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A developing use of nanotechnology in medicine involves using nanoparticles to
administer drugs, genes, biologicals, or other materials to targeted cell types,
such as cancer cells. In healthcare, nanotechnology has brought about
revolutionary changes in the treatment of various medical and surgical
conditions, including in orthopedic. Its clinical applications in surgery range
from developing surgical instruments and suture materials to enhancing
imaging techniques, targeted drug delivery, visualization methods, and wound
healing procedures. Notably, nanotechnology plays a significant role in
preventing, diagnosing, and treating orthopedic disorders, which is crucial for
patients’ functional rehabilitation. The integration of nanotechnology improves
standards of patient care, fuels research endeavors, facilitates clinical trials, and
eventually improves the patient’s quality of life. Looking ahead, nanotechnology
holds promise for achieving sustained success in numerous surgical disciplines,
including orthopedic surgery, in the years to come. This review aims to focus on
the application of nanotechnology in orthopedic surgery, highlighting the recent
development and future perspective to bridge the bridge for clinical translation.
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Introduction

Throughout history, innovation and disruptive technology have shown the capability to
improve patient outcomes significantly. One field with the potential to revolutionize
healthcare is nanotechnology, offering opportunities to enhance the diagnosis and
treatment of intricate medical conditions (Chen, 2023; Kia et al., 2023; Malik et al.,
2023). Nanotechnology was first described by the National Nanotechnology Initiative as
an investigation and controlled manipulation of small molecules and atoms ranging in size
from 1 to 100 nm; though, since then, the term has been broadened to incorporate more
diverse types of research activities as well as uses (Rambaran and Schirhagl, 2022; Wang
et al., 2023). The evolution of nanotechnology in healthcare has marked a revolutionary
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shift in medical science, offering precise treatments and early
diagnosis possibilities. It began with the theoretical foundation
laid down by physicist Richard Feynman in his famous
1959 lecture “There’s Plenty of Room at the Bottom,” and gained
momentum with the development of the scanning tunneling
microscope in the 1980s (Feynman, 2018). This allowed scientists
to visualize and manipulate individual atoms. In the early 2000s, the
first nanodrug, Doxil, was approved for cancer treatment,
showcasing the potential for nanotechnology to enhance drug
delivery. Since then, nanotech has continued to break new
ground with developments like quantum dots for imaging,
nanorobots for surgery, and nanoparticle-based vaccines,
including those used in COVID-19. This progression towards
increasingly sophisticated nanomaterials and devices is paving the
way for more targeted and efficient healthcare solutions (Sullivan
et al., 2014).

The need for quick and predictable processes, as well as the need
for precise therapies when individuals seek dental treatment (DDS),
have prompted several fundamental studies intended for identifying
biomaterials with novel features for the dentistry market (Donos
et al., 2019; Omar et al., 2019; Eivazzadeh-Keihan et al., 2020;
Kunrath et al., 2020). Among these substances, biomaterials with
nano-engineered structures and drug delivery systems have
demonstrated potential uses, for example, those identified in
dental implant oral reintegration (Donos et al., 2019; Kunrath
et al., 2020), directed restoration of bone using substitute bones
and membranes (Furtos et al., 2017; Donos et al., 2019; Eivazzadeh-
Keihan et al., 2020), resins used in dental reconstructive (Imazato
et al., 2017) and endodontic products (Zhang et al., 2023a) for
intracanal contamination control (Cuppini et al., 2019).

Orthopaedics is an attractive field in which nanotechnology can
be applied because bone and its constituents, for example, collagen
fibrils, hydroxyapatite, and Haversian systems, are nano-
compounds (Tasker et al., 2007; Lantieri et al., 2022; Boretto
et al., 2023). Bone is composed of a malleable matrix and linked
minerals. The matrix of bones is made up of flexible collagen fibers
and pulverized material (Zhang et al., 2023b). It consists of a mineral
composition of phosphate and calcium in the form of
hydroxylapatite (HA), water, and proteins containing type I
collagen fibrils. Minerals and organic compounds have
nanometer-scale dimensions (Rho et al., 1998). In orthopedics
surgery, biomaterials and host tissue commonly interact on a
micro-level (Gai et al., 2023). Through nanoscale material
alterations, it is feasible to significantly improve the effectiveness
of these kinds of interactions by employing biomaterials made up of
NPs and structures (Mazaheri et al., 2015; Wang and Tang, 2019).
This acts as the basis for the vast majority of orthopaedic
applications for nanotechnology. The use of nanotechnology in
the orthopaedic investigation is promising since it facilitates the
improvement of mechanical features and biocompatibility of
implanted orthopedics maneuvers (Han et al., 2022).
Nanostructured grafts and prostheses give greater mechanical
strength, improved resistance to corrosion and erosion, the
ability to administer medicine, and the capacity to act as
scaffolds for tissue renovation (Kienapfel et al., 1999; Bishop
et al., 2012; Hanc et al., 2016). Nanotechnology offers a vast
array of innovative orthopedic applications. Important
application includes osseointegration of graft materials,

restoration and rejuvenation of meniscus, deformation in the
osteochondral, and vertebral disk. It plays an essential function
in the delivery of targeted drugs for the cure of bone malignancies
(Balasundaram and Webster, 2006; Laurencin et al., 2009; Pleshko
et al., 2012; Mazaheri et al., 2015; Poon et al., 2021). Figure 1 shows
the various applications of nanotechnology in orthopedics.

