�1

xi( )2

N

√√

Where xi denotes the individual values of the firing electrodes
(signals), and N represents the number of data samples.

2.8 Data and statistical analysis

All analyses used in this study were developed and implemented
with custom-written Python scripts available on our Lab’s
GitHub (https://github.com/HayderAminLab/DENOISING). Any
employed packages are cited accordingly. All statistical analyses
were performed with Python and Originlab 2022. All data in this
work were expressed as the mean ± standard error of the mean
(SEM). Differences between groups were examined for statistical
significance, where appropriate, using one-way analysis of variance
(ANOVA) or Kolmogorov-Smirnov test followed by Tukey’s
posthoc testing. p < 0.05 was considered significant.

3 Results

3.1 DENOISING principles

We implemented the DENOISING method as a novel approach
for denoising extracellular large-scale recordings obtained from
hippocampal and olfactory bulb slices. The primary objective of
our method was to effectively remove noise while preserving the
essential features of the signals, thereby enhancing the clarity and
precision of LFP and spike patterns (Figure 1). The method is
implemented through waveform-based thresholding, which
operates directly on the time-domain representation of the
signals. This method involves setting a threshold level based on
the characteristics of the waveforms and removing signal segments
below this threshold, which are considered noise. We separately
applied waveform-based thresholding to both LFP (Figures 1A–C)
and spike (Figures 1D–F) signals to ensure optimal denoising
performance for each signal type. The DENOISING method
utilized several identifiers derived from network-wide features to
enhance the noise-removal process and improve its adaptability to
different datasets. These identifiers were used to set up a template
containing specific values of spatiotemporal pattern features, which
could be cast off for testing with other datasets. The network features
included - firing frequency (synchrony), number of firing electrodes
(adapted to the structural clusters identified by optical imaging

FIGURE 1
DENOISING Principles and Implementation. (A) LFP signal rastergram from hippocampal-cortical recordings, illustrating waveform-based
thresholding (black points indicate raw data with noise). (B) Detailed rastergram highlighting noise reduction and preservation of essential signal features
(red points indicate the detected noise channels after DENOISING). (C) LFP waveform features are used in denoising to enhance clarity in spatiotemporal
LFP events. (D–F) Analogous to (A–C), for olfactory bulb spike recordings, showcasing spike-based feature application in denoising.
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information combined with electrophysiology recordings), event
duration (min-max range), event amplitude, and bursting
frequency. Following the integration of denoising parameters and
their automated application to the hippocampal and OB recorded
datasets, the DENOISING method exhibited a substantial reduction
in independent noise artifacts, as depicted in network-wide activity
represented in 5-min raster plots (Figure 1).

3.2 Validation with multimodal neural
recordings

To underscore the physiological validity of our neural
recordings, we initially focused on exploiting multimodal neural
recordings derived from extracellular LFP and spike signals within
well-characterized hippocampal-cortical and olfactory bulb circuits
(Hu et al., 2022; Emery et al., 2023a). These systems are known for
their intricate spatiotemporal dynamics, including specific initiation
sites and subsequent propagation across distinct neural layers. Such
detailed mapping is crucial for understanding the complex interplay
of neural activities that underpin cognitive and sensory processing

(Vyas et al., 2020; Bird and Burgess, 2008; Mori et al., 1999). We
applied the DENOISING framework to process these recordings,
intended not only to assess its noise reduction capabilities but also to
demonstrate that our approach preserves the biological fidelity of
these dynamic neural interactions.

Representative event traces from key regions of the
hippocampal-cortical network regions (i.e., CA1, CA3, and EC)
and OB (i.e., GL, PL, and GCL) were analyzed. These traces captured
a diverse array of LFP and spike biosignal signatures both in their
raw, unprocessed state and following noise reduction using
DENOISING across multiple categories of noise examples
(Figure 2). The significant denoising performance of our method
for both LFP and multi-unit spiking-based patterns was
demonstrated in—i) effectively discarded spatiotemporal
segments of unwanted noise, even when the stringent hard
threshold and PTSD algorithms detected events. This precision
was evident in representative traces from CA1 and GL electrodes
(Figures 2A, B), highlighting the method’s ability to discern genuine
neural activity from noise. ii) identified and eliminated non-
physiological signals contaminated with independent noise,
including 50 Hz environmental noise (Figure 2A; EC electrode)