In younger patients, conventional orthopedic and dental
implants present the greatest concerns of failure and short
lifespan. Nanotechnology-created bone substitutes have increased
the durability and longevity of implants. Implant manufacturing
innovations have enabled the creation and application of biosensors,
and diagnostic systems that are sensitive, and controlled DDS (Kon
et al., 2009).

Improving implant durability, treating vertebral osteoporotic
fractures, controlling infection, orthopedic tissue engineering (TE),
treating orthopedic oncology, as well as stem cell rejuvenation
medicines are applications of nanomaterial in orthopedic surgery.
Due to changes in the physical features and ensuing energies of the
original substances, nanomaterials have excellent physiochemical
characteristics. The primary applications for implants are (i)
replacement of joint reconstruction, (ii) implants in the spine,
(iii) orthobiologics, and (iv) implants for trauma (Zhang et al.,
2021). This review aims to give an overview of the future of
nanomedicine in orthopedics surgeries and will highlight the
recent advancement in the surgical procedure using
nanotechnology.

Epidemiology: keeping orthopaedic
disorders in perspective

Orthopedic disorders are becoming more predominant in the
United States, negatively influencing millions of Americans’ health
and leading to increasing healthcare expenses. In 2005, Orthopaedic
diseases cost an estimated $849 billion (Brenner and Ling, 2012).
With a population of 39.6 million individuals over 65 in 2009 and
forecasts that this age group will nearly double to 72.1 million by
2030, the requirement for orthopedic care will rise as the frequency
of orthopaedic damage and illness rises with age. In 2004, orthopedic
injuries alone contributed to $127.4 billion in medical expenses. This
is a forty percent upsurge from 10 years ago. Lost employment
contributes significantly to the expense of orthopaedic injuries. A
little more than one in ten Americans per year report that they were
unable to work due to an orthopaedic injury. Due to musculoskeletal
injury, there are also a large number of workers with limitations. In
2004, four out of every 100 individuals and 11 out of every
100 people over the age of 65 had joint dysfunction or bone
fracture-related labor limitations (Jacobs et al., 2008).

Arthritis is a chronic condition that impacted approximately
50 million persons in 2003 and led to expenditures of $128 billion.
Osteoarthritis, lupus, gout, rheumatoid arthritis, and fibromyalgia
are arthritic conditions (Cheng et al., 2010). In 2004, there were
249,000 reported cases of arthritis in minors under 18 years of age in
the United States. Arthritis is related to considerable morbidity, with
42% of diagnosed adults reporting physical restrictions as a result of
their disorder. Moreover, arthritis is the leading cause of joint
replacements. In 2004, there were 232,886 hip substitutes,
454,652 knee replacements, 41,934 shoulder substitutions, and
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12,055 other replacements of joints, the majority of which were
performed due to osteoarthritis. It is expected that the incidence and
incidence of arthritic disorders will rise in the subsequent years due
to aging with an emergent number of active patients (Centers for
Disease Control and Prevention CDC, 2007).

Even though some orthopaedic disorders are induced by
preset risk factors, for example, heredity, there are several
modifiable risk factors. These include overexertion, obesity,
joint instability, and infection. The majority of these risk
factors are modifiable through lifestyle modifications as well as
other precautionary measures, however, the advancement of
nanomedicine uses will also help to reduce the occurrence and
morbidity of orthopaedic disorders.

Prosthetic replacement of joints using
nanotechnology

Osseointegration is the activation of quick new bone production,
which firmly anchors grafts placed inside the bone (Oh et al., 2023;
Pinotti et al., 2023). The implant’s material qualities and mechanical
features of the adjacent bone tissue must be compatible. To
accomplish effective osseointegration, they must form direct
physical and chemical connections with nearby bone surfaces.
There should be no formation of fibrous tissue interfaces. For
their excellent mechanical characteristics, cobalt chrome alloys
and stainless steel are utilized, but the rigidity of solid materials
has led to stress protection and destruction of bones.
Osseointegration reduces tension as well as strain at the tissue-
implant junction for improved implant efficiency and durability
(Dondani et al., 2023; Lang et al., 2023; Sigilião Celles et al., 2023).

One of the key problems connected with the rising popularity of
uncemented complete joint arthroplasties is osteointegration
failures (Zhang C. et al., 2023; Verma et al., 2023). Although
prosthetic joints are presently cured to improve osseous ingrowth
through surface irregularity, the nanoscale, where cellular
relationships take place, stays smooth (Figure 2). This stimulates
fibrous because of bone ingrowth, leading to early failure (Katz
et al., 2013).

Periprosthetic joint infection is one of the primary causes of
primary joint replacement failure and modification (Alrayes M. M.
and Sukeik M., 2023; Alrayes M. M. and Sukeik M. T., 2023; Patel,
2023). It has been revealed that adherence to bacteria and
colonization are reduced. As a result, controlled antibiotic-
releasing prosthetic nanophasic joints may offer a viable solution
to the catastrophic risk presented by periprosthetic joint infections
(Gusić et al., 2014).

Surface nanostructuring with material can be designed to
develop active anti-infective surfaces even at an extremely low
level of bacterial adhesion. One of the main advantages is greater
efficacy, combating a greater variety of bacteria when antibacterial
nanoparticles are applied to the surface of titanium. The latter could
help reduce the risk of infections inmedical implants. Particles could
be designed with a targeting ability to destroy bacteria and, at the
same time, minimize the risk of developing resistance to bacteria
(Cazzola et al., 2023; Gamna et al., 2024). However, there are
disadvantages to consider as well. In the long run, the impact on
human tissues may turn out to be potentially toxic. Further,
nanoparticles may always exist for an extended possibility of time
to leach out, hence giving a potentially reduced antibacterial effect, at
the same time possibly being harmful to the environment.
Integration of nanoparticles into the titanium surface may result

FIGURE 1
Application of nanotechnology in the orthopedics (Boretto et al., 2023).
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in changes in properties such as strength and durability. One must
observe such changes in the performance of medical implants.
Further studies and developments will need to be done to
optimize such surfaces for safety and effectiveness (Cazzola et al.,
2023; Gamna et al., 2024).

Even though primary joint replacement surgery has a high rate
of success, its durability is limited. Thin (nano) film coatings may
significantly enhance the durability and functionality of artificial
joints by providing a robust barrier that minimizes wear and tear
through improved friction resistance (Noori et al., 2023).
Nanotechnology is used in arthroplasty to target the
advancement of materials for implants that are safe to use and
efficient while extending the average lifecycle of grafts and averting
infection. More favorable contact between the graft and the
surrounding bone can be formed by adjusting particular surface
features of the graft (Figure 3) (Smith et al., 2018).

Nanotechnology in the cure of osseous and
chondral defects

The treatment of trauma-induced abnormalities of the
segmental bones, fixations on failure, and arthroplasty provides a
significant challenge (Boretto et al., 2023; Garabano and Pesciallo,
2023). Current strategies for resolving these problems employing
auto/allografts and porous metals have limits of their own, for
instance, partial availability, infection risk, and insufficient
scaffolding elements, which limit the quantity of osteointegration.
Since the degree of biomaterial adherence to host tissues determines
the optimal scaffold for promoting osteointegration, nanostructured
biomaterials are suitable because osteoblasts may colonize them

(Andreacchio et al., 2018). Cells may interact, proliferate, and
change into natural tissues on the ultimate scaffolds.

Nanostructured biomaterials can provide structural assistance
and suitable pore size while also serving as a medium for the
movement and activity of cells. When treated with growth factors
and chemokines, they can also give biochemical cues to govern tissue
change with pharmacological support by transporting peptide
patterns that attach to receptors and stimulate intracellular
signaling pathways. Nanomaterials with these characteristics are
thought to be ideal for treating massive bone deformities (Luthringer
et al., 2013; Roddy et al., 2018). Nanoscaffolds can be used to
facilitate more natural healing without the complications linked
to implants and biomaterials that do not disintegrate since they will
eventually resorb after completing their biochemical, structural,
biological, and templating roles (Roddy et al., 2018).

Numerous natural and artificial nanostructured compounds
have been investigated for the management of bone deformities
(Wan et al., 2023; Wen et al., 2023). Natural biomaterials have the
benefit of being highly biocompatible, however, the way they handle
features and support from structures is inadequate. Artificial
components, in contrast, give outstanding structural support but
are not biocompatible. Presently, artificial biomaterials, for example,
hydroxyapatite (HA) and derivatives), bioactive ceramics TCP
(tricalcium phosphate) and polymers such as poly-lactic acid
(PLA) and poly-glycolic acid (PGA), and a mixture of these,
referred to as composite matrices is chosen as scaffolding
materials used to cure bone deformities because of their
enhanced structural support. Surface cure with growth agents of
these nanostructured biomaterials, for instance, bone morphogenic
proteins (BMP) and bone sialoproteins (BSP) may enhance their
capacity to osseointegrate effectively. Natural polymers which

FIGURE 2
Cropped and histogram-equalized panoramic and periapical images demonstrate successful implant outcomes. Pre-processing steps, including
cropping and histogram equalization, were applied to periapical and panoramic radiographs to optimize image contrast. Reproduced with permission
from Zhang C. et al. (2023c).
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include gelatin and fibrin have also been used to repair non-load-
bearing bone deformities such as cranial abnormalities (Vasita and
Katti, 2006; Bakhori et al., 2023; Krishani et al., 2023). The challenge
lies in devising a sterilization protocol for Biomaterial-Based Drug
Delivery Systems (BDDS) that incorporate multiple types of base
biomaterials, such as combinations involving metals with drugs,
metals with molecules, metals with polymers, and polymers with
molecules, among other permutations (Figure 4).

However, this revolution in the use of BMP2 to improve bone
regeneration does come along with several potential risks, among
them being that of inducing abnormal growth of bones (Halloran
et al., 2020). This can result in clinical complications, one of which is
the undesired formation of bone at the sites nearer to the area of
treatment. To have that happen, it would have to be discarded from
the area where bone growth is not intended (James et al., 2016).
Besides BMP2, a larger class of nanomaterials used for medical
interventions carries a number; for example, certain cytotoxic effects
of the nanomaterials are likely to bring an adverse response to cells.
The high development and implementation cost of nanotechnology
remains one of the principal barriers to wide-scale in any sphere of

its utilization. Unpredictable results of nanomaterials partially
engendered by their complex interplay with biological systems
require a more precautionary attitude (Zara et al., 2011). This
further underscores the real possibility that current This only
indicates further the urgency of very thorough research and
regulation that, in some way, would limit the mentioned risks
and secure these technologically advanced medical treatments in
the best possible way.

Cartilage has a more convoluted structure, making the cure of
cartilaginous disorders more complex employing biocompatible or
artificial scaffolds. Due to their enhanced capacity for
biodegradation, cell infiltration, biocompatibility, and
neovascularization (Vasita and Katti, 2006), biological protein
scaffolds, for example, collagen and polysaccharide scaffolds for
instance hyaluronic acid, chondroitin sulfate, chitosan, and agarose
are recommended therapies for cartilage abnormalities. Regardless
of their immunoreactivity, type I collagen frameworks are the most
frequent. In individuals with chondral defects, acid-treated collagen
polymers comprising mesenchymal stem cells (MSC) have been
suggested to create hyaline-like cartilage. The denatured form of
gelatin is an alternative to collagen that is immune-reactive and
ailment-transmissible (Banimohamad-Shotorbani et al., 2023;
Jeyaraman et al., 2023).