FIGURE 2
DENOISING Impact on Multimodal Bioelectrical Signal Clarity and Circuit Dynamics. (A,B) Showcases DENOISING’s precision in hippocampal-
cortical and OB circuits, effectively isolating genuine neural activities from noise across CA1, CA3, EC, GL, PL, and GCL regions. Illustrated are
examples of successfully discarded spatiotemporal segments of unwanted noise, elimination of non-physiological signals, suppression of inductive
coupling noise, and removal of spurious spiking patterns, ensuring fidelity in neural signal interpretation. Red arrows highlight instances where
spikes detected by the PTSD algorithm were effectively clarified by DENOISING, showcasing the method’s capability to ensure accurate signal
interpretation. (C,D)Depict the integration of DENOISING-processed neural activity with anatomical landmarks, constructing spatial maps that reveal
the organization of neural activity through extracellular discharges in false-color time-lapse frames, highlighting the significant noise reduction
achieved compared to raw frames. (E,F) Center-of-activity trajectories (CATs) from LFP and spiking events delineate information transfer within
neural circuits, demonstrating DENOISING’s impact on refining data interpretation by revealing true global circuit dynamics illustrated through the
propagation paths of CATs and their timing. (G) Illustrates the spatial propagation of rhythmic electrical patterns in raw and post-DENOISING,
revealing authentic firing patterns and enhancing the fidelity of neural spatiotemporal signal interpretation by elucidating intricate dynamics of
neural activity.
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and mechanical artifacts stemming from perfusion glitches
(Figure 2B; PL electrode). This capability underscores the
method’s robustness in preserving the fidelity of neural
recordings. iii) suppressed inductive coupling noise originating
from CMOS-chip electrical wiring before signal amplification.
DENOISING enhanced the accuracy of neural signal
interpretation by distinguishing and attenuating false signals with
similar frequency and amplitude to neural oscillations, as evidenced
by traces in (Figures 2A, B; CA3 and GCL electrodes). iv) removed
falsely detected spurious spiking patterns embedded within the
physiological spiking activity observed across electrodes in CA1,
CA3, EC, and GL regions (Figures 2A, B). This ensures the extracted
spiking activity reflects the true neuronal firing dynamics,
facilitating more precise insights into neural circuit function and
information processing within these critical brain regions. v)
rectified false signal patterns that emerged from dysregulated
chip calibration, as illustrated in traces from PL and GCL
electrodes (Figure 2B). The auto-zeroing circuit integrated into
the CMOS-chip, is regularly calibrated to the electrode’s DC
voltage, which could be impaired due to various noise sources
and light effects, leading to signal contamination.

Next, to elucidate the profound impact of DENOISING in
identifying and mitigating independent noise across the entire
spatiotemporal functional landscape within our recorded
subnetworks, we integrated large-scale activity with the brain
network’s anatomical landmarks. We overlaid the computed
mean of firing patterns obtained from LFP and spike recordings
onto optical images of hippocampal-cortical and OB circuits; then,
we constructed maps that revealed the spatial organization of neural
activity (Figures 2C, D). These maps encoded extracellular
discharges in false-color time-lapse frames depicting full LFP and
spiking events. The frames, with time steps of 50 ms for LFP and
10 ms for spiking events, showcased the global noise-embedded
contamination across layers in raw data frames compared to the
denoised frames. This visualization underscored the substantial
reduction in noise achieved by DENOISING, enhancing the
clarity and precision of the recorded neural activity. We further
constructed center-of-activity trajectories (CATs) from LFP and
spiking events to delineate information transfer and processing
pathways within the neural circuits. A striking disparity between
raw and denoised frames (in events time and amplitude) was
observed in the averaged-CAT patterns, emphasizing the pivotal
role of DENOISING in refining data interpretation and uncovering
the true global circuit dynamics emerging from population activity
(Figures 2E, F).

Simultaneous recordings from all multimodal network layers
were leveraged to compute the generation site and trace the spatial
propagation of rhythmic electrical patterns. This analysis illustrated
the remarkable significance of DENOISING in providing clarity to
unveil the authentic firing patterns obscured by noise in the raw
data. The spatial maps of rhythmic electrical patterns elucidated the
intricate dynamics of neural activity and highlighted the
transformative effect of DENOISING in enhancing the fidelity of
neural signal interpretation (Figure 2G).