Since most cartilage abnormalities are manageable and less
invasive operational measures, the availability of injectable
frameworks is serious. Hydrogels are injectable nanoscale
polymeric networks made up of gelatin or collagen, with the
capability to consolidate and take on the required form of the
issue after embedding. When hydrogels are injected with
chondrocytes, they form cartilage-like ECM with increasing
mechanical improvement as a result of the ongoing formation of
a glycosaminoglycan-rich matrix (Ahmadian et al., 2023; Guo et al.,
2023; Stone et al., 2023).

Applying nanofibers to make osteogenic or chondrogenic
scaffolds has shown several advantages, including increased
propagation, cell adherence, and movement. Nanofiber scaffolds
had the largest concentration of type II collagen, an enhanced
capability to absorb human blood proteins, as well as a
substantial increase in the expression of cartilage-specific genes
and proteins, i.e., collagen II and IX. Several reported studies
have shown that TE for the management of cartilage and osseous
deformities is one of nanotechnology’s most important applications
and related studies in orthopaedics (D’Antimo et al., 2017).

Materials for bone restoration

Synthetic bone is a bone-like substance developed in a
laboratory and used as a bone graft. Bone is composed primarily
of hydroxyapatite crystals and collagen fibers. Also present are
keratan sulfate, chondroitin sulfate, and lipids. In bone grafting
procedures, organic polysaccharides (chitosan, chitin, and alginate)
as well as minerals (hydroxyapatite) are created as materials. Bone
cement supplemented with nanoclay possesses improved
mechanical characteristics. Nanophase characteristics are present
in alumina, selenium, titania, nanoceramics, cobalt chrome alloys,
carbon, Ti6AlV, nanometals, and nanocrystalline diamond (Sato
and Webster, 2004; Durmus and Webster, 2012) Bone substitute

FIGURE 3
Nanostructured implants may more closely resemble the setting
of natural bone and encourage osseointegration of implants and
surrounding osteogenesis than traditional grafts. This picture shows
the topographical interaction between a nanoengineered graft
surface and surrounding bone (Boretto et al., 2023).
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substances are utilized for treating bone fractures, hip revision
periprosthetic fractures surgeries, spinal column surgery cage
filling, reconstruction of the acetabulum, osteotomies, and bone

abnormalities in children (Arts et al., 2006). The purpose of hybrid
bone biomaterial is to replicate the composition of native bone, these
materials are designed to supplant. Together with dimensional and

FIGURE 4
Illustration depicting the challenges encountered in achieving thorough sterilization of biomaterials used in drug delivery. Reproduced with
permission from Kunrath et al. (2023).

FIGURE 5
Application of various materials in bone repairs and regeneration (Aslankoohi et al., 2019).
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mechanical integrity, scaffolds for bone renovation must provide
cells with suitable microenvironments. Consequently, scaffolds
function as more than just a basic framework, indicating the
need for more effective and interactive biomaterials (Figure 5);
(Aslankoohi et al., 2019).

Application characteristics of bone
substitution components

Injectable bone matrix composed entirely of nanoparticle-sized
hydroxyapatite. After a few months, this is fully assimilated
(Appleford et al., 2009). Engineered artificial bone items with
bone void filler consisting of HA nanocrystals that have a
structure similar to natural bone crystals.

Tricalcium phosphate nanoparticles have been devised as a
substitute substance for bone with cancellations prostheses.
When contrasting with conventional tricalcium phosphate, their
porosity, surface area, vascular invasion, and bioresorption are all
increased (Szpalski and Gunzburg, 2002).

Nanocomposite scaffold grafts consisting of nanostructured HA
and Type I collagen are employed to repair osteochondral
abnormalities in the knee joint.

Nanotechnology for osteoporosis
prevention and therapy

Osteoporosis is defined by a decrease in bone mass and micro-
structural bone injury. It could be either primary or secondary
(Adami et al., 2022; Głuszko et al., 2023; Qaseem et al., 2023). Due to
osteoporosis, spinal fractures are more prevalent than other types of
bone fractures. The goals of osteoporotic vertebral fracture (OVF)
treatment are pain relief, restoration of height, as well as the
functional integrity of the affected vertebral body. The nanosized
bioavailability of calcium citrate and calcium carbonate is improved
via nanotechnology, lowers the risk of osteoporosis, and is employed
to treat osteoporotic vertebral fractures. Bone fillings, nanomaterials
that can be injected, and Polymethyl-methacrylate (PMMA) bone
cement can be utilized to perform vertebroplasty and kyphoplasty.
With the improvement of calcium sulfate cement (CSC), and
calcium phosphate cement (CPC) (Barinov and Komlev, 2011;
Świeczko-Żurek et al., 2022), the clinical applications of bone
cement have improved. Hydrogels that can be injected are
innovative instruments for bone regeneration and healing (Cheng
et al., 2023; Li et al., 2023).

A perfect example of injectable NPs for kyphoplasty and
vertebroplasty must have good injectability and uniformity
during injection. It must have setting characteristics with
adequate handling periods. It must have sufficient mechanical
strength and rigidity to correspond with neighboring vertebral
bodies (Arora et al., 2013). They must provide porous structures
for osseointegration and angiogenesis, as well as optimal stimuli for
new bone formation. It should be free of necrosis and infection, as
well as radiopacity for surgical imaging. Conventional components
have monomer toxicity, increased temperatures that cause tissue
injury, an inability to incorporate into bone, and severe stiffness that
leads to fracture. New bone cement incorporating nanomaterials

eliminates these problems. The osteoblast adhesion densities of
PMMA bone cement incorporating nano-phase BaSO4 and MgO
are greater than those of PMMA cement alone (Ricker et al., 2008;
Karpiński et al., 2019).

The use of CPCs in bone deformities and TE. It is chemically and
biologically comparable to normal bone, can be shaped after
combining, and is a substitute for PMMA bone cement. CPCs
are categorized as either brushite (dihydrate of dicalcium
phosphate) or apatite. CPC ultrafine nanofibers, akin to cortical
bone, improve fracture resistance. Pores and interconnecting
channels for bone ingrowth are created by fiber degradation
(Canal and Ginebra, 2011) When PMMA is blended with a 2%
aqueous gel solution of sodium hyaluronate, its elastic modulus and
yield strength decrease (Liang et al., 2024). The addition of CNTs to
CPC increases its strength, as does the bio-mineralization of CNTs
(Wang et al., 2007). The combination of bovine serum albumin
(BSA) and multiwalled CNTs results in a CPC with superior
strength (Chew et al., 2011). The CPC/multi-walled CNT/BSA
composite enhances the material’s strength and interface bonding
with CPC, as well as its wettability and reactivity. Further, BSA and
MWCNT enhance the mechanical characteristics of CPC
composites, resulting in stronger materials, and encouraging HA
development. Current CPC uses include three-dimensional printing,
stem cells, injectability, drug delivery, and growth factor. Their uses
comprise prefabricated CPC scaffolds, injectable CPC scaffolds, 3-
dimensional printing, and CPC scaffold assembly for bone TE.

Bone regeneration

Similar to collagen, functionalized SWCNTs serve as
frameworks for bone treatment (Zhao et al., 2011).
Functionalized SWCNTs are optimal for creating synthetic bone
and promoting bone development. They act as a scaffold made for
the nucleation of collagen and production of HA in bone when
inserted as solutions or scaffolding as a substratum (Zhao et al.,
2005) When human mesenchymal stem cells (hMSC) are incubated
on TiO2, tiny nanotubes readily acquire local proteins and generate
an ECM-like environment that facilitates hMSC adhesion. Larger
nanotubes elongate human mesenchymal stem cells and cause them
to differentiate into osteoblastic cell lines (Oh et al., 2009). Greater
nanotubes acquire fewer local proteins, and human mesenchymal
stem cells (hMSCs) create filopodia to cover a broader surface area
and ensure optimal adherence. This method enhances
osteoinduction involving gene treatment (Figure 6) (Bhakta et al.,
2005; Polini et al., 2011).

Nanostructures designed for orthopedic treatments often exhibit
unique surface morphologies, such as high porosity or specific
topographies that encourage bone cell adherence and
proliferation, thereby aiding in bone tissue integration (Liang
et al., 2024). The internal structure, potentially visible through
high-resolution imaging, might include a strategic arrangement of
pores or channels that supports nutrient flow and waste removal,
mimicking natural bone architecture. These features collectively
work to enhance the mechanical properties of implants, ensure
biocompatibility, and improve patient outcomes by accelerating the
healing process and reducing the likelihood of implant rejection
(Chen et al., 2023).
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Orthopaedic surgical stem cell
regenerative medicine

Loss of tissues or organs is caused by old age, illness, injury, and
certain genetic defects. The method of repairing fractionally
depleted tissues is known as regenerative medicine. Regenerative
medicine permits the cultivation of tissues in the laboratory, their
safe implantation, and regeneration. Stem cells possess a vast
capacity to repair themselves and have numerous regenerative
medicine applications. The development of biomaterials is
another advance in regenerative medicine. Surface
nanopatterning alters some biological reactions of host tissues,
whereas nanotechnology supplies nanomaterials and scaffolds for
TE (Pal et al., 2011).

Nanotechnology in imaging during
orthopedic surgery

Nanotechnology has increased to the top of the imaging business
during the last 10 years. The area of orthopaedic surgery, which
depends substantially on imaging technology, stands to benefit
greatly from advances in the area. The semiconductor particles
are known as quantum dots with a diameter of 2–10 nm that
produce photons specific to the site imaging abilities. Quantum
dots are valuable because they release particles when stimulated. The
photon wavelength produced upon activation is exclusively
regulated by the size of the dot, which can be accurately
modified (Brenner and Ling, 2012). R-affixed self-illuminating
quantum nanomaterials. Reniformis luciferase (RLuc) (So et al.,

2006) is of special importance in orthopaedic surgery (Xing et al.,
2008; Smith et al., 2009).

Certain applications need a higher spatial resolution to
appropriately recognize abnormal properties, although most
orthopaedic imaging applications concentrate on macroscale
distinction. Osteoporosis, the most predominant degenerative
disease in the West, is on top of the list because it needs in-
depth imaging to determine the density and morphology of
afflicted bone. At present, standard computed tomography
(CT) has a resolving power of slightly around 1 mm, which
is too big to view microscopic bone characteristics for instance
osteocyte lacunae and canaliculi that link them. Quantitative
imaging is made possible by a new technology that uses
ptychographic CT to construct 3D density studies having a
resolution of less than a micron. In contrast to standard lenses,
ptychography is predicated on refractive microscopy. It makes
use of sensors with fast speeds to gather micro-diffraction
patterns created when electromagnetic (EM) radiation
(X-ray in this example) contacts the sample (Dierolf
et al., 2010).