In summary, the integration of robust DENOISING techniques
with detailed spatial analyses significantly advances the
interpretation of neural activity within key brain networks. This
approach aligns functional insights with underlying neural

structures, enhancing signal clarity and ensuring that observed
behaviors match known anatomical features. This synergy offers
crucial insights into complex neural interactions and their
physiological implications. These enhanced denoising capabilities
could impact the understanding of prolonged depolarization states
and the synchronization within neural networks, potentially offering
new avenues for research into neural connectivity and its role in
cognitive and sensory processing.

3.3 DENOISING for waveform
characterization

Analysis of oscillatory activity waveforms is pivotal for
understanding the diverse functionalities within neural circuits.
Waveform shapes can indicate different types of neuronal activity
and are vital in identifying distinct neuronal types in specific brain
regions and their roles in processing information (Cole and Voytek,
2017). Accurately characterizing waveform features from large-scale
neural recordings is essential for decoding the intricate activities
within brain networks. This necessitates enhancing signal clarity
through meticulous noise reduction, ensuring that the subtle
nuances of neural interactions are not lost.

To further evaluate the impact of our DENOISING method, we
applied PCA and the Mean-Shift algorithm to LFPs extracted from
raw and denoised hippocampal and OB recordings. On raw data,
PCA depicted a jumbled cluster of signals, indicating a lack of
distinct grouping among waveform features. However, post-
DENOISING, PCA delineated between groups of data, with
color-coded waveforms distinctly belonging to their respective
clusters (Figures 3A, B). This stark differentiation underscores
DENOISING’s capability to significantly enhance the discriminability
and clarity of neural signals, allowing for a more nuanced interpretation
of complex network activities.

Furthermore, silhouette coefficient analysis quantitatively
confirmed the superior clustering performance in denoised data
over raw recordings (Figures 3C, D).

Expanding our analysis, we employed an advanced spike sorting
technique to scrutinize spiking activities within these recordings
(Hilgen et al., 2017). This process also benefited markedly from the
DENOISING process, revealing more defined and distinguishable
clusters of spike waveforms. These were coherently matched with
their groups identified through PCAmaps, reinforcing the denoising
method’s effectiveness (Figures 3E, F). The application of silhouette
coefficients re-emphasized a statistical foundation for asserting the
significant enhancement in clustering quality attributable to our
denoising technique, underscoring its effectiveness in refining the
analysis of complex neural signals (Figures 3G, H).

3.4 Benchmarking with traditional noise
removal approaches

Employing SNR distribution analysis, calculated as the mean
over standard deviation, we observed a pronounced enhancement in
both LFP and spiking activity data post-DENOISING (Figures
4A–D). Specifically, the SNR in hippocampal-cortical and OB
LFPs denoised data yielded a 38.8 and 53-fold increase,

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Hu et al. 10.3389/fbioe.2024.1390108

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1390108


respectively, over raw data (Figures 4A, B). Similarly, spiking activity
analysis revealed significant gains, with a 78.8-fold increase in
hippocampal-cortical regions and a 16-fold improvement in OB
regions (Figures 4C, D).

While classical noise reduction methods have not been
explicitly documented in the context of large-scale extracellular
recordings and HD-MEAs, we aimed to rigorously evaluate the
performance of DENOISING compared to these established
techniques–specifically, Wavelet Transform, Fourier Transform,
and Savitzky-Golay filter. Our objective was to comprehensively
assess DENOISING’s efficacy in enhancing signal clarity and
accuracy, which is critical for deciphering the nuanced
dynamics of neural activity within the hippocampal-cortical and
OB networks.

Further comparative analysis employed the RMS parameter
and normalized SNR of denoised data to raw, illustrating
DENOISING’s superiority. Radar plots displayed that denoised
data exhibited significantly higher SNR (Figure 4E) and lower RMS
values (Figure 4F) for both LFPs and spikes, outperforming
classical noise-removal methods. These findings underscore the
advanced capability of DENOISING in refining neural signal
analysis, setting a new benchmark for the analysis of complex
extracellular recordings.

4 Discussion

We have introduced DENOISING, a computational framework
validated with experimental multimodal data to enhance fidelity and
clarity through dynamic noise mitigation on large-scale bioelectrical
signals. The adaptive nature of the method allowed for handling a
wide range of noise, including electrical, mechanical, and
environmental sources, ensuring robust noise removal while
preserving the essential features of a diverse array of extracellular
LFP and spike signals. This capability is particularly relevant in the
context of recent advancements in large-scale biosensing HD-MEAs
and their application in monitoring neural dynamics across various
spatial and temporal scales. By facilitating precise observations of
network-wide activity, our approach enabled a deeper
understanding of the interconnected processes governing brain
function, which has profound implications for areas critical to
learning, memory, and sensory processing.