Magnetic resonance imaging (MRI) is another modality that will
be enhanced by nanotechnology. Sykova and others were able to
track cellular movement using images of T2-weighted MRI (Sykova
and Jendelova, 2007) by labeling embryonic stem cells (ESCs) and
bone marrow MSCs with superparamagnetic iron oxide (SPIO)
nanoparticles. They were able to effectively trace cellular
movement in models with cortical and spinal lesions using this
visualization system. The ability to employ tracers to pinpoint the
exact position of brain lesions implies that future site-specific
therapies may be possible.

FIGURE 6
SEM analysis of cell adhesion to distinct scaffolds. Both nanofibrous scaffold (A,C) and control film (B,D) supported cell adhesion. At increased
magnification, a single cell is shown to be firmly affixed to and distributed across the electrospun nanofibers (C), with which it is intimately associated.
Cells seeded on control films exhibited a lesser degree of dissemination (D). Comparable pictures were acquired from PCL-HA samples, PCL, and PCL-
TCP samples. 10 m (A,B) or 2 m (C,D) for the bar (Polini et al., 2011).
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Nanotechnology’s role in orthopedic
surgery sensors

Making clinical decisions and treatment interventions now rely
mainly on sensor technology. Using nanotechnology, developments
in the specificity and sensitivity of sensors are increasing. One of the
primary causes of orthopaedic failure of grafts is the separation
prosthetic stem originates from the bone. Under physiological
circumstances, a weight-bearing bone’s strain typically lies in a
typical range in terms of age and location. Bone tumors, the
progression of osteoporosis, as well as prosthetic integration are
investigated via in vivo measures of strain that leave usual
boundaries. Metallic strain gauges made of foil are currently
commercially available, but their lack of sensibility, big size, and
lack of long-term biocompatibility are constraints. Current strain
gauges are being substituted with strain gauges that have been
upgraded in every manner by nanotechnology (Alpuim et al.,
2008). A network of these microsensors would make it possible
to a 3D examination of force-loading capabilities in real-time.

Employing multi-walled carbon nanotubes (MWCNTs)
developed in cavities on a titanium surface to measure the
amount of in situ bone development is an alternative technique
for sensing in situ bone progression. MWCNTs work by finding the
relative resistivity of emerging on the graft; bone HA is conductive,
while microbes and scar tissue have an elevated level of resistance
(Liu et al., 2007; Brenner and Ling, 2012). Furthermore, when
compared to titanium grafts already in use, These MWCNTs
promote the calcium buildup of osteoblasts (bone-forming cells)
(Sirivisoot and Webster, 2008).

Existing in vivo sensors have limitations because they are
incapable of being powered for lengthy periods. The Lajnef
investigative team intends to overcome this constraint through
the use of ultralow power (1 lW) piezo strain gauges that are
also capable of collecting energy (Lajnef et al., 2008), thereby
permitting the implant sensors to continue to function
continuously. Also under investigation (Liu et al., 2007) is the
ability to wirelessly send growth and strain data to an external
receiver using shortwave radio (Bluetooth) and radiofrequency
identification (RFID), allowing the data to be used successfully
while making clinical decisions.

Orthopedic implantable nanomaterials

Implantable biomaterials include magnesium alloys, stainless
steel alloys, Ti alloys, cobalt-chrome alloys, alumina, HA, zirconia,
carbon fiber/polyetherether-ketone, poly(lactic acid) (PLA),
polymethylmethacrylate (PMMA), and carbon fiber/ultra-high
molecular weight polyethylene are common materials that can be
used to replace bone structurally (Pishbin et al., 2013; Liu et al., 2014;
Pompa et al., 2015). Nanostructured materials have become
innovative orthopedic implants with better potential for
osseointegration as a result of recent advancements in
nanotechnology while in contrast to conventional materials, they
possess cell-favorable surface characteristics that effectively promote
the formation of new bone (Zhang andWebster, 2009). For example,
metallic implanted devices that have been nanostructured have
improved mechanical and biocompatibility characteristics

(Mishnaevsky et al., 2014). Currently, powder metallurgy (P/M)
(Mishnaevsky et al., 2014) and severe plastic deformation (SPD)
(Serra et al., 2013) methods may be used to economically produce
bulk nanocrystalline (NC; <100 nm) and ultrafine-grained (UFG;
~100–500 nm) metals, containing Ti and related alloys. In this case,
strong plastic strains with complicated stress states are applied to
bulk metal or powder materials, which causes the coarse grains to
break down into the nanoscale range. While having a greater
strength (>1,000 MPa) than traditional implants, SPD’s
nanostructured titanium implants are bioinert and free of any
possible harmful or allergic reactions from alloying elements like
Al and V (Serra et al., 2013). A recent research by Gain et al. (Gain
et al., 2015), has demonstrated that UFG/NC P/M Ti grafts exhibit
superior strength and ductility compared to standard Ti–6Al–4V
alloys and SPD-processed Ti components. UFG Ti (170–200 nm)
was produced by Estrin et al. (Estrin et al., 2011), using equal
channel angular pressing (ECAP) and contrasted the way that a
coarse-grained (CG) Ti specimen (4.5 μm) adhered to the surface of
hMSCs. It was revealed that there were improvements in the
attachment and dissemination of hMSCs within the first 24 h of
culture. TiN-coated UFG Ti (~130 nm) was created by Wang et al.
(Wang et al., 2013), using a high-pressure torsion process. The
produced material’s strong strength, acceptable ductility, good
fatigue life, outstanding abrasion resistance, and harmless ion
release show its significant potential as an implant. Park et al.
(Park et al., 2009), examined the in vitro biocompatibility of
UFG Ti generated by ECAP utilizing MC3T3-E1 cells in
comparison to Ti–6Al–4V alloy and commercially pure (CP) Ti.
The samples have micro-rough surfaces created by grit-blasting
them with HA particles. Alkaline phosphatase (ALP) activity,
adhesion, osteocalcin, and osteopontin mRNA levels in growing
cells, cell spreading, vitality, and mineralization nodule formation
were among the improved biological responses shown by the UFG
material. Element selenium is another substance used in orthopedics
that may have anticancer properties. Selenium, as opposed to
titanium, is a necessary trace element in human body.
Mammalian selenoproteins, which are involved in thyroid
hormone metabolism, antioxidant defense mechanisms, and
redox regulation of cell processes, make selenium an essential
element (Perla and Webster, 2005). The development of several
malignant cell lines has been demonstrated to be inhibited by
selenium in vitro study (Tran et al., 2010). Selenium has been
shown by Perla and Webster (Perla and Webster, 2005) to
positively impact osteoblast development. In order to develop
roughness on selenium compacts with a nanostructure for
chemotherapeutic orthopedic uses, Tran and Webster (Tran and
Webster, 2008) shown that a higher level of nanometer-scale
selenium roughness enhanced the adherence of healthy bone
cells. But because selenium is a metalloid and lacks sufficient
mechanical strength, this method of adding selenium may leave
the implant with weak or inappropriate mechanical qualities
(Figure 7) (Tran and Webster, 2008). Furthermore, stability and
control over selenium’s release would be highly desired qualities
given that it is poisonous in excessive amounts (Tran et al., 2010).
Tran et al. (Tran et al., 2010), have produced a nano selenium-coated
Ti to enhance orthopedic applications as an alternate method of
employing selenium as an antitumor orthopedic material. Selenium
nanoclusters’ potential as a covering for Ti orthopedic materials that
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can prevent cancer and support the normal functioning of bone cells
has been shown. The hardest materials to work with in orthopedic
applications include bioceramics, although their innate brittleness
prohibited their use in particular applications. Improved fracture
toughness and the potential to support biofunctionality are two
benefits that nanophased ceramics may provide (Catledge et al.,
2002). The nanostructuring of several bioceramics, such as alumina,
titania, calcium phosphates, zirconia, bioactive glass (BG), and HA,
is one of the most recent developments (Simchi et al., 2011).
Research has indicated that nanostructuring results in increased
mechanical strength together with enhanced ductility and toughness
because the smaller grains prevent dislocation slip and blunt cracks
(Ovid’ko and Sheinerman, 2011). Furthermore, when the sintering
activity increases, manufacturing nanoceramics at reduced
temperatures becomes possible (Simchi et al., 2011). In the
meanwhile, it might be difficult to limit grain expansion during
high-temperature processing. Additionally, nanophased
bioceramics work better with cells in vivo and in vitro. When it
comes to rabbit MSC cell survival and propagation in vitro, Zhou
et al. (Zhou et al., 2015), have found that NC HA offers a superior
substrate than CG HA. Enhanced apoptosis of bone-like HA
nanocrystals modified with alendronate has been seen in
osteoclast-like cells demonstrated in vitro by Bosco et al. (Bosco
et al., 2015). In a critical-sized malfunction rabbit ulnar model,
effective crack bridging is achieved using nanostructured BG
scaffolds directing bone growth (Hafezi et al., 2012). The usage
of nanotextured surface and nanoengineered grafts will support in
fixing the problem by increasing activity of osteoblastic cells. The
increased surface area of nanoengineered grafts allowed greater
interaction between the host bone and the graft surface, opening
the way to dependable and anticipated osteointegration, thereby
lengthening the lifespan of implants. (Guarino et al., 2019;
Abaszadeh et al., 2023).

Further, options for bone and potential uses for cartilage tissue
engineering include artificial and natural polymers. Biocompatible
and physiologically active natural polymers that support cell
adhesion and growth include fibrin, collagen, chitosan (CS), HA,
and alginate (Agarwal and García, 2015). These natural substances
are superior to synthetic ones in sharing similarities with bodily
materials and might be employed as scaffolding for the surface of
implants (Park et al., 2007; Gallo et al., 2014). Recent developments
in the creation of CS-based scaffolds with improved bone
redevelopment potential were highlighted by Zhang and

Levengood (Streicher et al., 2007). Mandal et al. (Mandal et al.,
2012) created composite matrices bonded with silk fibers for use in
bone engineering that have a high compressive strength (~13 MPa
in a hydrated condition). To facilitate bone regeneration
nanomedicine, Schiavi et al. (Schiavi et al., 2015) created novel
collagen nanofiber implants that are personalized with growth factor
BMP-7 nanoreservoirs and fortified with MSCs from humans.
Additionally, a wide variety of polymer nanofibers have been
researched for use in replacing bone tissue (Streicher et al.,
2007). Using methods including phase disparity, particle leaching,
electrospinning, 3D printing and chemical etching, these
nanofibrous or nanoporous polymer matrices may be created
(Zhang and Webster, 2009). To investigate the survival,
propagation, and differentiation of hMSCs along with their
derivatives that are chondrogenic and osteogenic, Xin et al. (Xin
et al., 2007) synthesized electrospun PLGA nanofibrous scaffolds.
Findings showed that during a 2-week incubation period in PLGA
nanofibers, hMSCs consistently differentiated into osteogenic and
chondrogenic cells. Improved chondrocyte activities on
nanostructured 3D PLGA scaffolds were reported by Park et al.,
(Park et al., 2005).