Central to our results is the improved accuracy in waveform
clustering, spike sorting, and CAT analysis, allowing for more
precise identification and categorization of neural signals and
network dynamics. This precision is critical for understanding
the nuanced activities within neural circuits and contributes to a
more explicit interpretation of neural communication patterns.

FIGURE 3
Advanced Waveform Analysis and Clustering Enhancement via DENOISING. (A,B) Utilizing PCA and Mean-shift algorithm on LFPs
from hippocampal-cortical and OB recordings illustrates the transformation from indistinguishable clusters in raw data to clearly defined
color-coded waveform groups post-DENOISING, highlighting the method’s success in improving signal discriminability. (C,D) Silhouette
coefficient (SC) analysis further quantifies this clustering enhancement (p < 0.0001 ANOVA). (E,F) Advanced spike sorting techniques
reveal more distinct spike waveform clusters from hippocampal-cortical and OB recordings. (G,H) Silhouette coefficients (SC) underscoring the
statistical improvement in clustering quality due to DENOISING, emphasizing its pivotal role in refining complex neural signal analysis (p <
0.0001 ANOVA).
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Through significant SNR improvements and RMS noise reduction
analyses, our methodology provided compelling evidence of its
performance that transcends traditional methods. This
enhancement not only improved the quality and reliability of
neural data but also enabled the detection of subtle neural
activity, thus unveiling obscured neural dynamics and
interactions that were previously indiscernible.

Furthermore, our study aligns with the growing body of research
emphasizing the critical need for high-fidelity neural data to
understand complex brain functions and disorders (Hu et al.,
2022; Emery et al., 2023a; Li et al., 2023; Vázquez-Guardado
et al., 2020), necessitating multi-purpose denoising methods
(Lecoq et al., 2021; Eom et al., 2023; Li et al., 2021).

In addressing the specific process of our DENOISING
method, it is important to clarify that while the algorithm
proficiently identifies and improves the clarity of signals
associated with significant LFP and spike events, it does not
alter or reconstruct signal components outside of these detected
events. This is evident in Figure 2, where only meaningful neural
activities are highlighted, emphasizing the adaptive nature of our
filter in focusing on significant neural events. This selective
filtering is vital for accurately interpreting SNR improvements

shown in Figure 4, as it directly relates to the assessed signal
quality rather than indiscriminately altering the entire
data spectrum.

While the DENOISING framework has shown substantial
efficacy in enhancing the clarity of extracellular recordings
through dynamic adjustment and noise separation, it does not
incorporate the application of deep learning approaches
exemplified by other methods (Lecoq et al., 2021; Eom et al.,
2023; Li et al., 2021). However, by not utilizing a machine
learning backbone or extensive training datasets, DENOISING
offers a significant computational advantage compared to
other methods. It requires considerably less computational
resources and time, bypassing the need to train a neural
network, which is computationally intensive and requires large
datasets. This makes DENOISING more accessible for real-time
applications and suitable for environments with limited
computational capabilities, providing a practical solution for
immediate noise reduction without the overhead of training
and model optimization. However, integrating a deep learning
component into our framework represents a compelling avenue
for future research, which could potentially offer improved
adaptability and precision in noise reduction and signal

FIGURE 4
SNR and RMS Enhancements in Neural Signals Post-DENOISING. (A–D) Depict the significant improvements in SNR distribution for both LFP and
spiking activities in hippocampal-cortical and OB recordings following DENOISING application, with significant increases up to 38.8 and 53 times for
LFPs, and 78.8 and 16 times for spiking activities, respectively. (LFPs, p < 10−8, Spikes p < 10−20 Kolmogorov-Smirnov test). Rug lines under distributions
clarify data points by marking their positions on distribution axes, not representing density. (E,F) Comparative analysis with classical noise reduction
techniques through radar plots demonstrates DENOISING’s superior performance, showcasing markedly higher normalized SNR (E) and lower RMS (F)
values, thereby affirming its exceptional capability in enhancing signal clarity and accuracy over traditional methods and raw data prior-DENOISING. (SNR
LFPs, p < 10−3, SNR Spikes, p < 10−6 ANOVA, RMS LFPs, p < 10−7, and RMS Spikes, p < 10−6 ANOVA, for DENOISING compared to FT, WT, and
Savitzky-Golay).
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processing by harnessing the power of large-scale neural datasets
for training purposes.
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