Generally speaking, nanopolymers and nanoceramics are
employed primarily as coating component material in orthopedic
or can be mixed with other biomaterials to create nanocomposites
appropriate for use in implants. Since bone is a real nanocomposite,
as was previously established, nanocomposites are more
advantageous compared to alternative nanostructured materials.
Commonly used nanocomposites for the regeneration of bone
tissue include carbonaceous nanophases in ceramic or polymer
matrix, ceramic nanophases in ceramic matrix, and ceramic
nanophases in polymer matrix (Yang et al., 2011; Garmendia
et al., 2013). When porous HA/ZrO2 nanocomposites were
created using the P/M approach, as demonstrated by Gain et al.
(Gain et al., 2015). The reinforcing action of ZrO2 nanoparticles
(NPs) allowed the nanocomposites to display superior compressive
strength and elastic modulus compared to porous monolithic HA. A
growing number of researchers are interested in using ceramic-
polymer nanocomposites as materials for bone tissue regeneration
because of the extraordinary fusion of osteoconductivity and
bioactivity in ceramics and flexibility and form controllability in
polymers (Sahoo et al., 2013). Hickey et al. (Hickey et al., 2015), have
created PLLA-based nanocomposites reinforced with MgO NPs and
HA very recently. According to their findings, MgO NPs

FIGURE 7
(A) SEM images of an untreated selenium compact (SC). (B,C) SC treated with 1N NaOH for 10 min and 30 min, respectively. Reproduced with
permission from Tran and Webster (2008).
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considerably improve osteoblast adhesion and propagation on
HA–PLLA nanocomposites while preserving mechanical
characteristics appropriate for applications involving cancellous
bone. For the medical management of cancellous bone
deformities or orthopedic applications with limited load bearing,
Sadat-Shojai et al. (Sadat-Shojai et al., 2015) created 3D HA/gelatin
hydrogel nanocomposites with increased rigidity. The incorporation
of MC3T3-E1 cells into the nanocomposites demonstrated that the
bone cells were compatible with the whole composite manufacturing
process. Carbon nanoparticles are new, substitute reinforcing
materials. The mechanical characteristics of orthopedic materials
can be effectively enhanced by the addition of carbon
nanostructures, such as graphene, carbon nanofibers, carbon
nanotubes, nanodiamond (ND), and so on, because of their very
high mechanical strength compared to most other materials (Yang
et al., 2011). By employing a hydrothermal method, Baradaran et al.
(Baradaran et al., 2014), created composites of graphene oxide
(rGO) reinforced graphene (HA) nanotubes. They demonstrated
that increasing the rGO concentration enhanced the sintered
specimens’ elastic modulus and fracture toughness. Additionally,
there were reports of increased osteoblast adhesion and propagation.
Wu et al. (Wu et al., 2013), examined the biomimetic development
behavior of HA on carboxylic group-customized CNFs and assessed
the composites’ fracture strength and structure. The enhanced
mechanical strength and ability for HA to form an interfacial
link with host tissues were achieved as a result of the strong
interfacial interaction between HA and CNFs. Another research
investigation (Liao et al., 2013) created biocomposites for bone
replacements by combining HA nanorods and multiwalled
carbon nanotubes (MWCNTs) with polypropylene. The 3-(4,5-
Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT)
assay and mechanical testing indicate that the mechanical
properties—like impact toughness, tensile strength, and
stiffness—were enhanced without significantly affecting
biocompatibility.

Future direction

Nanotechnology has made a significant impact in medicine, and
substantial financing is being dedicated to nanomedicine
investigation. Most effective in vitro and laboratory-based studies
have yet to be converted in clinical settings, despite the reality that
the theoretical benefits of nanotechnology are exceptional. There are
concerns in relation to the toxicity of NPs produced as abrasion
detritus. At the nanoscale, metals exhibit distinct behaviors and
material qualities than at the microscale. The small metal ion
particles have made havoc with metal-on-metal (MOM) hip
substitutions. Therefore, traditional grafts cured by
nanotechnology for exact characteristics are preferable over
nanoparticle implants. This prevents nanoparticles from
becoming dispersed and causing tissue toxicity. Given these
reservations, it has been suggested that regulation is required.
Industries are still unwilling to make nanostructured grafts and
prostheses due to unproven healing advantages, probable toxicity
risks, and prohibitively high prices. In conclusion, we consider that
nanotechnology progressions will continue to influence medicine’s
future, specifically orthopedics. To achieve the prospective clinical

benefits, additional investigation is required, which requires
regulated regulation in the absence of impeding research avenues.

Conclusion

Applications of nanotechnology in medicine are transforming
disease prevention, diagnosis, and therapy, and will have a profound
impact on healthcare in the coming years. Due to the expanding
prevalence of orthopedic conditions in the United States, it is crucial
to develop and implement nanotechnology-enabled medical
interventions that target orthopedic conditions. The
nanotechnology applications stated above are only a small part of
the ongoing initiatives to design innovative clinical tools for
orthopedic surgeons to treat common conditions. Product
development and commercialization will be staggered, with the
rate at which individual products reach the market dependent on
regulatory, economic, health and safety, and other variables. The
application of nanotechnology to the diagnosis, prevention, and
management of orthopaedic disorders holds considerable potential
for enhancing orthopedic surgery care in the twenty-first century.
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